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Abstract—We propose WristUnlock, a novel technique that uses
a wrist wearable to unlock a smartphone in a secure and usable
fashion. WristUnlock explores both the physical proximity and
secure Bluetooth connection between the smartphone and wrist
wearable. There are two modes in WristUnlock with different
security and usability features. In the WristRaise mode, the user
raises his smartphone in his natural way with the same arm
carrying the wrist wearable; the smartphone gets unlocked if the
acceleration data on the smartphone and wrist wearable satisfy
an anticipated relationship specific to the user himself. In the
WristTouch mode, the wrist wearable sends a random number
to the smartphone through both the Bluetooth channel and a
touch-based physical channel; the smartphone gets unlocked if the
numbers received from both channels are equal. We thoroughly
analyze the security of WristUnlock and confirm its high efficacy
through detailed experiments.

Index Terms—Smartphone authentication, security, usability

I. INTRODUCTION

Unlocking is probably the most routine operation for smart-
phone users. In particular, average iPhone and Android users
unlock their phones 80 and 110 times per day, respectively
[1]. It is thus imperative to make smartphone unlockings both
secure and usable. The security requirement means that illegal
smartphone unlocking can be thwarted almost for certain, while
the usability requirement indicates that legitimate users can
very conveniently unlock their smartphones.

Current unlocking or authentication methods on COTS
smartphones fall into two categories. In the first password-
based category, a user needs to input his unlocking password,
which can be a numeric PIN, an alphanumerical password,
or an Android lock pattern. A complex password is more
secure but also more difficult to memorize or input, and vice
versa. In addition, it is quite challenging for senior citizens,
children, users with fat fingers, and visual impairment people
to memorize or input complex passwords on smartphones. In
the second biometric-based category, a user relies on fingerprint
or face authentication to unlock his phone, which is considered
more convenient than inputting a password. However, there has
been widespread news on successful hacking of face or finger
authentication modules on smartphones. Once hacked, face or
fingerprint biometrics are almost impossible to change and thus
even less secure than the password-based approach. Moreover,
face or fingerprint authentication may not be successful all the
time, in which case the user still needs to input the password.
Many older or cheap smartphones do not even have a face or

finger authentication module. The lack of a secure and usable
authentication method is possibly why over 50% smartphones
are not password-protected [2] and thus highly vulnerable.

The growing prevalence of wrist wearables such as smart-
watches and fitness trackers presents an excellent opportunity
to unlock smartphones in a secure and usable fashion. In
particular, the sales of smartwatches are forecast to reach 141
million units in 2018 [3]; the global fitness tracker market
will grow from 20.88 billion USD in 2017 to 59.22 billion
USD by 2023.1 Almost every wrist wearable is paired via a
secure Bluetooth channel with a host device which is most
often a smartphone. In addition, many people often carry
their smartphones along with their paired wrist wearables. The
proximity of a wrist wearable to the paired smartphone and
its physical attachment to the user’s wrist can be considered a
strong factor of physical security for exploration.

How can we explore wrist wearables for smart and usable
smartphone unlocking? It is tempting to directly use wireless
channels for verifying the physical proximity of a smartphone
and its paired wrist wearable. In particular, most wrist wear-
ables have a Bluetooth/WiFi/NFC interface for communicating
with nearby smartphones. One may consider establishing a
secure WiFi/Bluetooth/NFC connection between a smartphone
and a wrist wearable. When a smartphone needs to be unlocked,
it sends a cryptographic challenge via the wireless connection
and automatically unlocks if an unforgeable cryptographic
response is returned by the paired wrist wearable on time.
This approach is vulnerable to an easily-conducted relay attack
[4], which involves one attacker close to the smartphone
owner and the other faraway attacker who possesses the stolen
smartphone. The two attackers set up a stealthy, high-speed
wireless channel to relay WiFi/Bluetooth/NFC signals between
the stolen smartphone and wrist wearable that is still on the
smartphone owner’s wrist, so the smartphone can be unlocked
by mistake. Since WiFi and Bluetooth transmission ranges can
be several tens of meters or more, an attacker may not even
need the relay channel if the WiFi/Bluetooth connection is used
for proximity verification: he can just steal the smartphone
and then stay sufficiently close to the legitimate user until the
smartphone gets unlocked.

