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Abstract—Crowdsourced spectrum sensing has great potential
in improving current spectrum database services. Without strong
incentives and location privacy protection in place, however,
mobile users will be reluctant to act as mobile crowdsourcing
workers for spectrum sensing tasks. In this paper, we present
PriCSS, the first framework for a crowdsourced spectrum sensing
service provider to select spectrum-sensing participants in a
differentially privacy-preserving manner. Thorough theoretical
analysis and simulation studies show that PriCSS can simulta-
neously achieve differential location privacy, approximate social
cost minimization, and truthfulness.

I. INTRODUCTION

Dynamic spectrum access (DSA) is an emerging paradigm

for mitigating worldwide wireless spectrum shortage. A DSA

system consists of licensed primary users and unlicensed

secondary users. A secondary user can use a licensed channel

currently not used by its primary user. With DSA in place,

secondary users have more channels to use, and primary users

can profit by sharing their under-utilized licensed spectrums.

Avoiding harmful interference with primary users is the

first principal in DSA systems. FCC advocates a solution

based on spectrum databases, each currently administrated by

private entities such as Google and Microsoft. Each spectrum

database administrator accepts registrations from primary users

and leverages a well-known propagation model to predict the

coverage boundary of each primary user. Each secondary user

needs to inquire the spectrum database about the channel

occupancy at a chosen location before transmitting there.

Current spectrum databases have well-known drawbacks [1].

First, the signal propagation models in use are not accurate,

leading to either severe under-utilization of the spectrum or

interference with primary users. Second, current spectrum

databases cannot provide the quality information of channels,

which can significantly vary in space and time. Last, the loca-

tions of primary and secondary users cannot be validated, so a

spectrum database administrator may return wrong spectrum

occupancy information to secondary users.

Crowdsourced spectrum sensing (CSS) is very promising for

mitigating the drawbacks of the current spectrum databases.

In this approach, a spectrum database administrator recruits

distributed mobile users to sense a given channel around

a specified location and decides the channel occupancy by

aggregating the sensing results. The feasibility of CSS is

backed up by a few trends. First, the number of mobile devices

are expected to hit 10 billion in 2016, which implies sufficien-

t geographic coverage especially in populated metropolitan

areas where DSA systems are expected to play significant

roles. Second, future mobile devices are very likely to be

capable of spectrum sensing given the expected pervasiveness

of DSA-based wireless systems [2]. Last, mobile devices are

increasingly powerful in self-localization, communication, and

computation, which has fostered the explosive popularity of

mobile crowdsourcing applications [3]. With CSS in place,

the spectrum database administrator does not need to deploy

a dedicated large-scale sensor network for spectrum sensing.

A typical CSS system works as follows. The spectrum

database administrator publishes spectrum-sensing tasks either

periodically or randomly. Each spectrum-sensing task involves

one or multiple channels, a pre-determined set of geographic

locations, and the sensing time. The sensing results from the

designated locations can be aggregated to jointly determine

the channel occupancy at the specified time. Each mobile user

in the CSS system can independently decide his capability of

performing the sensing tasks. For example, if Tom will go to

a restaurant for lunch today, he can conveniently perform the

sensing task near the restaurant around the lunch time. Given

the participating requests, the spectrum database administrator

can select a set of users for each sensing task.

There are many challenges for pushing the promising CSS

system above into practice. For example, strong incentives

must be provided to stimulate self-interested mobile users

for spectrum sensing. Incentive mechanism design for CSS

systems is a non-trivial task. On the one hand, different users

may want different rewards for the same sensing task. For

instance, a user far away from the allocated location may

require more to compensate for his longer driving time and

higher fuel consumption; a user may also lie about his travel

distance to a specific sensing location to gain more. On the

other hand, the spectrum database administrator wants to

minimize the overall participants’ cost (i.e., social cost) for

any sensing task as long as the sensing quality is sufficient.

Another significant challenge lies in the location privacy

of mobile users. Since spectrum-sensing tasks involve rich

spatiotemporal information, the whereabouts of participating

users can be easily exposed, thus discouraging mobile users

wary of their location privacy.

This paper presents PriCSS, a novel framework for a

spectrum database administrator to select spectrum-sensing

participants in a differentially privacy-preserving manner. Our

specific contributions are as follows. First, we formulate par-

ticipant selection in CSS systems as a reverse auction problem

where each participant’s true cost for performing the sensing

tasks is closely tied with the participant’s current location.

Second, we demonstrate a location-privacy attack under the

previous formulation. Third, we present a new formulation

based on the exponential mechanism to offer differential

location privacy. Last, we thoroughly evaluate PriCSS through

theoretical and simulation studies. Our results confirm that

PriCSS can simultaneously achieve the following objectives.



• Differential location privacy. PriCSS can prevent any

internal or external attacker with arbitrary knowledge

from inferring the locations of mobile participants.

• Approximate social cost minimization. Social cost is

the sum of the real cost of participants completing all

the sensing tasks [4]. PriCSS aims to approximately

minimize the social cost.

• Truthfulness. Each PriCSS participant has no incentive

to lie about his sensing cost.

II. RELATED WORK

This section reviews the prior work most related to PriCSS.

