
Secure Outsourced Skyline Query Processing via
Untrusted Cloud Service Providers

Wenxin Chen∗1, Mengjun Liu†12, Rui Zhang∗, Yanchao Zhang‡, and Shubo Liu†
∗University of Hawaii, Honolulu, HI, USA
† Wuhan University, Wuhan, Hubei, China
‡Arizona State University, Tempe, AZ, USA

∗{wenxinc, ruizhang}@hawaii.edu, †{mjliu, liu.shubo}@whu.edu.cn, ‡yczhang@asu.edu

Abstract—Recent years have witnessed a growing number of
location-based service providers (LBSPs) outsourcing their points
of interest (POI) datasets to third-party cloud service providers
(CSPs), which in turn answer various data queries from mobile
users on their behalf. A main challenge in such systems is that the
CSPs cannot be fully trusted, which may return fake query results
for various bad motives, e.g., in favor of POIs willing to pay.
As an important type of queries, location-based skyline queries
(LBSQ) ask for the POIs that are not spatially dominated by any
other POI with respect to some query position. In this paper, we
propose three novel schemes that enable efficient verification of
any LBSQ result returned by an untrusted CSP by embedding
and exploring a novel neighboring relationship among POIs. The
efficacy and efficiency of our schemes are thoroughly analyzed
and evaluated.

I. INTRODUCTION

Recent years have witnessed the growing popularity of
location-based services (LBSs) driven by the explosive growth
of location-aware and Internet-capable mobile devices. eMar-
keter projected that global smartphone users will surpass
two billion in 2016 and reach 2.56 billion in 2018. Almost
all concurrent mobile devices have Internet access via the
WiFi or cellular interface and are capable of acquiring their
whereabout via various localization techniques. It has become
increasingly common for mobile users to perform various
queries at location-based service providers (LBSPs) to learn
about all kinds of points of interests (POIs) such as restaurants
and parks near any interested location at any time.

As an important type of queries, location-based skyline
queries (LBSQs) [1]–[3] ask for the POIs that are not spatially
dominated by any other POI with respect to a given query
position. Specifically, a POI is often characterized by its loca-
tion as a spatial attribute and one or more numeric attributes
such as quality, price, and average rating, and we say one
POI spatially dominates another if the former is both closer
to the query position and preferable in the numeric attribute
of interest. For example, a driver may issue an LBSQ to find
all the car washes, for each of which there exists no other car
wash that is both closer and cheaper.

Owing to the wide adoption of cloud computing, a growing
number of LBSPs have outsourced their POI datasets to third-

1 The first two authors contributed equally to this work.
2 This work was done when M. Liu was a visiting student at the University

of Hawaii.

party cloud service providers (CSPs), which in turn answer
various data queries from mobile users on their behalf. For
example, Yelp, a popular LBSP that offers POI searching and
crowdsourced review sharing, has outsourced its entire dataset
and services to Amazon Web Services (AWS). Providing query
services via third-party CSPs cannot only reduce LBSP’s
storage and operation costs, but also greatly enhance the
elasticity and scalability of the service [4].

A major challenge for LBSPs to outsource their POI datasets
and query processing is to ensure query-result integrity against
possibly dishonest CSPs. In particular, CSPs cannot be fully
trusted to faithfully return correct query results for various
reasons. For example, a dishonest CSP may modify the
LBSP’s POI dataset or provide biased query results in favor
of POIs willing to pay. More specifically, the CSP may return
a POI record that is not in the LBSP’s dataset, modify the
POI record, and/or return a POI record that is not among the
skyline POIs. We thus need to develop sound mechanisms to
ensure the authenticity and completeness of any query result
returned by a CSP. An LBSQ result is authentic if all the POIs
returned are indeed authentic records in the LBSP’s dataset and
is complete if it contains all the skyline POIs.

To the best of our knowledge, references [5], [6] are the
only two pieces of work targeting verifiable outsourced LBSQ
processing via untrusted CSPs, in which Lin et al. presented
several schemes based on a novel data structure called Merkle
Skyline R-tree. Both assume that the POIs are distributed in a
general 2D plane, while in practice the POIs could be better
modeled as distributed over a road network. In addition, the
schemes in [5], [6] only support LBSQs over the entire POI
dataset, while in practice users are usually interested in the
skyline POIs in selected areas that cannot be predicted in
advance. These situations call for more practical solution that
supports verifiable LBSQ processing over user-selected areas.

In this paper, we fill this gap by proposing three novel
schemes for verifiable LBSQ processing via untrusted CSPs
by embedding and exploring a novel skyline neighboring
relationship among POIs. In particular, we observe that every
POI can appear in the result for infinite number of LBSQs but
can only have a limited number of possible neighboring POIs
with each corresponding to a distinct query range. Based on
this observation, we let the LBSP bind every POI record with
all its skyline neighbors and corresponding query ranges using

Fig. 1: An exemplary road network.

cryptographic techniques before outsourcing its dataset to the
CSP. To answer an LBSQ, the CSP must return embedded
skyline neighbor information for each returned POI record in
order to pass the authenticity verification, based on which
the user can further verify the completeness of the query
result. Our first scheme supports verifiable LBSQ processing
over POIs in a single road segment, and the second scheme
supports multiple road segments. The third scheme further
improves the second scheme by reducing its communication
and computation overhead. The efficacy and efficiency of
all three schemes are confirmed by detailed analysis and
simulation studies.

II. RELATED WORK

In this section, we discuss some work that is most germane
to our work in addition to [5], [6] discussed in Section I.

Significant effort has been made to ensure query integrity
against untrusted service providers such that a query result
was indeed generated from the outsourced dataset and contains
all the data satisfying the query. Various types of query have
been studied, including range queries [7], [8], spatial top-k
queries [9]–[11], kNN queries [12], [13], shortest-path queries
[14], spatial skyline queries [15], etc. Common to existing
proposals is to let the data owner outsource both its dataset
and its signature on the dataset to the service provider which
returns both the query result and a verification object (VO)
computed from the signatures for the querying user to verify
query integrity.

Another line of research is to ensure data privacy against
untrusted service providers. A common approach is to encrypt
the dataset before outsourcing it to the third-party service
provider, and various techniques have been proposed to enable
efficient query processing over encrypted data. Early research
focuses on one-dimensional range queries [16]–[18] as well
as multi-dimensional range queries [19]. More recent work
targets secure ranked keyword search [20]–[24], fine-grained
access control [25], and circular range query [26] over en-
crypted data. This line of work is orthogonal to our work, as
we focus on publicly accessible data without need for privacy
protection.