There have been attempts to use wrist wearables for smart-

1https://www.businesswire.com/news/home/20181206005489/en/Global-
Fitness-Tracker-Market-Opportunities—Forecast



phone unlocking without using WiFi/Bluetooth/NFC channels.
ShakeUnlock [5] asks a user to quickly shake his smartphone
with the same hand wearing the smartwatch for about 2 s,
and the strong similarity between the acceleration data of the
two devices is used to unlock the smartphone. An obvious
drawback is that many users may feel socially awkward for
frequent hand shaking in public environments. WearLock [6]
exchanges controlled audio signals between the smartphone
and smartwatch to verify their proximity within 1 m, but it
is still vulnerable to the relay attack as noted in [6].

In this paper, we propose WristUnlock, a novel technique
that uses a wrist wearable to unlock a smartphone in a secure
and usable fashion. WristUnlock explores both the physical
proximity and secure Bluetooth connection between the smart-
phone and wrist wearable. There are two modes in WristUnlock
with different security and usability features.

• WristRaise: This mode allows the user to unlock the
smartphone in his natural way. Smartphone unlocking
is often automatically triggered when the user raises
the phone to look at it. Such raise-to-wake features are
available in most iOS and Android devices. WristRaise
asks the user to raise his smartphone with the same arm
wearing the wearable, during which both devices generate
a time series of acceleration data. The wrist wearable then
transmits its acceleration data via the secure Bluetooth
connection to the smartphone which then unlocks if an
anticipated relationship does exist. In particular, let dwear
and dphone represent the distance from the user’s elbow
to the internal accelerometers of the wrist wearable and
smartphone, respectively. According to the principles of
physics, the smartphone’s acceleration to that of the wrist
wearable is approximately dphone/dwear. We show that the
relationship between the two acceleration time series can
be explored for secure unlocking.

• WristTouch: This mode lets the user use his wrist wearable
to touch and unlock his smartphone. When an unlocking
event is triggered, the wrist wearable sends a random
challenge through both the secure Bluetooth channel and
a physical vibration channel between its internal vibrator
and the smartphone’s accelerometer. The smartphone un-
locks itself if the random challenges from the Bluetooth
and vibration channels match.

WristRaise is more usable than ShakeUnlock [5] because
it does not require users to perform awkward quick device
shaking. It is also more secure than WearLock [6], as it does not
depend on the wireless channel alone to verify the proximity
of the smartphone and wrist wearable.

We thoroughly analyze the security of WristRaise and Wrist-
Touch and also confirm their high efficacy with detailed user
experiments on Google Nexus 7 and Huawei Watch 2. With
WristRaise in place, the legitimate user and the attacker can
unlock the smartphone with the success rate over 95% and
below 5% in most cases. In addition, WristTouch can admit
the legitimate user and reject the attacker in almost all cases.

The rest of this paper is organized as follows. Section II

introduces the application context of SmartUnlock. Section III
presents the adversary model. Section IV and Section V
illustrate the WristRaise and WristTouch modes, respectively.
Section VI analyzes the security of WristRaise and WristTouch.
Section VII experimentally evaluate the security and usability
of WristRaise and WristTouch. Section VIII briefs the related
work. Section IX concludes this paper.

II. APPLICATION CONTEXT

WristUnlock targets the following common application sce-
nario. A user owns both a smartphone and a wrist wearable
which can be a smartwatch or less powerful fitness tracker
with/without a display. The wrist wearable has been paired with
the smartphone via a secure Bluetooth channel in the sense that
every message transmission is encrypted and authenticated with
cryptographic operations. The user carries his smartphone with
the wearable on this wrist.

The smartphone is protected by a password that the user
must input when powering up the smartphone or performing
critical system operations such as system updates. As men-
tioned before, iPhone and Andriod users perform unlocking
operations about 80 and 110 times per day. It is quite annoying
for most users to input a complex but secure password for
each unlocking operation. So many users may opt for a weaker
password or even none at all. WristUnlock aims to address this
dilemma by using the wrist wearable for secure and usable
smartphone unlocking. Since the wrist wearable ought to be
sufficiently close to the paired smartwatch in normal scenarios,
the smartphone can safely get unlocked as long as its proximity
to the paired wrist wearable can be verified.