There are a few elegant schemes on location privacy in

CSS systems [5]–[8]. The majority of the schemes focus on

preventing the spectrum database administrator from inferring

the physical sensing locations based on submitted sensing

reports. The authors in [8] introduce a framework for pro-

tecting location privacy of workers participating in spatial

crowdsourcing tasks. In our context, the sensing locations

are pre-determined and publicly known. PriCSS seeks to hide

the current locations of sensing participants when competing

to participate in the spectrum-sensing tasks, thus we try to

address a very different problem.

Some other schemes aim to detect false sensing reports [9]–

[14] or spectrum misuse [15]–[18]. PriCSS focuses on the pre-

sensing phase and is orthogonal to these nice efforts.

Numerous efforts [4], [19]–[21] have been made on incen-

tive mechanism design for crowdsourcing worker selection.

Our work differs from this line of works by specifically

addressing spectrum sensing and also location privacy.

Differential privacy [22]–[24] has been recently introduced

into DSA research. The work in [25], [26] targets differentially

private spectrum auctions. The work in [27] applies differential

privacy to stream monitoring. In contrast, our work targets CSS

systems and differential location privacy.

III. SYSTEM AND ADVERSARY MODELS

A. System Model

PriCSS is run by a spectrum database administrator whose

functionalities, however, go far beyond those of the current

spectrum database administrators. Specifically, similar to a

spectrum database administrator, the PriCSS administrator

accepts registrations from primary users and answers the

spectrum-occupancy queries from secondary users. In addition,

the PriCSS administrator can manage the spectrum of itself

or other licensed users by issuing spatiotemporal spectrum

permits which allow secondary users to use specific channels

at specific locations during specific periods.

The PriCSS administrator relies on mobile crowdsourcing

to obtain fine-grained information for its managed spectrum.

Crowdsourcing spectrum sensing tasks eliminate the need

for the PriCSS administrator to deploy and manage a large-

scale sensor network dedicated to spectrum sensing. More

specifically, to determine the realtime quality and occupancy

of a specific channel in a certain area, the PriCSS administrator

recruits mobile users there, referred to as PriCSS participants,

to perform spectrum sensing at a set of designated locations.

The PriCSS administrator can then make a decision by fusing

the sensing reports. This sensing method is known as coop-

erative spectrum sensing and has been widely studied. The

sensing locations usually should be far apart from each other to

ensure high spatial diversity and thus high sensing quality. For

the purpose of this paper, we hereby assume that the PriCSS

administrator has pre-determined the sensing locations of each

sensing task according to the existing methods such as [28].

Each PriCSS participant is a mobile user who owns an

advanced mobile device capable of spectrum sensing. He

registers with the PriCSS administrator under his real identity

to receive rewards for performing spectrum sensing. Each

PriCSS participant also has a unique pseudonym or identifier

which is visible to other participants in the system. In contrast,

the real identity of each participant is kept confidential to

himself or the PriCSS administrator.

B. Adversary Model

We assume that the PriCSS administrator is fully trusted in

preserving the real identity and bids of PriCSS participants.

This common assumption can be relaxed by introducing

multiple semi-trusted parties who do not collude. How this

relaxation can be done is beyond the scope of this paper.

The adversary can be internal or external to PriCSS. An

internal attacker corresponds to a PriCSS participant. We

assume that internal attackers are honest-but-curious (HBC)

in the sense that they faithfully fulfill promised sensing tasks

but have interests in finding out the locations of other PriCSS

participants. We also assume that PriCSS participants may lie

about their spectrum sensing cost to claim more rewards, but

they are rational in the sense that they only lie if they can

benefit. Such HBC and rational assumptions are commonly

adopted in the literature to model the attackers not performing

denial-of-service attacks. In contrast, an external attacker does

not participate in PriCSS but tries to infer the locations of

PriCSS participants from public information.

We assume that the adversary has arbitrary background

knowledge for attempting to breach the location privacy. For

example, both internal and external attackers know the details

of the system operations, and they may also collude. We intend

to offer differential location privacy to each PriCSS participant

under this strong adversary model.

As mentioned in Section II, there can be many other security

and privacy issues in CSS systems. We resort to the rich

literature for effective defenses, e.g., detecting fake sensing

results [9]–[14] and spectrum misuse [15]–[18].

IV. PARTICIPANT SELECTION WITHOUT PRIVACY

We first formulate participant selection in PriCSS as a

reverse-auction problem without considering location privacy.

For this purpose, we assume that there are totally n PriCSS

participants in a large geographic region such as the Los

Angeles metropolitan area. Each participant has a unique

integer index in N = {1, · · · , n}, which corresponds to his

system pseudonym in practice.
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We assume that the PriCSS administrator issues K sensing

tasks. Each task k ∈ [1,K] contains one or more channels to

sense, a time window in which the sensing should be done,

and μk ≥ 1 sensing locations which are determined by the

PriCSS administrator according to existing results such as [28].

Finally, we denote the j-th subtask of task k by tk,j , all the

μk subtasks of task k by Tk = {tk,j |j ∈ [1, μk]}, and all the∑K
k=1 μk subtasks by T = {tk,j |k ∈ [1,K], j ∈ [1, μk]}. The

participant is allowed to include multiple sensing tasks at once

in his sensing request according his schedule and itinerary.