III. MODELS AND PROBLEM FORMULATION

A. System Model

We consider an LBSP outsourcing its POI dataset to a third-
party CSP, which in turn answers LBSQs from mobile users
on the LBSP’s behalf. Mobile users are people carrying smart-
phones or tablets who may issue LBSQs by either directly

Fig. 2: Representation of a road segment ei, where ti,j is POI
oi,j’s relative position.

visiting the LBSP’s website or through installed mobile app
offered by the LBSP.

We assume that the LBSP’s dataset involves a set of
POIs O of the same category, e.g., hotel, and each POI is
characterized by its location and one numeric attribute (e.g.,
price) taking values from a known range. Our solution can be
easily extended to support POIs involve multiple categories
with multiple numeric attributes.

We assume that the area where the POIs reside can be
modeled as a road network like lower town Manhattan and
represented as a planar graph G = (V,E) in a 2D plane
as shown in Fig. 1, where V is the set of vertices, i.e.,
road intersections, and E = {e1, . . . , em} is the set of road
segments. As shown in Fig. 2, each road segment can be
represented as ei = {ui + tvi|t ∈ [0, 1]} for two reference
vectors ui,vi ∈ R2, where ui and ui + vi are the two end
points.

We now illustrate the content of the LBSP’s dataset. Denote
by Oi the set of POIs in road segment ei. It follows that
O =

⋃m
i=1Oi and Oi

⋂
Oj = ∅ for all i 6= j. Assume that

there are ni POIs in road segment ei for all i ∈ [1,m]. Also
let oi,j and Di,j denote the jth POI in road segment ei and
its corresponding data record, respectively. Every POI record
can be represented as

Di,j = 〈idi,j , ti,j , λi,j , infoi,j〉,

where idi,j is a unique ID assigned by the LBSP that identifies
oi,j , ti,j ∈ [0, 1] is its relative position with respect to road
segment ei, λi,j ∈ [λmin, λmax] is the numeric attribute of
interest, and infoi,j includes all other information about the
POI such as its name, user text review, and photo. Given the
reference vectors of road segment ei, the actual position of
oi,j can be computed as pi,j = ui + ti,jvi. For a POI at the
intersection of two road segments, we assume that it belongs
to only one road segment. Finally, we assume that no two
POIs share the same position.

B. Location-Based Skyline Query

Assuming that lower numeric attribute (e.g., price) is prefer-
able, we now give the definitions for spatial dominance and
location-based skyline query.

Definition 1. (Spatial dominance) For any two POIs oi,j
and oi′,j′ , we say oi,j spatially dominates oi′,j′ with respect
to query position q if and only if d(q,pi,j) ≤ d(q,pi′,j′) and
λi,j ≤ λi′,j′ but the two equalities do not both hold, where
d(·, ·) is some proper distance function.

Definition 2. (Location-based skyline query) A location-
based skyline query sky(O|q) asks for the POIs that are not
spatially dominated by any other POI in O with respect to q.

We assume Euclidian distance for d(·, ·) in this paper and
leave the extension to other distance metrics like shortest path
distance as our future work.

C. Problem Formulation

We assume that when a user uses the CSP’s service for the
first time, he download a copy of (V,E) and all the reference
vectors and the LBSP’s signature.

To issue an LBSQ, the user submits to the CSP 〈q, I〉, where
q ∈ R2 is the query position, and I ⊆ {1, . . . ,m} is a set of
indexes of road segments. The CSP is supposed to return the
skyline POI set sky(O|q), where O =

⋃
i∈I Oi.

We assume that the LBSP is trusted, while the CSP is
untrusted. In particular, the CSP may alter POI records, forge
POI records that are not in LBSP’s data set, replace some
skyline POI records with fake ones that not skyline POIs, or
purposely omit some true skyline POI records.

Given the above problem setting, our design objective is
to enable user to verify the authenticity and completeness
of the query result returned by the CSP. The query result is
considered authentic if all the returned POI records exist in
the LBSP’s dataset and have not been tampered with, and it is
called complete if it contains all the true skyline POI records.

IV. 1D-SKY: VERIFIABLE 1D LBSQ PROCESSING

In this section, we introduce 1D-SKY, a novel scheme
for verifiable 1-dimensional LBSQ processing via a untrusted
CSP, which forms the foundation of the solutions for more
general 2D cases introduced in Sections V and VI.

For 1D LBSQ, we assume that the road network contains
only one road segment e = {u+ tv|t ∈ [0, 1]}, along which n
POIs are distributed. We then simplify the notation by denoting
the set of POIs as O = {oj |1 ≤ j ≤ n}, where oj is the jth
POI with corresponding data record Dj = 〈idj , tj , λj , infoj〉.
Moreover, we assume that the user issues LBSQ sky(O|q)
with arbitrary query position q ∈ R2.

In what follows, we first introduce two properties of LBSQ
that our scheme depends on in Section IV-A. We then intro-
duce the notions of and the procedures for computing skyline
neighbor and neighbor range in Sections IV-B and IV-C,
respectively. We finally detail 1D-SKY’s three phases, data
preprocessing, query processing, and query-result verification
in Sections IV-D to IV-F, respectively.

A. Properties of LBSQ

We first have the following proposition regarding 1D LBSQ.

Proposition 1. Let O be the set of POIs distributed along
road segment e = {u+ tv|t ∈ [0, 1]}. For any query position
q ∈ R2, let p(q) denote its projection on the straight line
{u+ tv|t ∈ R} that contains e. We have

sky(O|q) = sky(O|p(q)). (1)

We give the proof of Proposition 1 in our technical report
[27]. Proposition 1 shows that sky(O|q) is determined by q’s
projection p(q). Assume that p(q) = u + tqv, where tq is
p(q)’s relative position on straight line {u + tv|t ∈ R} and
given by

tq =
vT (q− u)

‖v‖22
(2)

Since sky(O|q) is determined by p(q), which in turn can
be represented by tq , our subsequent discussion will use
sky(O|q), sky(O|p(q)) and sky(O|tq) interchangeably when
no confusion arises.

We also have the following proposition regarding the de-
composability of LBSQ.

Proposition 2. Let O1, . . . , Ok be a family of subsets of O
such that O =

⋃k
i=1Oi. For any query position q, we have

sky(O|q) ⊆
k⋃

i=1

sky(Oi|q) .

We give the proof in our technical report [27]. Proposition 2
shows that we can decompose one LBSQ into multiple LBSQs
each over a subset of POIs, and the union of the later skyline
POI sets always contains the original skyline POI set.

B. Skyline Neighbor and Neighbor Range

We start by classifying LBSQs into two categories ac-
cording to the relative position of the query position’s pro-
jection. Specifically, let tmin = min(t1, . . . , tn) and tmax =
max(t1, . . . , tn). We say an LBSQ sky(O|tq) is single-sided
if tq ≤ tmin or tq > tmax and double-sided if tmin < tq ≤ tmax.