WristUnlock is active when the user has the wearable on his
wrist. In particular, wrist detection is a common functionality
in wrist wearables to detect the attachment (detachment) of
a wearable to (from) the wrist. WristUnlock does not require
the wrist wearable to be password-protected, as many low-
end devices do not have password-protection functionalities.
Instead, each time the user puts the wearable on his wrist,
he is prompted to input the smartphone password to activate
WristUnlock, which can be combined with the common prac-
tice of unlocking a password-protected wrist wearable through
the paired smartphone. This requirement is necessary to deal
with the worst-case scenario that the attacker possesses both
the smartphone and wrist wearable of the user. WristUnlock
remains active until the wearable is removed from or worn too
loosely on the user’s wrist.

III. ADVERSARY MODEL

The adversary attempts to unlock a smartphone he stole
or found without causing the legitimate user’s attention in
a workplace, a supermarket, a subway, a night bar, or any
other public environment. The smartphone is locked, which
can be automatically done once it leaves the vicinity of the
legitimate owner [7]. It is possible that the attacker possesses
the paired wrist wearable as well, which requires him to have
a much stronger capability. Since the legitimate user needs to
input his smartphone password to activate WristUnlock, the



security in this worst-case scenario falls back onto that of
the smartphone’s existing password mechanism. So we shall
assume that the legitimate user’s wearable is still on his wrist
and that WristUnlock has been activated.

The adversary cannot bypass the existing password mech-
anism on the smartphone, so he can only try to break
WristUnlock to unlock the smartphone. The adversary has
perfect knowledge about how WristUnlock works and thus
may attempt a few attack strategies including relay, co-located,
and mimicry attacks. To facilitate the presentation and avoid
redundant illustrations, we defer the explanation of such attack
strategies and how WristUnlock defeat them to Section VI.

IV. WRISTUNLOCK: THE WRISTRAISE MODE

In this section, we illustrate the WristRaise mode of Wris-
tUnlock, which requires an internal accelerometer available on
almost all COTS wrist wearables and smartphones. As shown
in Fig. 1a, WristRaise lets the user unlock his smartphone by
raising it in his natural way with the same arm carrying the
wrist wearable. Most iOS and Android devices have a raise-to-
wake feature which automatically wakes up the device screen
as soon as the user lifts the device up. WristRaise is thus super
natural and much less socially awkward than ShakeUnlock [5].
In what follows, we outline the design principle of WristRaise
and then present the implementation details.

A. Design Principle

WristRaise is rooted in the principles of non-uniform circular
motion in physics. In particular, when the user raises his arm
with the smartphone in his hand and wearable on his wrist,
the resulting gesture can be regarded as a non-uniform circular
motion around the user’s elbow. The internal accelerometers of
the wrist wearable and smartphone experience the same angular
velocity denoted by ω. Let dwear and dphone represent the
distance from the user’s elbow to the internal accelerometers
of the wrist wearable and smartphone, respectively. The ratio
r =

dphone

dwear
can be considered a constant for each instance of

arm raising which does not last long.
The tangential acceleration and centripetal acceleration at

the wrist wearable’s accelerometer can be approximated by
αt,wear = dwear

∆ω
∆t and αc,wear = dwearω

2. So the acceleration
at the wrist wearable’s accelerometer is approximately

αwear =
√
α2
t,wear + α2

c,wear = dwear

√
(
∆ω

∆t
)2 + ω4.

Similarly, we can derive the acceleration at the smartphone’s
accelerometer as

αphone =
√
α2
t,phone + α2

c,phone = dphone

√
(
∆ω

∆t
)2 + ω4.

It follows that αphone

αwear
=

dphone

dwear
= r. Therefore, we can tell

whether the wrist wearable and smartphone are raised together
on the same arm by continuously checking whether their
acceleration ratio is approximately constant or has a very small
variance around r.
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(a) Typical usage.
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(b) Gesture decomposition.

Fig. 1: Illustration of WristUnlock.