Since all the subtasks for the same sensing task need to be

performed in the same (and generally short) time window, we

require that each participant can at most perform one subtask

for each sensing task.

The cost for spectrum sensing is modeled as follows.

The PriCSS administrator publishes a constant factor η to

compensate each PriCSS participant for his resource (power,

communication, and computation) consumption and human

effort incurred for each sensing subtask. Another constant ρ is

also published as the travel compensation per unit distance

for gas consumption, driving time, etc. For simplicity, we

use Euclidean distance to model the travel distance between

two points. Assume that a participant chooses to perform m
subtasks in a round trip of total Euclidean distance d. His true

sensing cost is defined as v = mη + ρd. For example, if a

participant is currently at position l1 and his wants to perform

two subtasks a and b which are located at la and lb, respec-

tively. Then d equals Euclidean(l1, la) + Euclidean(la, lb) +
Euclidean(lb, l1). Therefore, his true sensing cost for the

two subtasks is simply 2η + ρd. Each participant knows this

cost model for computing his sensing cost, and the PriCSS

administrator can modify the model based on user feedbacks.

The PriCSS administrator aims to select nk unique par-

ticipants for each spectrum sensing task k ∈ [1,K]. Since

PriCSS participants compete to perform spectrum sensing

tasks in return for rewards, it is reasonable to model participant

selection in PriCSS under a reverse combinatorial auction

framework [29]. In this framework, the PriCSS administrator

serves as an auctioneer to auction the sensing tasks, and each

participant i ∈ [1, n] acts as a bidder for the sensing tasks.

We outline the auction procedure as follows. The PriCSS

administrator broadcasts the subtask list T and expects each

interested participant i to reply with one bid bi = (Li, ci),
where Li ⊂ T , and ci is his claimed cost to perform the

sensing subtasks Li. We assume that ci is limited in the

range of [cmin, cmax], where cmin and cmax are reasonable

minimum and maximum possible sensing costs, respectively.

Each participant follows two rules to place his bid. First, he

can bid for no more than one subtask for each sensing task.

Second, he can bid for multiple sensing tasks. The first rule is

necessary to prevent strategic manipulation of the bids. For

example, participant A and B both bid for the same two

subtasks t1,1 and t1,2. If bidding truthfully, A will be allocated

with t1,1 and B will be allocated t1,2. However, A might find

out that if he is assigned with t1,2, he can gain more rewards.

Thus, A could purposely lie about the cost of t1,1 to give away

the sensing opportunity of t1,1 to B. Since B has already been

assigned with one subtask for this specific sensing task, B is

excluded for consideration of task assignment of t1,2. In this

way, A purposely lies about one sensing cost to win the other

sensing subtask and gains more. The second rule is to allow

participants to perform multiple spectrum sensing tasks during

a round trip so that the total cost for performing the bundled

sensing tasks can be reduced.

Given the bid set B = {bi|i ∈ [1, n]}, the administrator

determines the outcome of the auction, denoted by −→x (B) =
{x1, x2, · · · , xn}, where xi is an indicator for participant i:

xi =

{
1, i wins the subtask bundle Li,
0, otherwise.

(1)

Correspondingly, the administrator selects a winner set W
such that all subtasks in T can be fulfilled.

Each participant also holds a true valuation about the

performing cost for the subtask set Li, which is calculated

with the cost model previously and denoted by vi. The

utility of participant i whose bid bi is accepted is defined as

“ui = pixi − vi”, where pi is the payment the administrator

makes to participant i. Note that the utility is normalized to

0 if the participant is not a winner. The participants know the

allocation algorithm and the payment scheme in advance, and

each participant wants to choose his strategy to maximize his

own utility. So the claimed cost ci might not necessarily equal

vi for each participant.

In our model, for each sensing task bundle, the participants

could have different valuations due to different sensing and

travel cost involved. Since asking for what bundle is up to the

participant to decide, we aim to design a truthful mechanism

so that participants have no interests in lying about the claimed

cost. In addition, the time interval between consecutive rounds

of auctions can be dynamically adjusted by the PriCSS admin-

istrator according to his service requirements.

Problem Formulation. We formulate participation selec-

tion in PriCSS as follows without considering location privacy.

minimize
∑
i∈W

ci

subject to |(
⋃
i∈W

Li)
⋂

Tk| = μk, ∀k ∈ [1,K],

|Li

⋂
Tk| ≤ 1, ∀k ∈ [1,K], ∀i ∈ W.

|Li| ≤ γ, ∀i ∈ W.

(2)

The first condition in the equation above indicates that par-

ticipants in the winner set can fulfill all the K sensing tasks.

The second one requires that each participant bid at most one

subtask for each sensing task. The third one is to limit the

number of sensing tasks a participant can perform in a single

round. γ is a constant and specified by the administrator.

The basic problem can be essentially treated as a minimum

weighted set cover problem [30], which is knowingly NP-hard.

So our basic problem is also NP-hard, which can be solved

by an iterative approximation algorithm as follows. We define

the average contributory cost of a participant as his original
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claimed cost over the number of subtasks which he bids for

and are not yet allocated to other participants. In each iteration,

the PriCSS administrator selects a new participant who has the

minimum contributory cost among the remaining participants.

The algorithm terminates when all the constraints are satisfied.

We say that one participant outbids another if the former is

chosen earlier than the latter.