We can always decompose a double-sided LBSQ into two
single-sided ones. In particular, for any query position tq , we
can divide O into two subsets according to POIs’ relative
positions as

O− = {oi|oi ∈ O, ti < tq},
O+ = {oi|oi ∈ O, ti ≥ tq}.

(3)

It is easy to see that both sky(O−|tq) and sky(O+|tq) are
single-sided. Moreover, according to Proposition 2, we have

sky(O|tq) ⊆ sky(O−|tq)
⋃

sky(O+|tq) .

We define skyline neighbors with respect to single-sided
LBSQ.

Definition 3. (Skyline neighbor) Assume that sky(O|tq) is
single-sided. For any oi ∈ sky(O|tq), we define its left
(or right) skyline neighbor with respect to query position
tq , denoted by Nl(oi|tq) (or Nr(oi|tq)), as the closest POI
oj ∈ sky(O|tq) with tj < ti (or tj > ti).

Note that oi may have no left (or right) neighbor if ti =
min{tj |oj ∈ sky(O|tq)} (or ti = max{tj |oj ∈ sky(O|tq)}).

Definition 4. (Skyline neighbor set) We define the left (or
right) skyline neighbor set of POI oi as the set of its all

Fig. 3: An example of computing skyline neighbor set and
neighbor ranges for o4.

possible left (or right) skyline neighbors, which are given by

Nl(oi) = {oj |∃tq, s.t. oi, oj ∈ sky(O|tq), oj = Nl(oi|tq)},
Nr(oi) = {oj |∃tq, s.t. oi, oj ∈ sky(O|tq), oj = Nr(oi|tq)}.

Each skyline neighbor corresponds to a distinct query range,
which we call a neighbor range.

Definition 5. (Neighbor range) For any oj ∈ Nl(oi) or
Nl(oi), we define the neighbor range of oj with respect to
oi as range(oi|oj) such that oj = Nl(oi|tq) or oj = Nr(oi|tq)
if and only if tq ∈ range(oi|oj).

C. Computing Skyline Neighbor Set and Neighbor Ranges

1D-SKY requires the LBSP to compute the skyline neighbor
set and the corresponding neighbor ranges for every POI.

Consider Fig. 3 as an example, where all the POIs are
distributed along a road segment, and the x- and y-coordinates
represent each POI’s relative position and numeric attribute,
respectively. Suppose that we want to compute the left and
right skyline neighbor sets and corresponding neighbor ranges
for POI o4.

We first find the query range R such that o4 ∈ sky(O|tq)
(i.e., o4 has some skyline neighbor) if and only if tq ∈ R. For
this purpose, we can see from Fig. 3 that o1 and o7 are the two
closest POIs with numeric attributes lower than λ4 on o4’s left
and right sides, respectively. It follows that o1 dominates o4
if tq ≤ t1 and that o7 dominates o if tq > t7. In addition, we
have tq ∈ (t1, t4], o4 ∈ sky(O+|tq), and when tq ∈ (t4, t7),
o4 ∈ sky(O−|tq). We therefore have R = (t1, t7).

Now we consider the case where t1 < tq < t7. We define
two POI sets as

O+
l = {oj |oj ∈ O, t1 < tj < t4, λj > λ4},
O+

r = {oj |oj ∈ O, t4 < tj < t7, λj > λ4}.

If we issue two single-sided LBSQs over O+
l and O+

r with
query position tq = t4, we get sky(O+

l |t4) = {o2, o3} and
sky(O+

r |t4) = {o5, o6}.
We claim that o4’s left and right skyline neighbor sets are

Nl(o4) = {o1}
⋃
sky(O+

l |t4) = {o1, o2, o3} and Nr(o4) =
{o7}

⋃
sky(O+

r |t4) = {o5, o6, o7}, respectively. We detail
each case as follow.
• Case 1: If tq ∈ (t1, t2], then Nl(o4|tq) = o2 and
Nr(o4|tq) = o7.

• Case 2: If tq ∈ (t2, t3], then Nl(o4|tq) = o3 and
Nr(o4|tq) = o7.

• Case 3: If tq ∈ (t3, t4], then o3 and o4 are the rightmost
and the leftmost POIs in sky(O−|tq) and sky(O+|tq),
respectively. We postulate Nl(o4|tq) = o3 in this case. In
addition, we have Nr(o4|tq) = o7.

• Case 4: if tq ∈ (t4, t5], then o4 and o5 are the rightmost
and the leftmost POIs in sky(O−|tq) and sky(O+|tq),
respectively. We have Nl(o4|tq) = o1 and postulate that
Nr(o4|tq) = o5 in this case.

• Case 5: If tq ∈ (t5, t6], then Nl(o4|tq) = o1 and
Nr(o4|tq) = o5.

• Case 6: If tq ∈ (t6, t7], then Nl(o4|tq) = o1 and
Nr(o4|tq) = o6.

Summarizing the above cases, we have Nl(o4) = {o1, o2, o3}
with neighbor ranges range(o1|o4) = (t4, t7), range(o2|o4) =
(t1, t2], and range(o3|o4) = (t2, t4), and Nr(o4) =
{o5, o6, o7} with neighbor ranges range(o5|o4) = (t4, t6),
range(o6|o4) = (t6, t7), and range(o7|o4) = (t1, t4).

In general, for any POI oi ∈ O, the query range within
which oi ∈ sky(O+|tq)

⋃
sky(O−|tq) is the range between its

two closest POIs with numeric attributes lower than λi, one
on each side both, say oi,l and oi,r. Let O+

i,l and O+
i,r be the

sets of POIs between ti,l and ti and between ti and ti,r all
with numeric attribute higher than λi, respectively. The Nl(oi)
comprises oi,l and sky(O−i,l|ti) and Nr(oi) comprises oi,r and
sky(O+

i,r|ti).
We summarize the above procedure in Alg. 1, which simul-

taneously computes Pl = {〈idj , range(oj |oi)〉|oj ∈ Nl(oi)}
and Pr = {〈idj , range(oj |oi)〉|oj ∈ Nr(oi)}. Note that Alg. 1
assumes that there is at least one POI with numeric attribute
lower than λi at each side of oi, an assumption that will always
hold in our cases.

D. Data Preprocessing

The LBSP preprocesses its POI dataset {Di}ni=1 before out-
sourcing it to the CSP, where Di = 〈idi, ti, λi, infoi〉. Without
loss of generality, we assume that t1 < t2 < · · · < tn+1.