We use a simple experiment to shed more light on the above
principle. In the experiment, a volunteer raised a Google Nexus
7 smartphone with a Huawei Watch 2 on his wrist in his
usual raise-to-wake way. The volunteer has dwear = 38 cm
and dphone = 25 cm, leading to r = 1.52 as the ground truth.
After proper time alignment and data smoothing, we divided
a sample duration of 0.5 s into equal-length windows of 20 ms
with a 15 ms overlap between any two adjacent windows. Then
we computed the acceleration ratio in each window as the
ratio of the smartphone’s average acceleration to that of the
wrist wearable. Fig. 2 plots the raw acceleration data of the
smartphone and smartwatch as well as their acceleration ratio
in each window. Except a few outliers, most acceleration ratios
are bounded between [1.50, 1.55] with the mean and variance
equal to 1.5309 and 0.0004, respectively. This preliminary
result demonstrates the great potential of using the acceleration
ratio to judge whether the smartphone and wrist wearable are
raised with the same arm by the legitimate user.
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(b) Acceleration ratio.

Fig. 2: Preliminary experimental result.

B. WristRaise Details

WristRaise involves two modules on the smartphone and
wrist wearable, which communicate through the secure Blue-
tooth channel. It also consists of a light training phase and a
testing phase that share significant similarity in data processing.
So we illustrate the training phase first in what follows.



The first step in the training phase is to let the user decide
how to trigger WristRaise. For example, the user can press the
side button or rotate the phone from face down to up. Then the
smartphone sends an activation signal via the Bluetooth channel
to the wrist wearable. Then both devices start to monitor their
own acceleration.

A design challenge in WristRaise is to find out the ground-
truth acceleration ratio r =

dphone

dwear
. It is not user-friendly to

directly measure dwear and dphone as in the motivating exper-
iment, which requires knowing the approximate positions of
the accelerometers on the smartphone and wrist wearable. In
addition, the acceleration ratio may slightly change during the
gesture due to body motion, measurement errors, etc. So we
resort to the training phase for estimating r.

In the second step of the training phase, the user first holds
his smartphone in a way that is easy to memorize and reproduce
with the wrist wearable on the same arm. For example, if
the user uses his left hand, he can use the thumb and index
finger to touch particular buttons on the left and right sides,
respectively. Such phone-holding gestures are fairly easy to
reproduce especially for bigger-screen phones, but they are
also user-specific and difficult for an attacker to emulate due
to different holding habits and hand geometry. Then the user
performs the raise-to-wake gesture in his natural way, i.e.,
lifting the phone towards his face. The user should try to keep
his forearm straight and also minimize other body movement
such as wrist rotation during this very short duration (usually
shorter than 2 s). The user needs to do the gesture multiple
times. Intuitively speaking, the more gestures performed, the
more accurate the training parameters, and vice versa.

The third step is to pre-process the acceleration data from
the smartphone and wrist wearable after each gesture. COTS
smartphones and wrist wearables all have an internal 3D
accelerometer that produces a time series of 3D acceleration
vectors. Each acceleration value we use is the magnitude of
the corresponding calibrated 3D acceleration vector. We use a
simple sliding-window approach to detect the onset and end
of the gesture. In particular, the onset (end) of the gesture is
detected once the average acceleration within a sliding window
of 20 ms is above (below) a certain threshold. We assume
that the smartphone and wrist wearable generate M and N
time-indexed acceleration values for the gesture, respectively.
The wrist wearable sends its acceleration vector to the more
powerful smartphone for further processing. Note that M and
N are usually different for each gesture.

The fourth step is to reconcile the difference between M and
N and also mitigate the non-uniform distribution of data points
in the two acceleration time series. More specifically, M is
normally much larger than N , as the smartphone accelerometer
usually has a much higher sampling frequency than that on
a wrist wearable (e.g., about 230 Hz on Google Nexus 7 vs.
100 Hz on Huawei Watch 2). In addition, the acceleration
values in both vectors are not uniformly distributed in time due
to hardware and/or software constraints. To solve this problem,
we apply piecewise Cubic Hermite Interpolation [8] with the

same query points to both acceleration vectors. The resulting
two new vectors contain approximately the same number of
data points uniformly distributed in time.

The fifth step is to align the two new acceleration vectors in
time. The timestamps associated with acceleration values are
not helpful due to measurement errors and clock difference
between the smartphone and wrist wearable. So we propose
a new synchronization method. Since the two devices are
raised together, we can expect them to reach their respective
maximum speed almost simultaneously. Assume that the speed
and acceleration are constant between adjacent data points in
both vectors. We can easily locate the data index where the
maximum speed is achieved in each vector and then align
the two vectors at the two indexes. Next, we retain the same
maximum possible number of data points on both sides of the
maximum speed index in both vectors for the final use. In
other words, the two vectors finally contain the same number
of synchronized acceleration data points.