V. YOUR LOCATION IS NO SECRET

In this section, we exemplify some attacks to infer PriCSS

participants’ locations when they are selected under the reverse

auction framework in Section IV. The location of a participant

here refers to his base location (e.g., home or workplace)

where he stays for a long time each day, and the base location

serves as the reference point for the participant to derive his

sensing cost for any interested spectrum sensing tasks. We

assume that each participant starts from his base location and

returns there after performing spectrum sensing tasks. This

assumption is reasonable in practice. For example, a service

guy of a heating and air conditioning company always starts

from and returns to his company after handling a sequence of

service appointments; a company employee always returns to

his workplace after having lunch; and a person always starts

from and returns to his home at the end of the day.

We also assume that the PriCSS administrator publicizes

each spectrum-sensing auction result to ensure the public that

its participant selection is unbiased. The publicized informa-

tion only includes the system identifier of each participant

winning one or multiple sensing subtasks. The real identity,

claimed cost, and received payment of each winning partici-

pant are still kept confidential. Making the auction result public

can also help the winners achieve greater self-esteem and

public recognition, for which there are numerous examples in

practice. For instance, an Amazon user can get his product

reviews seen and voted by others, and those contributing

highly voted reviews can get free products to test and keep.

The key insight for the location-inference attacks is that

a participant’s claimed sensing cost is tied to his round-trip

Euclidean distance according to the aforementioned public

cost model v = mη+ρd, which corresponds to performing m
subtasks in a round trip of total Euclidean distance d. Even if

the claimed cost of each participant is hidden, the attackers

can still infer the locations of some participants from the

auction results and the changes in auction participation. We

give some attack examples in what follows to highlight the

need for preserving location privacy. We consider two rounds

of auctions, which involve identical channels and sensing

locations but different sensing times. This is practical because

the PriCSS administrator may want to know the occupancy

and quality of each channel in each service area according to

a periodic, on-demand, or random schedule.

Case 1: Single Task.
We first consider a simple case in which each participant

can bid for a single sensing task. Since each participant can

perform no more than one sensing subtask for any sensing

task, the bid of each participant is hence for a single subtask.

T1

T2

T3

T4 A

C

BD

1.25

0.6

1

2.
25

3

2

0.25

1.4

2.1

Fig. 1: A location-inference attack example.

For example, consider three participants {A,B,C} bidding

for the same subtask. According to the aforementioned cost

model, their true sensing costs are vA = η + ρdA, vB =
η+ ρdB , and vC = η+ ρdC , respectively, where dA, dB , and

dC denote their respective Euclidean distance to the subtask

location. Assume that the base locations of A, B, and C do not

change. Nor do dA, dB , and dC . In addition, we temporarily

assume that the claimed cost of each participant equals his

true sensing cost, which can be technically guaranteed later.

So we have cA = vA, cB = vB , and cC = vC . Assuming that

dA > dB > dC , we have cA > cB > cC . According to our

formulation in Eq. (2), participant C will be selected as the

winner in the first round. In the second round (say, next day),

assuming that C no longer competes for this subtask for some

reason such as work schedule change, so only A and B bid.

Then B wins in the second round. The PriCSS administrator

publishes the participant selection result in each round.

An external attacker can infer from the public information

that cA > cB > cC and hence dA > dB > dC , which are

something a sensitive user does not want to disclose.

Internal attackers can infer much more information. For

example, assume that B is an attacker. Since B knows his own

distance dB and dC < dB , he can infer that participant C must

be inside the suspicion region, which is the circle centered

at the subtask location with radius dB . If C additionally

participates in other sensing subtasks whose locations are also

public, B can draw other suspicion regions for C and infer that

C is in the intersection area of the suspicion regions with an

overwhelming probability. B can also speed up his inference

and improve the inference accuracy by colluding with other

participants in the PriCSS system.

Case 2: Multiple Tasks.
We also give a more complicated example corresponding to

the more general case in Eq. (2), in which each participant can

bid for multiple subtasks with a single claimed cost. As shown

in Fig. 1, our example involves four sensing tasks T1 ∼ T4,

each involving a single subtask. So we can use T1 ∼ T4 to

denote the four subtasks as well. The number associated with

each dotted line in Fig. 1 represents the Euclidean distance

between the two end locations. Let η be 0.5 and ρ be 1 for the

aforementioned cost model v = mη+ρd, where m denotes the

number of chosen subtasks, and d denotes the round-trip Eu-

clidean distance. The bids submitted by A ∼ D are as follows:

bA = {{T1}, 3}, bB = {{T2}, 5}, bC = {{T1, T2}, 4}, bD =
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{{T3, T4}, 5.35}. According to our formulation in Eq. (2), the

winner set is W = {C,D}. In the second round, assuming

that C leaves the area or simply skips the auction, the winner

set is W ′ = {D,A,B}. Assume that the PriCSS administrator

publishes a re-ordered winner set in each round to conceal each

winner’s selection order. For example, {D,C} and {B,D,A}
are published as the two rounds’ results.

There can be many attack strategies for the above scenario.

Due to space limitations, we only discuss one case here, in

which A and B collude to infer C’s location. The attack

involves two steps. First, the attackers need to infer the sensing

task bundle that C bids. Second, the attackers estimate the

claimed cost of C. The first step can be achieved by studying

the difference between the two winner sets, W and W ′. From

the attackers’ point of view, D’s bid must have covered only T3

and T4. Otherwise, the winner set would have been changed.