First, the LBSP inserts two special POI records D0 =
〈id0, t0, λ∗〉 and Dn+1 = 〈idn+1, tn+1, λ

∗〉, where id0 and
idn+1 are two unique IDs assigned by LBSP to identify the
two special records, t0 = −∞, tn+1 =∞, and λ∗ < λmin is a
special value publicly known to the user. Since the distances
between any possible query position and D0 and Dn+1 are
both infinity, neither of them will spatially dominate any real
POI in LBSP’s dataset. In addition, since λ∗ < λmin, D0 and
Dn+1 are not spatially dominated by any other POI and should
always be returned. Therefore, inserting these two special POI
records will not affect any other POI in the query result.

Second, for every POI record Di, i ∈ [0, n+ 1], the LBSP
does the following.

• Compute {〈idj , range(oj |oi)〉|oj ∈ Nr(oi)} using Alg. 1.
• Compute an extended POI record as

Ei = 〈idi, ti, λi, nbinfor
i, infoi〉 ,

where nbinfor
i = {〈idj , range(oj |oi)〉|oj ∈ Nr(oi)}.

Algorithm 1: Computing skyline neighbor sets and neigh-
bor ranges

input : POI set O and oi
output: {〈idj , range(oj |oi)〉|oj ∈ Nl(oi)} and

{〈idj , range(oj |oi)〉|oj ∈ Nr(oi)}
1 Pl ←− ∅,Pr ←− ∅, Nl(oi)←− ∅, Nr(oi)←− ∅;
2 O−

i,l ←− {oj |oj ∈ O, tj < ti, λj < λi};
3 O−

i,r ←− {oj |oj ∈ O, tj > ti, λj < λi};
4 ol0 ←− the rightmost POI in O−

i,l, or0 ←− the leftmost POI in O−
i,r ;

5 O+
i,l ←− {oj |oj ∈ O, tl0 < tj < ti, λj > λi};

6 O+
i,r ←− {oj |oj ∈ O, ti < tj < tr0 , λj > λi};

7 Compute sky(O+
i,l|ti) = 〈ol1 , ol2 , . . . , olα 〉 where tl1 < · · · < tlα ;

8 Compute sky(O+
i,r|ti) = 〈or1 , or2 , . . . , orβ 〉 where tr1 > · · · > tlβ ;

9 range(ol0 |oi)←− (ti, tr0);
10 Pl ←− Pl

⋃
〈idl0 , range(ol0 |o)〉;

11 foreach x ∈ {1, . . . , α} do
12 if x 6= α then
13 range(olx |oi)←− (tlx−1

, tlx);

14 else
15 range(olx |oi)←− (tlx−1

, ti);

16 Pl ←− Pl
⋃
〈idlx , range(olx |o)〉;

17 range(or0 |oi)←− (tl0 , ti);
18 Pr ←− Pr

⋃
〈idr0 , range(or0 |oi)〉;

19 foreach x ∈ {1, . . . , β} do
20 if x 6= β then
21 range(orx |oi)←− (trx , trx−1);

22 else
23 range(orx |oi)←− (ti, trx−1);

24 Pr ←− Pr
⋃
〈idrx , range(orx |oi)〉;

25 return Pl and Pr ;

• Compute an condensed POI record as

Ci = 〈idi, ti, λi, nbinfor
i, H(Ei)〉

where H(·) denotes a cryptographic hash function.
Third, the LBSP builds a Merkle hash tree over {Ci}n+1

i=0 to
enable efficient authentication of the query result. Specifically,
assuming that n+2 = 2d for some integer d, the LBSP builds
a binary tree of depth d, in which every leaf node corresponds
to one of {Ci}n+1

i=0 , and every non-leaf node is computed as
the hash of the concatenation of its immediate two children
nodes. We also define an auxiliary set Ti as the set of non-leaf
nodes required along with any leaf node Ci to compute the
Merkle root hash. Note that if n + 2 is not a power of two,
some dummy leaf nodes need be introduced for constructing
the Merkle hash tree.

Finally, the LBSP signs the root of the Merkle hash tree
and sends the extended POI records {Ei}n+1

i=0 and its signature
on the Merkle root hash to the CSP, which in turn computes
{Ci}n+1

i=0 and all the intermediate results for constructing the
Merkle hash tree.

E. Query Processing

Assume that the user issues an LBSQ sky(O|q). The CSP
constructs the query result as follow.
• Compute tq from q as in Eq. (2).
• Divide O into two subsets O− and O+ as Eq. (3).

• Compute sky(O|tq), sky(O−|tq) and sky(O+|tq) using
existing LBSQ processing algorithm such as [3].

• For each oi ∈ sky(O−|tq)
⋃

sky(O+|tq), the CSP returns
the following information as part of the query result.
– If oi ∈ sky(O|tq), then CSP returns Ei.
– If oi /∈ sky(O|tq), then CSP returns Ci.

In addition, the CSP returns
⋃

oi∈sky(O−|tq)
⋃

sky(O+|tq) Ti, and
the LBSP’s signature on the Merkle root hash.

F. Query-Result Verification

On receiving the query result from the CSP, the user verifies
its authenticity and completeness using the embedded neighbor
information. Without loss of generality, assume that the CSP
has returned extended or condensed POI records for u POIs
oj1 , . . . , oju , where tj1 < tj2 < · · · < tju .

For authenticity verification, the user first computes hjx
from either Ejx or Cjx for each x ∈ [1, u]. Since the auxiliary
set Tjx for hjx is also in the query result, the user further uses
hjx and Tjx to compute the Merkle root hash. If the query
result is authentic, the user can derive the same root hash for
every ojx . The user can further verify whether the LBSP’s
signature is a valid signature on the derived root hash. If both
verifications succeed, the query result is considered authentic.

The user proceeds to check the completeness of the query
result in the following three steps.

First, he checks whether oj1 and oju are two special POIs
inserted by the LBSP by verifying whether tj0 = −∞ and
tju =∞, as these two records should always be returned.

Second, he further checks whether every pair of adjacent
POIs in oj1 , . . . , oju are indeed skyline neighbors of each other
with respect to query position tq using the embedded neighbor
information. Specifically, for every ojx , x ∈ [1, u−1], the user
checks nbinfor

jx to see whether idjx+1
∈ Nr(ojx) and tq ∈

range(ojx+1 |ojx). If any POI does not pass the verification,
the query result is considered incomplete.

Third, he checks whether the POIs with extended records
returned are indeed the skyline POIs.
• For every POI with extended record returned, check if it

is dominated by some other returned POI. If so, the query
result is considered incomplete.

• For every POI with condensed record returned, check if
it is indeed dominated by some POI with extended record
returned. If not, the query result is considered incomplete.

If all the verifications succeed, the user considers the query
result as complete and incomplete otherwise.

V. 2D-SKY: VERIFIABLE 2D LBSQ PROCESSING

In this section, we present 2D-SKY for 2D LBSQ process-
ing where the road network consists of m > 1 road segments.