The sixth step is to compute a series of acceleration ratios
with a sliding-window approach. In particular, we choose
the sliding window that can contain 20 data points with a
forwarding step of 5, so two adjacent sliding windows have
15 common data points for both acceleration vectors. Then we
compute the ratio of the smartphone’s average acceleration to
that of the wrist wearable in each window, leading to a series
of acceleration ratios.

The last step is to aggregate the series of acceleration ratios
for all the gestures performed by the user in the training phase.
In this paper, we choose two simple methods to derive the
average acceleration ration r̂ and compare their performance
with experiments. In the first method, r̂ is the average of all
the acceleration ratios. In the second method, we obtain a
discrete distribution of the acceleration ratios and then locate
the interval with the maximum number of data points whose
average is used as r̂.

In each testing phase, the user triggers WristRaise and then
performs his usual raise-to-wake gesture. Then his wrist wear-
able transmits the detected acceleration data via the Bluetooth
link to the smartphone where a sequence of acceleration ratios
are generated in the same way as in the training phase. Assume
that the testing array consists of λ acceleration ratios denoted
by {ri}λi=1. Then we compute a decision metric

D =

√∑λ
i=1(ri − µ)2

λ
.

If D is below a distance threshold θ, the smartphone gets
unlocked. θ can be obtained through sophisticated machine
learning methods. If the user fails to unlock the smartphone
after a threshold number of tries, the password-based mecha-
nism is invoked as the fall-back method, which is similar to
the case when face or finger authentication fails.

More sophisticated statistical methods can be used to ag-
gregate the training data and verify the consistency of the
acceleration vector in the testing phase. We leave further
investigation on this matter to future work.



 

Fig. 3: A typical application scenario of WristTouch.

V. WRISTUNLOCK: THE WRISTTOUCH MODE

In this section, we illustrate the WristTouch mode of Wris-
tUnlock. As illustrated in Fig. 3, WristTouch lets the user
unlock his smartphone by touching it with his wrist wearable.
During this process, the wrist wearable sends a random number
to the smartphone through both the Bluetooth channel and the
touch-based physical channel. The smartphone gets unlocked
if the numbers received from both channels are equal, which
confirms the unforgeable touch event. WristTouch is more
secure than WristRaise with slight sacrifice in usability. In what
follows, we outline the design principle of WristTouch and then
detail the implementation details.

A. Design Principle

WristTouch explores the secure attachment of the wrist
wearable to the legitimate user and its secure Bluetooth pairing
to the smartphone in a different way from WristRaise. It
lets the wrist wearable send a random challenge through
the Bluetooth channel and also an auxiliary channel to the
smartphone. If the messages received from the two channels
match, the smartphone gets unlocked. The Bluetooth channel
is secure in the sense that the messages transmitted over it
can be cryptographically encrypted and authenticated, but it is
vulnerable to the relay attack. In other words, an authenticated
message arriving through the Bluetooth channel cannot assure
the smartphone that it is adjacent to the wrist wearable which
is supposedly possessed by the legitimate user. The auxiliary
channel aims to provide this guarantee.

How should we establish the auxiliary channel? Wearlock
[6] uses the audio channel which is subject to both relay and
co-located attacks (cf. Section VI). Another option is to let
the wrist wearable display an image or a QR code in which
the random challenge is embedded. The smartphone then scans
the image or QR code via its camera to decode the embedded
number for comparison with the one received via the Bluetooth
channel. This optical channel has been widely explored to pair
wrist wearables with smartphones, but it requires the wrist
wearable to have a display which may not be available on
low-end devices such as fitness trackers. In addition, the optical
channel requires the user to aim the smartphone camera at the
image or QR code, which is infeasible or too demanding for
visually impaired users. So we choose to establish a touch-
based vibration channel based on the vibrator available on

most wrist wearables and the accelerometer on the smartphone.
In particular, the user uses the wrist wearable to touch the
smartphone for a short duration (say, 2 s), during which the
wrist wearable activates its internal vibrator according to the
pattern determined by the random challenge. Then the smart-
phone decodes the random challenge through its accelerometer
data. This vibration channel is obviously robust to relay and
co-located attacks, as the attacker would have no way to
receive the random challenge other than touching the stolen
smartphone against the wrist wearable. More security analysis
is postponed to Section VI.