It follows that C’s bid must have covered at least T1 and T2.

The remaining question is whether C’s bid also covers either

or both T3 and T4.

There are two possible cases now. In the first case, we

assume that D outbids C in the first auction and thus gets

T3 and T4, so C can only contribute to tasks T1 and T2. Since

C outbids both A and B, his average contributory cost should

be smaller than the smallest of A and B’s average contributory

cost, which corresponds to cC/2 < cA = 3 or cC < 6. From

Fig. 1, the minimum round-trip cost for C to perform T2,

T1 and T4 sequentially must be larger than 6 and is incurred

when C first visits the T2 location, then the T1 location and

the T4 location, and finally C’s location. The additional cost

is higher if T3 is involved. So C’s bid covers T1 and T2 only.

Plugging m = 2, η = 0.5, and ρ = 1 into the cost model

cC = mη + ρdC , the attackers have cC = 1 + dC and thus

dC < 5. Since the distance between T1 and T2 is 1, the sum

of the Euclidean distances from C to T1 and T2 is smaller

than 4. So the attackers can infer that C must be inside the

ellipse with T1 and T2 locations as two foci and the major-axis

length equal to 4. C’s location can be further narrowed down

if additional information is available.

Case 3.
In addition to the two exemplary attacks on location privacy,

the participants very close to some subtask locations are likely

to have lower claimed cost and higher chances to always win

the sensing tasks at those locations, as the aforementioned

approximate solution to our formulation in Eq. (2) is a

deterministic process. Therefore, if a participant appears much

more frequently than other participants in repeated auctions

for the same sensing subtasks, the attackers can infer that the

participant must be very close to one of the subtask locations.

This kind of location privacy breach should also be prevented.

VI. PARTICIPANT SELECTION WITH DIFFERENTIAL

LOCATION PRIVACY

Till now we have formulated participant selection in PriCSS

as an NP-hard problem and described an approximate solution.

We have also demonstrated a few attacks under the basic

formulation and solution, which can severely endanger the

location privacy of PriCSS participants. In this section, we

incorporate differential privacy into the previous formulation

and propose an advanced formulation for participant selection

in the PriCSS system to simultaneously achieve approximate

social cost minimization, truthfulness, and differential location

privacy. In what follows, we first outline some background

knowledge to facilitate the presentation and understanding of

our scheme. Then we present our advanced formulation with

differential location privacy.

A. Background

Definition 1. An auction is truthful if and only if any bidder’s

(expected) utility of bidding its true valuation vi is at least its

(expected) utility of bidding any other value ci [31],

ui(vi, c−i) ≥ ui(ci, c−i). (3)

Definition 2. A mechanism satisfies the voluntary participa-

tion condition if agents who bid truthfully never incur a net

loss, i.e., profiti(vi, (c−i, vi)) ≥ 0 for all agents i, true value

vi, and other agents’ bids c−i [32].

Clearly, the voluntary participation condition is a desired

property of our scheme design.

Theorem 1. A decreasing output function admits a truthful
payment scheme satisfying voluntary participation if and only
if
∫∞
0

xi(c−i, u)du ≤ ∞ for all i, c−i. In this case, we can
take the payments to be [32]

pi(c−i, ci) = cixi(c−i, ci) +

∫ ∞

ci

xi(c−i, u)du (4)

Differential privacy is a powerful tool to provide statisti-

cal guarantee on the privacy leakage induced by publishing

outputs based on sensitive input data sets. The basic idea is

that for two almost identical input data sets, the output of

the mechanism are nearly identical. The formal definition of

differential privacy is as follows [22].

Definition 3. A randomized function M gives ε-differential

privacy if for all data sets D1 and D2 differing on at most one

element, and all S ⊆ Range(M),

Pr[M(D1) ∈ S] ≤ exp(ε)× Pr[M(D2) ∈ S]. (5)

Approximate differential privacy relaxes on the strict re-

quirement and allows a small additive term in the bound [33].

Definition 4. A randomized function M gives δ-approximate

ε-differential privacy if for all data sets D1 and D2 differing

on at most one element, and all S ⊆ Range(M),

Pr[M(D1) ∈ S] ≤ exp(ε)× Pr[M(D2) ∈ S] + δ. (6)

The parameter δ ensures that although not all events can

satisfy the strong guarantee as specified by Eq. (5), the

alternation is only for very low probability cases. Hence, it

is desired that ε and δ to be as close to 0 as possible.

The exponential mechanism is a powerful tool to facilitate

mechanism design via differential privacy [23]. The query

function defined here q(A, r) maps a pair of input data set
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A and candidate outcome r to a real valued “score,” with the

understanding that the higher score is, the better performance

the mechanism can achieve. Specifically, it is defined below.

Pr[εεq(A) = r] ∝ exp(εq(A, r)). (7)

The exponential mechanism gives 2εΔ differential privacy,

where Δ is the largest change in q by a single change of

the input in A.

The following theorem suggests that the probability of a

highly suboptimal output is exponentially low [34].