2D-SKY is built upon 1D-SKY and Proposition 2. Under
2D-SKY, the LBSP preprocesses the POI dataset for each
road segment independently as in 1D-SKY. On receiving an
LBSQ 〈I,q〉 asking for sky(

⋃
i∈I Oi|q) from the user, the

CSP returns local skyline POIs for each road segment ei
(i ∈ I) independently as in 1D-SKY. The user can then verify

the authenticity and the completeness of each local skyline
POI set as in 1D-SKY. According to Proposition 2, the union
of all local skyline POI sets must contain the global skyline
POI set sky(

⋃
i∈I Oi|q).

A. Data Preprocessing

Assume that the LBSP has a dataset {Di}mi=1, where
Di = {Di,j}nii=1 and Di,j = 〈idi,j , ti,j , λi,j , infoi,j〉. The
LBSP preprocesses its POI dataset before outsourcing it to
the CSP.

First, the LBSP processes each Di(i ∈ [1,m]) as in 1D-
SKY. Specifically, the LBSP inserts two special POI record-
s Di,0 and Di,ni+1 and for every POI record Di,j , j ∈
[0, ni + 1], computes its right neighbor set and corre-
sponding neighbor ranges {〈idi,x, range(oi,x|oi,j)〉|oi,x ∈
Nr(oi,j)} (using Alg. 1), an extended POI record Ei,j =
〈idi,j , ti,j , λi,j , nbinfor

i,j , infoi,j〉, and a condensed POI record
Ci,j = 〈idi,j , ti,j , λi,j , nbinfor

i,j , H(Ei,j)〉.
Second, the LBSP then builds a Merkle hash tree over all

the condensed POI records {Ci,j |1 ≤ i ≤ m, 1 ≤ j ≤ ni}
and signs the root.

Finally, the LBSP sends all the extended POI records
{Ei,j |1 ≤ i ≤ m, 0 ≤ j ≤ ni + 1} and its signature on
Merkle hash tree root to the CSP, which in turn computes
{Ci,j |1 ≤ i ≤ m, 0 ≤ j ≤ ni + 1} as well as all the
intermediate results for constructing the Merkle hash tree.

B. Query Processing

On receiving an LBSQ 〈I,q〉 asking for sky(
⋃

i∈I Oi|q)
from the user, the CSP constructs the query result as follow.
• Compute the global skyline POI set sky(O|q) using

existing LBSQ processing algorithm such as [3].
• For every road segment ei (i ∈ I), the CSP does the

following.
– Compute tq,i, the relative position of q’s projection on

straight line li = {ui + tvi|t ∈ R} as in Eq. (2).
– Divide Oi into O−i = {oi,j |oi,j ∈ Oi, ti,j < tq,i} and
O+

i = {oi,j |oi,j ∈ Oi, ti,j ≥ tq,i}.
– Compute sky(O−i |tq,i) and sky(O+

i |tq,i) using existing
LBSQ processing algorithm such as [3].

– For each oi,j ∈ sky(O−|tq)
⋃
sky(O+|tq), the CSP

returns Ei,j if oi,j ∈ sky(O|q) and Ci,j otherwise.
In addition, the CSP returns

⋃
oi,j∈U Ti,j , where U =⋃

i∈I(sky(O
−
i |tq,i)

⋃
sky(O+

i |tq,i)) and the LBSP’s signature
on the Merkle root hash.

C. Query-Result Verification

Assume that the CSP has returned the result in response to
LBSQ 〈I,q〉 asking for sky(

⋃
i∈I Oi|q). The user first verifies

that all the returned extended or condensed POI records
are authentic using returned auxiliary sets and the LBSP’s
signature as in 1D-SKY.

If the query result is authentic, the user proceeds to verify
the completeness of the query result. Without loss of gen-
erality, assume that for each road segment ei, i ∈ I , the
CSP has returned extended or condensed POI record for u[i]

POIs Ri = {oi,j1 , . . . , oi,ju[i]}. The user first verifies whether
Ri = sky(O+

i |q)
⋃

sky(O−i |q) following the first two steps
of completeness verification in 1D-SKY. If the POI records of
every road segment pass the verification, the user knows that
sky(

⋃
i∈I Oi|q) ⊆

⋃
i∈I Ri according to Proposition 2. The

user further checks whether the POIs with extended records
returned are indeed the skyline POIs as in the third step of
completeness verification in 1D-SKY. If all the verifications
succeed, the user considers the query result as complete and
incomplete otherwise.

VI. 2D-SKY+: AN ADVANCED SCHEME

2D-SKY allows the user to verify the authenticity and com-
pleteness of any LBSQ result returned by the CSP but incurs
relatively high computation and communication overhead if
the number of road segments queried is large, as most of the
returned POIs are local instead of global skyline POIs. In this
section, we further introduce 2D-SKY+ to significantly reduce
the number of condensed POI records that need be returned.

We observe that every local skyline POI that is not a global
skyline POI must be spatially dominated by some global
skyline POI, and these local skyline POIs could be potentially
omitted to reduce the size of the query result. The challenge
is how to verify that the LBSP has not omitted any global
skyline POI. To tackle this challenge, we further observe that
if a global skyline POI spatially dominates some POIs among
sky(O+

i |q) or sky(O−i |q) for some road segment ei, then
the spatially dominated POIs must be consecutive. Consider
sky(O+

i |q) as an example. Without loss of generality, assume
that sky(O+

i |q) = {oi,j1 , . . . , oi,ju}, where ti,j1 < · · · < ti,ju .
It follows that λi,j1 > · · · > λi,ju . Now suppose that global
skyline POI or,s spatially dominates {oi,jγ , . . . , oi,jδ}, where
γ and δ can be computed as

γ = min{x|1 ≤ x ≤ u, d(q,pr,s) < d(q,pi,jx)},
δ = max{x|1 ≤ x ≤ u, λr,s < λi,jx} .

(4)

2D-SKY+ lets the CSP to replace {oi,jγ , . . . , oi,jδ} with idr,s
in the query result, whereby the user can verify whether the
CSP has omitted any global skyline POI by checking whether
or,s spatially dominates oi,jγ and oi,jδ using embedded neigh-
bor information.

A. Data Preprocessing

The data precessing phase of 2D-SKY+ is very similar to
that of of 2D-SKY, where the only difference is that the LBSP
need bind both the left and right neighbor sets with corre-
sponding neighbor ranges to every POI record. In other words,
we have Ei,j = 〈idi,j , ti,j , λi,j , nbinfol

i,j , nbinfo
r
i,j , infoi,j〉

and Ci,j = 〈idi,j , ti,j , λi,j , nbinfol
i,j , nbinfo

r
i,j , H(Ei,j)〉 for

all 1 ≤ i ≤ m and 1 ≤ j ≤ ni under 2D-SKY+.