Theorem 2. The exponential mechanism, when used to select
an output r ∈ R, gives 2εΔ-differential privacy, letting ROPT

be the subset of R achieving q(A, r) = maxrq(A, r), ensures
that

Pr[q(A, εεq(A)) < maxrq(A, r)−
ln(|R|/|ROPT|)

ε
− t

ε
]

≤ exp(−t).
(8)

B. Differentially Private Participant Selection

Due to the NP-hardness of the basic problem, we propose

an approximate algorithm, combined with the exponential

algorithm, to achieve the desired approximate minimum social

cost, low computation complexity, and differential privacy.

Algorithm 1 Participant Selection in PriCSS

Input: Universe set T of sensing tasks, set B =
⋃

i∈N bi of

all submitted bids.

Output: Winner set W , social cost c.
1: Initialization: ε′ ← ε

Δ·eln(e/δ) , W ← ∅, c ← 0, TW ← ∅;

2: while |T − TW | > 0 do
3: for all bi in B do
4: if Li ⊆ TW then
5: B ← B − {bi};

6: else
7: r(ci) =

ci
|(T −TW)

⋂
Li| ;

8: end if
9: end for

10: for all bi in B do
11: Pr[W ← W⋃{i}] = exp(−ε′·r(ci))∑

bj∈B exp(−ε′·r(cj)) ;

12: end for
13: Select bi according to the computed probability distri-

bution.

14: if bi is selected then
15: B ← B − {bi};

16: W ← W⋃{i};

17: c = c+ ci;
18: TW ← TW

⋃
Li;

19: end if
20: end while
21: return W, c

The objective of the PriCSS administrator is still to select a

set of participants for bundled spectrum sensing tasks, and

we refer to Section IV for the notation. We first define a

ranking metric to characterize the administrator’s preference

for participants, which applies to participant i ∈ [1, n]:

r(ci) =
ci

|(T − TW)
⋂

Li|
, (9)

where the set TW denotes the set of subtasks included in the

current winning bids, i.e., TW =
⋃

i∈W Li.

The rationale of this definition is as follows. The admin-

istrator always tends to select the participant with the lowest

claimed cost per subtask that has not yet been included in

TW . In each iteration, each participant’s ranking preference is

calculated. Then for any remaining participant i who has not

be included in the winner list, we adopt the following quality

score for the exponential mechanism,

q(ci, xi) = −r(ci). (10)

The “−” sign is placed to fit the exponential mechanism in

our reverse auction model. It is clear that the smaller r(ci), the

higher the quality score of participant i. This effect is preferred

during the winner selection.

The details of the proposed allocation scheme is shown in

Algorithm 1. According to the exponential mechanism, the

probability of participant i being selected as a winner is

Pr(xi = 1) ∝ exp(−ε′r(ci)) , (11)

where ε′ is specified as ε
Δ·eln(e/δ) . Δ is the maximum input

difference for ci, which equals cmax − cmin. ε and δ are

parameters to balance the privacy leakage and efficiency (in

terms of social cost minimization in our scenario). Line 11 in

Algorithm 1 can thus be derived considering all the unselected

participants. It essentially normalizes the overall participants’

selection probability. Based on the selection probability for

each remaining participant, participant i is selected as the

winner in this iteration. We then remove his bid bi from B
and include i in the winner set W .

We resort to Theorem 1 for the truthful payment design.

Each winner i is paid by the administrator with the amount

pi(c−i, ci) = cixi(c−i, ci) +

∫ cmax

ci

xi(c−i, u)du, (12)

where xi(c−i, ci) represents the probability that participant i
is selected to perform the sensing task bundle Li when i’s
claimed cost is ci and others’ claimed cost vector is c−i.

VII. PERFORMANCE ANALYSIS

In this section, we prove how PriCSS achieves the desired

design objectives: differential location privacy, approximate

social cost minimization, and truthfulness.

A. Differential Location Privacy

Theorem 3. For any δ ≤ 1/2, PriCSS preserves ((e −
1)ε′Δln(eδ−1), δ)-differential location privacy.

Proof: To facilitate the proof, we first define Qi as the

subtask set that participant i can still contribute to, i.e., Qi =
(T − TW)

⋂
Li. In two consecutive auction rounds, assume

that there are two bidding vectors {c1, c2, · · · , cl, · · · , cn} and

6



{c′1, c′2, · · · , c′l, · · · , c′n} that differ by only one single element

at the lth index. ci = c′i for all i ∈ [1, n] except i = l. Differ-

ential privacy suggests that with these two bidding vectors as

input, the probability that the outputs of the mechanism, i.e.,

the winner sets W and W ′, are approximately the same. The

rationale of our proof is to obtain an exponential upper-bound

for Pr[W = {w1, w2, ..., wp}]/Pr[W ′ = {w1, w2, ..., wp}],
where W and W ′ are the two ordered winner lists, i.e., wi is

always selected as a winner before wj for any j > i. We give

our formal proof below:

Pr[W = {w1, w2, ..., wp}]
Pr[W ′ = {w1, w2, ..., wp}]

=

p∏
i=1

exp(−ε′ · ci/|Qi|)/
∑

j∈N\πi
exp(−ε′ · cj/|Qj |)

exp(−ε′ · c′i/|Qi|)/
∑

j∈N\πi
exp(−ε′ · c′j/|Qj |)

=

p∏
i=1

exp(−ε′ · ci/|Qi|)
exp(−ε′ · c′i/|Qi|)

·
p∏

i=1

∑
j∈N\πi

exp(−ε′ · c′j/|Qj |)∑
j∈N\πi

exp(−ε′ · cj/|Qj |)

=exp(ε′
c′l − cl
|Ql|

)

p∏
i=1

∑
j∈N\πi

exp(−ε′ · c′j/|Qj |)∑
j∈N\πi

exp(−ε′ · cj/|Qj |)
,

(13)

where π1 = ∅ and πi = {w1, w2, ..., wi−1}(i > 1). If cl < c′l,
the second term is smaller than 1. Then

Pr[W = {w1, w2, ..., wp}]
Pr[W ′ = {w1, w2, ..., wp}]

< exp(ε′Δ), (14)

where Δ is the maximum difference of the bid values for the

same set of task bundles.

If cl > c′l, the first term is smaller than 1. We denote αj =
cj − c′j , then

Pr[W = {w1, w2, ..., wp}]
Pr[W ′ = {w1, w2, ..., wp}]

<

p∏
i=1

∑
j∈N\πi

exp(−ε′ · c′j/|Qj |)∑
j∈N\πi

exp(−ε′ · cj/|Qj |)
.

=

p∏
i=1

∑
j∈N\πi

exp(−ε′ · c′j/|Qj |)∑
j∈N\πi

exp(−ε′ · αj/|Qj |)exp(−ε′ · c′j/|Qj |)

=

p∏
i=1

Ej∈N\πi
[exp(ε′ · αj/|Qj |)].

(15)

Note that for all η ≤ 1, eη ≤ 1 + (e− 1)η. Therefore, for all

ε′ ≤ 1/Δ,

Pr[W = {w1, w2, ..., wp}]
Pr[W ′ = {w1, w2, ..., wp}]

≤
p∏

i=1

Ej∈N\πi
(1 + (e− 1) · ε′ · αj)

≤exp((e− 1)ε′
p∑

i=1

Ej∈N\πi
αj).

(16)

So if
∑p

i=1 Ej∈N\πi
αj is upper-bounded, the theorem

is established. Based on the proofs in [34], we have

Pr(
∑p

i=1 Ej∈N\πi
αj > Δln(eδ−1)) ≤ δ.

B. Approximate Social Cost Minimization

Theorem 4. With probability of at least 1− 1/nO(1), PriCSS
can assign spectrum sensing tasks to a set of winners with a
social cost of at most γOPT+O(ln(n)), where OPT denotes
the optimal (minimum) social cost, and n is the number of
participants.

Proof: Let WOPT denote the set of winners in the auction

with the minimum social cost. We denote an arbitrary set of

winners as W and number the winners according to the order

of being selected, i.e., W = {w1, w2, ..., wl}.

For each i ∈ W , we define a set Wi, with the following

constraints (∀j ∈ Wi):

1) j ∈ WOPT;

2) Qj

⋂
Qi �= ∅;

3) |Qj − (Qj

⋂
Qi)| = 0;

4) Qj �= ∅ before i is selected as one winner.

The above constraints suggest that in this arbitrary selection

W , the reason that a participant j is not listed is that there is a

participant i with a conflicting task set with that of participant

j, and i wins. Note that in Eq. (8), the q function corresponds

to the inverse and unified cost in our scenario. Therefore, by

taking t = O(ln(n)), we have

− ci
|Qi|

≥ − cj
|Qj |

− O(lnn) (17)

with a probability of at least 1− 1/nO(1).

Since |Qj | is upper bounded by a constant γ where γ < n
when n is large, we have

cj ≥
ci
|Qi|

· |Qj | − O(lnn) (18)

with a probability of at least 1− 1/nO(1).

Summing all j (j ∈ Wi) together, we have∑
j∈Wi

cj ≥(
ci
|Qi|

− O(lnn)) ·
∑
j∈Wi

c|Qj |

≥ci
γ

−O(lnn).

(19)

with a probability of at least 1− 1/nO(1). The last step holds

because
∑

j∈Wi
|Qj | ≥ 1.

Summing all i ∈ W , we have∑
j∈WOPT

cj =
∑
i∈W

(
∑
j∈Wi

cj +
∑

j∈WOPT
⋂Wi

cj)

≥
∑
i∈W

ci
γ

−O(lnn).
(20)

This concludes the proof.

C. Truthfulness

We finally prove that PriCSS is truthful. Based on The-

orem 1, we need to show that the selection of PriCSS is

monotone decreasing with an appropriate payment scheme.

Lemma 5. In PriCSS, for each participant i, the probability

that i is assigned with the interested spectrum sensing task

bundle is monotone decreasing with his claimed cost ci.
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Fig. 2: Privacy loss.
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Fig. 3: Social cost for K = 3 sensing tasks.

Proof: Due to the randomized property of our scheme, we

simply prove that the probability that i is assigned with the

interested spectrum sensing task bundle is decreasing when his

claimed cost ci increases in each round of winner selection.