B. Query Processing

On receiving an LBSQ 〈I,q〉 asking for sky(O|q) from the
user, where O =

⋃
i∈I Oi, the CSP constructs the query result

as follow.

First, the CSP computes the global skyline POI set sky(O|q)
as in 2D-SKY.

Second, the CSP constructs a partial query result for
each road segment by replacing some condensed records of
dominated local skyline POIs with the IDs of corresponding
dominating global POIs.

Consider road segment ei as an example. The CSP first-
s computes sky(O−i |tq,i) and sky(O+

i |tq,i), where O−i =
{oi,j |oi,j ∈ Oi, ti,j < tq,i} and O+

i = {oi,j |oi,j ∈ Oi, ti,j ≥
tq,i}, and tq,i is the relative position of q’s projection.
Assume that sky(O−i |tq,i) = {oi,j1 , . . . , oi,jv[i]} and that
sky(O+

i |tq,i) = {oi,jv[i]+1
, . . . , oi,ju[i]}, where ti,j1 < · · · <

ti,ju[i] . The CSP then finds two POIs or,s, or′,s′ ∈ sky(O|q)
that spatially dominate the most POIs among oi,j1 , . . . , oi,jv[i]
and oi,jv[i]+1

, . . . , oi,ju[i] , respectively. Without loss of gener-
ality, assume that or,s spatially dominates oi,jα[i]

, . . . , oi,jβ[i]
and that or′,s′ spatially dominates oi,jγ[i] , . . . , oi,jδ[i] . We can
compute α[i], β[i], γ[i], and δ[i] as

α[i] = min{x|1 ≤ x ≤ v[i], λi,jx > λr,s},
β[i] = max{x|1 ≤ x ≤ v[i], d(q,pi,jx) > d(q,pr,s)},
γ[i] = min{x|v[i] < x ≤ u[i], d(q,pi,jx) > d(q,pr′,s′)},
δ[i] = max{x|v[i] < x ≤ u[i], λi,jx > λr′,s′}.

(5)

The CSP then returns a partial query result for road segment
ei as Ri = 〈R−i ,R

+
i 〉, where

R−i = 〈Xi,j1 , . . . , Xi,jα[i]−1
, idr,s, Xi,jβ[i]+1

, . . . , Xi,jv[i]〉,
R+

i = 〈Xi,jv[i]+1
, . . . , Xi,jγ[i]−1

, idr′,s′ , Xi,jδ[i]+1
, . . . , Xi,ju[i]〉,

(6)

where

Xi,jx =

{
Ei,jx if oi,jx ∈ sky(O|q),
Ci,jx if oi,jx /∈ sky(O|q).

(7)

Special care is needed if β[i] = v[i] and γ[i] = v[i] + 1.
In this case, we require the CSP to additionally return Ci,jv[i]

to facilitate subsequent completeness verification. The partial
query result returned for road segment ei is then

Ri = 〈Xi,j1 , . . . , Xi,jα[i]−1
, idr,s, Ci,jv[i] ,

idr′,s′ , Xi,jδ[i]+1
, . . . , Xi,ju[i]〉,

where Xi,jx is given in Eq. (7). Without returning Ci,jv[i] ,
user cannot verify whether oi,jα[i]

, . . . , oi,jδ[i] are indeed all
spatially dominated by idr,s or idr′,s′ .

Finally, the CSP returns
⋃

oi,j∈U Ti,j , where U =⋃
i∈I sky(O

−
i |tq,i)

⋃
sky(O+

i |tq,i) and the LBSP’s signature
on the Merkle root hash.

C. Query-Result Verification

Assume that the CSP has returned a query result in response
to an LBSQ sky(O|q), where O =

⋃
i∈I Oi. The user first

verifies that all the returned extended or condensed POI
records are authentic as in 2D-SKY.

If the query result is authentic, the user proceeds to verify
its completeness. For each road segment ei, i ∈ I , the partial

query result Ri returned by the CSP must follow one of the
following two formats.

Case 1. The CSP has returned

Ri = 〈X ′i,j1 , . . . , X
′
i,x[i], ida,b, X

′
i,x[i]+1, . . . ,

X ′i,y[i], ida′,b′ , X
′
i,y[i]+1, . . . , X

′
i,ju[i]

〉.

In this case, the user checks Ri as follow.
• Check whether the LBSP has returned both extended

records Ea,b and Ea′,b′ , i.e., oa,b and oa′,b′ are both global
skyline POIs.

• Check whether o′i,1 and o′i,u[i] are two special POIs
inserted by LBSP by verifying whether t′i,1 = −∞ and
t′i,u[i] =∞.

• Check whether every pair of adjacent POIs
in 〈o′i,1, . . . , o′i,x[i]〉, 〈o′i,x[i]+1, . . . , o

′
i,y[i]〉, and

〈o′i,y[i]+1, . . . , o
′
i,u[i]〉 are indeed skyline neighbors

of each other with respect to query position tq,i.
Specifically, for every o′i,w, w ∈ {1, . . . , x[i] −
1}

⋃
{x[i]+1, . . . , y[i]−1}

⋃
{y[i]+1, . . . , u[i]−1}, the

user checks nbinfo′ri,w to see whether id′i,w+1 ∈ Nr(o
′
i,w)

and tq,i ∈ range(o′i,w+1|o′i,w).
• Check whether oa,b spatially dominates Nr(o

′
i,x[i]|tq)

and Nl(o
′
i,x[i]+1|tq) according to nbinfo′

r
i,x[i] and

nbinfo′
l
i,x[i]+1, respectively, and whether oa′,b′ spatially

dominates Nr(o
′
i,y[i]|tq) and Nl(o

′
i,y[i]+1|tq) according to

nbinfo′ri,z[i] and nbinfo′li,z[i]+1, respectively.
Case 2: the CSP has returned

Ri = 〈X ′i,1, . . . , X ′i,x[i], ida,b, Ci,x[i]+1,

ida′,b′ , X
′
i,x[i]+2, . . . , X

′
i,u[i]〉.

In this case, the user checks Ri as follow.
• Perform the first two checks as in Case 1.
• Check whether every pair of adjacent POIs in
〈o′i,1, . . . , o′i,x[i]〉 and 〈o′i,x[i]+2, . . . , o

′
i,u[i]〉 are indeed

skyline neighbors of each other with respect to query
position tq,i using the embedded neighbor information.

• Check whether oa,b spatially dominates Nr(o
′
i,x[i]|tq)

and o′i,x[i]+1 and whether oa′,b′ spatially dominates
Nr(o

′
i,x[i]+1|tq) and Nl(o

′
i,x[i]+2|tq).

The user further checks whether the POIs with extended
records returned are the global skyline POIs as in 2D-SKY.