Pr(W ← W
⋃

{i})

=
exp(−ε′ · r(ci))∑

bj∈B exp(−ε′ · r(cj))

=
exp(−ε′ · r(ci))∑

bj∈B\{ci} exp(−ε′ · r(cj)) + exp(−ε′ · r(ci))

=1−
∑

cj∈B\{ci} exp(−ε′ · r(cj))∑
bj∈B\{ci} exp(−ε′ · r(cj)) + exp(−ε′ · r(ci))

(21)

In the above equation, if we increase ci, r(ci) also increases.

Then the exponential term of ci decreases, causing the overall

equation value to decrease. This indicates that if we increase

ci, the probability that W includes i in every round decreases

if i has not been included in previous rounds.

We thus have the following theorem established:

Theorem 6. PriCSS is truthful.

VIII. PERFORMANCE EVALUATION

In this section, we use simulations to evaluate whether PriC-

SS can achieve differential location privacy and approximate

social cost minimization.

Our simulation setting is as follows. We simulate a square

urban area of 1km by 1km. The PriCSS administrator issues

sensing tasks in response to the queries of secondary users,

each with a transmission radius of 300m. The base locations of

PriCSS participants are uniformly distributed, and we vary the

number of PriCSS participants from 100 to 800 in simulations.

In our simulation, the preferred sensing locations are chosen

beforehand according to the specific diversity requirement as

discussed in Section III. To minimize the overall sensing cost,

we want the subtask locations to be as far from each other
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Fig. 4: Social cost for K = 9 sensing tasks.
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Fig. 5: Social cost for 700 participants.

as possible. We specify a minimum separation distance of

100m for the subtasks in each sensing task. The number of

sensing locations (or subtasks) for each sensing task is fixed

as 5 in our simulations. We vary the number of sensing tasks

K in one round of auction from 3 to 9. Each sensing task is

characterized by the locations of the corresponding secondary

users, which are uniformly distributed within the region. We

also set the modeling parameters η = 100 reward units and

ρ = 1 unit per meter. In addition, we set the bidding cost range

[cmin, cmax] to [100,2000] and then normalize it to [0,1]. The

parameter γ is specified as 5. Note that other configurations

of η and ρ lead to similar performance. We omit other cases

here due to limited space. The privacy parameter ε is chosen

as 0.1 or 1.5, and δ is set to 0.25. The simulations are done in

MATLAB, and each result represents the average of 100 runs.

We use two metrics to evaluate PriCSS. The first is the

privacy loss, defined according to Definition 3:

ε = maxS ln
Pr[M(D1) ∈ S]
Pr[M(D2) ∈ S] , (22)

where D1 and D2 correspond to two cost vectors for all

the participants that differ by one element. Intuitively, the

smaller ε, the less impact the change of single cost on the

auction results, the better individual sensing cost privacy is

protected, and the more location privacy each participant

enjoys. The second metric is the social (or true sensing) cost

of the winners, which is desired to be as low as possible.

For the purpose of comparison, we also show the social cost

induced using the approximation algorithm without privacy

considerations introduced in Section IV. We first evaluate the

location-privacy loss in PriCSS. As proved in Section VII,

PriCSS preserves ((e−1)ε′Δln(eδ−1), δ)-differential location

privacy, where ε′ is specified as ε
Δ·eln(e/δ) . This is equivalent

to achieving ( e−1
e ε, δ) differential privacy. In the simulations,

we set ε = 0.1 or 1.5 and δ = 0.25. Fig. 2 shows the

achievable privacy loss in PriCSS, which is obviously much

8



lower than the theoretical result. Specifically, when ε = 0.1,

we can observe almost a constant privacy loss of 0.01, which

is far lower than the theoretical value e−1
10e ≈ 0.06. Similar

conclusions can be drawn with ε = 1.5. This indicates that

when there is any change of a single cost value for any

participant, there is rarely any chance that the auction result

can change. Since differential privacy mechanisms work for an

arbitrary adversary, we can safely conclude that the attackers

can no longer infer the participants’ locations by performing

the attacks in Section V or adopting other attack strategies.

We show the social cost incurred using PriCSS and the

approximate algorithm (denoted as approx.) for three and

nine sensing tasks in Fig. 3 and Fig. 4, respectively. For

the approximate algorithm, we abserve that as the number

of participants increases, the social cost tends to decrease

due to increased competition among participants. The trend

of decrease, however, cannot be found with PriCSS for both

ε = 0.1 and ε = 1.5 cases. We conjecture that with PriCSS in

place, the advantage of cost-efficient participants who claim

lower sensing costs in the hope of winning more is weakened

by the increased number of participants. In other words, their

ranking metrics play less significant roles when the number of

participants increases. Still, we see that the social cost when

ε = 0.1 is slightly worse than ε = 1.5. This is the expected

trade-off between privacy and utility: the larger ε, the heavier

weight on the ranking metric, and the lower the social cost.

In Fig. 5, we also show the social cost for different numbers

of sensing tasks when there are 700 participants. As expected,

when the number of sensing tasks increases, the social cost

also increases.

IX. CONCLUSIONS

In this paper, we present PriCSS, a novel framework for

a spectrum database administrator to select spectrum-sensing

participants in a differentially privacy-preserving manner. We

provide detailed privacy and efficiency analysis of the scheme

and evaluate the performance extensively. We demonstrate that

PriCSS can simultaneously achieve the three design objectives:

differential location privacy, approximate social cost minimiza-

tion, and truthfulness.
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