If all the verifications succeed, the user considers the query
result as complete and incomplete otherwise.

VII. PROOFS OF CORRECTNESS

We have the following three theorems regarding to the
correctness of 1D-SKY, 2D-SKY, and 2D-SKY+, respectively.

Theorem 1. 1D-SKY can detect any inauthentic and/or in-
complete query result.

Proof: (Sketch) First, the user can detect any inauthentic
query result due to the unforgeability of LBSP’s signature
and the collision-resilient property of the cryptographic hash
function used to construct the Merkle hash tree.

TABLE I: Default Simulation Settings
Value Description

20 The number of road segments.
1000 The number of POIs per road segment.
32 The length of idi,j .
32 The length of relative position ti,j .
32 The length of numeric attribute λi,j .
96 The length of neighbor neighbori,j .
160 The length of hash image.
160 The length of the LBSP’s signature.
128 The length of each reference vector.

Now suppose that sky(O−|tq)
⋃
sky(O+|tq) =

{oj1 , . . . , oju}, where tj1 < · · · < tju . Since oj1 and
oju must correspond to the two special records inserted by
the LBSP that should always be returned. Moreover, since
every POI record Ejx or Cjx , x ∈ [1, u − 1], contains ojx ’s
right skyline neighbor set and corresponding neighbor ranges,
among which there is a unique right neighbor with neighbor
range contains tq , inserting any POI into or omitting any POI
from oj1 , . . . , oju can be detected by the user.

Finally, according to Proposition 2, we have sky(O|tq) ⊆
sky(O−|tq)

⋃
sky(O+|tq). Since every extended or condensed

POI record contains the position and numeric attribute, the user
can verify whether the POIs with extended records returned
are indeed sky(O|tq).

Theorem 2. Built upon 1D-SKY, 2D-SKY can detect any
inauthentic and/or incomplete query result.

Theorem 3. Built upon 2D-SKY, 2D-SKY+ can detect any
inauthentic and/or incomplete query result.

We give the proofs of Theorems 2 and 3 in [27].

VIII. SIMULATION RESULTS

In this section, we evaluate the computation and communi-
cation overhead of all three schemes using simulations on a
synthetic POI dataset.

A. Simulation Settings

We simulate m = 2f road segments in a square region of
10 × 10 km2, including f horizontal and f vertical equally-
spaced road segments. We assume that there are ni = n POIs
distributed uniformly at random along each road segment ei
for all i ∈ [1,m]. In addition, all numeric attributes and relative
positions are i.i.d. random variables uniformly distributed in
the range [0, 1] after proper normalization. Finally, we assume
that the user always queries the skyline POIs among all the
POIs. The simulation code is written in Java, and each data
point represents the average of 100 simulation runs each with
a distinct random seed. In addition, our simulation uses the
default parameters in Table I unless stated otherwise.

B. Impact of n

Fig. 4a shows the impact of n on the number of hash
computations the LBSP need perform for data preprocessing

in 1D-SKY, 2D-SKY, and 2D-SKY+. We can see that 2D-
SKY and 2D-SKY+ require the number of hash computations
at the LBSP because they share data preprocessing procedure.
Moreover, the number of hash computations needed increases
as n increases, which is expected. We can also see that
the number of hash computations needed experiences sharp
increases when n increases from 250 to 300 as well as from
500 to 550. The reason is that when n just exceeds the perfect
power of two such as 256 and 512, the number of dummy
nodes needed to construct the Merkle hash tree increases
drastically. Note that the LBSP also need sign the root of the
Merkle root hash.

Fig. 4b shows the LBSP-CSP communication overhead of
all three schems with n varying from 100 to 1000, where we
only consider the extra communication overhead introduced
by our schemes. We can see that the communication overhead
of the 2D-SKY+ is always higher than that of the 2D-SKY,
because every extended POI record additionally contains the
left neighbor range set and corresponding neighbor ranges of
each POI under 2D-SKY+. Similar to the trend in Fig.4a, the
LBSP-CSP communication overhead increases sharply as n
increases from 250 to 300 and from 500 to 550, as a large
number of dummy hash values need be sent in these cases.

Fig. 4c shows the impact of n on the CSP-user communica-
tion overhead for all three schemes. We can see that the CSP-
user communication overheads of all three schemes increase
as n increases, which is expected. Moreover, the CSP-user
communication overhead of 2D-SKY is always higher and
increases faster than that of 2D-SKY+. This result agrees with
our expectation, as 2D-SKY+ significantly reduces the number
of POI records that need be returned.

Fig. 4d shows the impact of n on the number of hash com-
putation needed for verifying a query result. We can see that
the number of hash computations needed for verifying a query
result in all three schemes increase as n increases. Moreover,
the number of hash computations needed for verifying a query
result under 2D-SKY is always larger and increases faster
than that under 2D-SKY+. Note that the user need verify the
LBSP’s signature on the root of the Merkle root hash, and the
operation can be amortized over multiple queries.

C. Impact of m

Figs. 5a to 5d show the LBSP’s computation overhead,
LBSP-CSP communication overhead, CSP-user communica-
tion overhead, and user’s computation overhead of all three
schemes with m varying from 2 to 20. In general, we can
see that all four types of overheads increase linearly as m
increases, which is expected. Similar to what we have observed
in Figs. 4a to 4d, in comparison with 2D-SKY, 2D-SKY+

incurs the same amount of computation overhead at the LBSP,
higher LBSP-CSP communication overhead, much lower CSP-
user communication overhead and computation overhead at
the user. Since data preprocessing is a one-time process, the
above results clearly demonstrate the significant advantages of
2D-SKY+ over 2D-SKY.

n

#
 o

f
h
a

s
h

 c
o
m

p
u

ta
ti
o

n
s

×10
4

0

1

2

3

4

5

6

7
1D-SKY
2D-SKY
2D-SKY+

1000800400 600200

(a) LBSP’s computation overhead
n

L
B

S
P

-C
S

P
 c

o
m

m
.

c
o
s
t

(b
it
)

0

1

2
1D-SKY
2D-SKY
2D-SKY+

200 400 600 800 1000

×10
7

(b) LBSP-CSP comm. overhead
n

C
S

P
-u

s
e

r
c
o

m
m

.
c
o

s
t

(b
it
) ×10

5

0

1

2

3

4

5

6 1D-SKY
2D-SKY
2D-SKY+

400200 600 800 1000

(c) CSP-user comm. overhead
n

#
 o

f
h

a
s
h

 c
o

m
p
u

ta
ti
o

n
s

0

1

2

3
1D-SKY
2D-SKY
2D-SKY+

×10
3

1000800600400200

(d) User’s computation overhead

Fig. 4: The impact of n on 1D-SKY, 2D-SKY, and 2D-SKY+

m

5 10 15 20

#
 o

f
h
a

s
h

 c
o
m

p
u

ta
ti
o

n
s

×10
4

0

1

2

3

4

5

6

7
1D-SKY
2D-SKY
2D-SKY+

(a) LBSP’s computation overhead
m

5 10 15 20L
B

S
P

-C
S

P
 c

o
m

m
.
c
o

s
t

(b
it
)

0

1

2
1D-SKY
2D-SKY
2D-SKY+

×10
7

(b) LBSP-CSP comm. overhead
m

5 10 15 20

C
S

P
-u

s
e

r
c
o

m
m

.
c
o

s
t

(b
it
) ×10

5

0

1

2

3

4

5

6 1D-SKY
2D-SKY
2D-SKY+

(c) CSP-user comm. overhead
m

5 10 15 20

#
 o

f
h
a

s
h

 c
o
m

p
u

ta
ti
o

n
s

0

1

2

3
1D-SKY
2D-SKY
2D-SKY+

×10
3

(d) User’s computation overhead

Fig. 5: The impact of m on 1D-SKY, 2D-SKY, and 2D-SKY+.

IX. CONCLUSION

In this paper, we have presented three novel schemes
that allow efficient verification of any LBSQ result returned
by an untrusted CSP by embedding and exploring a novel
neighboring relationship among POIs. We have theoretically
proved the correctness of our schemes and evaluated their
performance via detailed simulation studies.

ACKNOWLEDGMENT

We would also like to thank the anonymous reviewers
for insightful comments. This work was partially supported
by the US National Science Foundation under grants CNS-
1514381, CNS-1513141, CNS-1421999, CNS-1514014, and
CNS-1422301.

REFERENCES

[1] B. Zheng, K. C. K. Lee, and W.-C. Lee, “Location-dependent skyline
query,” in MDM’08, Beijing, China, April 2008.

[2] M. Goncalves, D. Torres, and G. Perera, “Making recommendations
using location-based skyline queries,” in DEXA’12, Sep. 2012.

[3] K. C. K. Lee, “Efficient evaluation of location-dependent skyline queries
using non-dominance scopes,” in COM.Geo’11, Washington, DC, 2011.

[4] M. Armbrust, et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, Apr. 2010.

[5] X. Lin, J. Xu, and H. Hu, “Authentication of location-based skyline
queries,” in CIKM’11, New York, NY, Oct. 2011, pp. 1583–1588.

[6] X. Lin, J. Xu, H. Hu, and W.-C. Lee, “Authenticating location-based
skyline queries in arbitrary subspaces,” IEEE Trans. Knowl. Data Eng,
vol. 26, no. 6, pp. 1479–1493, June 2014.

[7] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios, “Authenticated
indexing for outsourced spatial databases,” The VLDB Journal, vol. 18,
no. 3, pp. 631–648, Jun. 2009.

[8] H. Hu, J. Xu, Q. Chen, and Z. Yang, “Authenticating location-based
services without compromising location privacy,” in SIGMOD’12, 2012.

[9] R. Zhang, Y. Zhang, and C. Zhang, “Secure top-k query processing via
untrusted location-based service providers,” in INFOCOM’12, Orlando,
FL, Mar. 2012.

[10] Q. Chen, et al., “Authenticating top-k queries in location-based services
with confidentiality,” PVLDB, vol. 7, no. 1, pp. 49–60, Sep. 2013.

[11] R. Zhang, J. Sun, Y. Zhang, and C. Zhang, “Secure spatial top-k query
processing via untrusted location-based service providers,” IEEE Trans.
Dependable Secure Comput., vol. 12, no. 1, pp. 111–124, Jan 2015.

[12] M. L. Yiu, E. Lo, and D. Yung, “Authentication of moving knn queries,”
in ICDE’11, Hannover, Germany, Apr. 2011, pp. 565–576.

[13] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi, “Spatial query integrity
with voronoi neighbors,” IEEE Trans. Knowl. Data Eng, vol. 25, no. 4,
pp. 863–876, Apr. 2013.

[14] M. L. Yiu, Y. Lin, and K. Mouratidis, “Efficient verification of shortest
path search via authenticated hints,” in ICDE’10, Long Beach, CA, Mar.
2010, pp. 237–248.

[15] H. Lo and G. Ghinita, “Authenticating spatial skyline queries with low
communication overhead,” in CODASPY’13, San Antonio, TX, 2013.

[16] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL
over encrypted data in the database-service-provider model,” in ACM
SIGMOD’02, Madison, Wisconsin, 6 2002, pp. 216–227.

[17] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving index for
range queries,” in VLDB’04, Toronto, Canada, Aug. 2004, pp. 720–731.

[18] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu, “Secure mul-
tidimensional range queries over outsourced data,” The VLDB Journal,
vol. 21, no. 3, pp. 333–358, June 2012.

[19] E. Shi, J. Bethencourt, H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in IEEE S&P’07, Oak-
land, CA, May 2007, pp. 350–364.

[20] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” in INFOCOM’11,
Shanghai, China, Apr. 2011.

[21] W. Sun, S. Yu, W. Lou, Y. Hou, and H. Li, “Protecting your right:
Attribute-based keyword search with fine-grained owner-enforced search
authorization in the cloud,” in INFOCOM’14, Toronto, Canada, April
2014, pp. 226–234.

[22] B. Wang, S. Yu, W. Lou, and Y. Hou, “Privacy-preserving multi-keyword
fuzzy search over encrypted data in the cloud,” in INFOCOM’14,
Toronto, Canada, Apr. 2014, pp. 2112–2120.

[23] W. Sun, X. Liu, W. Lou, Y. Hou, and H. Li, “Catch you if you lie to
me: Efficient verifiable conjunctive keyword search over large dynamic
encrypted cloud data,” in INFOCOM’15, Hong Kong, China, Apr. 2015.

[24] B. Wang, W. Song, W. Lou, and Y. Hou, “Inverted index based
multi-keyword public-key searchable encryption with strong privacy
guarantee,” in INFOCOM’15, Hong Kong, China, Apr. 2015.

[25] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained access control in cloud computing,” in IEEE INFOCOM’10,
San Diego, CA, Mar. 2010.

[26] B. Wang, M. Li, H. Wang, and H. Li, “Circular range search on
encrypted spatial data,” in IEEE CNS’15, Florence, Italy, Sep. 2015.

[27] W. Chen, M. Liu, R. Zhang, Y. Zhang, and S. Liu “Secure outsourced
skyline query processing via untrusted cloud service providers,” Tech.
Rep., Dec. 2015, available at http://www2.hawaii.edu/∼ruizhang/paper/
chen-skyline-TR.pdf.