One may wonder why we do not let the smartphone transmit
to the wrist wearable via the touch-based vibration channel.
Our design choice is in view of the diverse capabilities of the
smartphone and wrist wearable. In particular, the accelerome-
ters on typical smartphones have much higher sampling rates
than those on wrist wearables, e.g., about 230 Hz on Google
Nexus 7 in contrast to about 100 Hz on Huawei Watch 2.
Smartphones also have more resources to implement sophis-
ticated filters to mitigate noise and interference. So it makes
more sense to designate the smartphone as the receiver to sense
the vibrations and decode the random challenge from the wrist
wearable in a much more reliable way.

B. WristTouch Details

WristTouch is triggered when the user touches the smart-
phone with his wrist wearable and also presses some side phone
button(s) that are predetermined in user enrollment. Then the
smartphone sends a probe message via the Bluetooth channel
to the wrist wearable.

Once receiving the probe message, the wrist wearable sends
a random number s of n bits to the smartphone via both
the Bluetooth and vibration channels, where n is a security
parameter. The larger n, the more resilient WristTouch to
random guessing attacks to be discussed in Section VI. The
frame sent over the vibration channel comprises a preamble,
the payload, and an ending flag in sequence. The preamble is
for synchronization and consists of m repetitions of “11110”
where m is a system parameter. The larger m, the easier
synchronization between the wrist wearable and smartphone,
and vice versa. In contrast, the ending flag is just “11110”.
The payload corresponds to s after bit stuffing to prevent
the occurrence of “11110”. In particular, an extra 0-bit is
inserted after any three consecutive 1-bits in s. So the payload
length is no less than n bits. We use the simplest on-off
keying (OOK) modulation scheme. More specifically, the wrist
wearable vibrates and pauses for T seconds for a bit-1 and
a bit-0, respectively, where T is a system parameter. In our
experiments, we found that T = 200 ms suffices to achieve
good transmission performance.

The smartphone keeps monitoring its acceleration data to
detect the frame. During the execution of WristTouch, the
phone should lay still on a flat surface like a table or be
hand-held by the user when he stands, walks, runs, or is
in a vehicle. Although the user should try the best to keep
the phone still in the latter case, subtle human motion is



inevitable and may affect the acceleration data. We used a
Google Nexus 7 smartphone to collect the acceleration data
in four representative contexts with a sampling rate of about
230 Hz: a Huawei Watch 2 vibrated on the phone front; a
volunteer held the phone while walking, taking an elevator,
and sitting in a moving car. After performing FFT, we found
that the four contexts resulted in acceleration signals in [20, 50]
Hz, < 10 Hz, < 10 Hz, and < 15 Hz, respectively. So we pass
the raw acceleration data through a Butterworth filter to retain
the data mainly caused by the wrist wearable’s vibrations.
For this purpose, a one-time calibration process during user
enrollment is needed to obtain the cutoff frequencies just as in
our preceding experiment.

Then we use a sliding-window approach to decode the
filtered acceleration data. Fig. 4 shows an example with Google
Nexus 7 and Huawei Watch 2. The vibration interval T =
200 ms, and the sliding-window size is 50 ms with a forwarding
step of 25 ms. We use a variable BIT to indicate the current bit
which starts from zero. There are three cases for each sliding
window: (1) if the data variance is above some threshold with
BIT equal to zero, the phone records the starting time of this
window and changes BIT to one; (2) if the data variance is
blow the threshold with BIT equal to one, the phone records
the starting time of this window and changes BIT to zero; (3)
if the data variance is above (below) some threshold with BIT
equal to one (zero), the window slides forward. In the end, the
phone records the time segments with and without vibrations
for bit-1s and bit-0s, respectively. Then we divide each time
segment by T and round the result to the nearest integer, which
indicates the number of bit-1s or bit-0s in that segment. In this
example, we obtained the bit string 1100010001, which was
exactly sent by the wrist watch.

The smartphone proceeds to process the bit array to identify
and verify the random challenge s. It first looks for “11110”
flags in the front of the big array, the last of which marks
the beginning of the payload. The smartphone may miss some
initial bits in the preamble due to synchronization issues, so
we let the preamble consist of m “11110” flags. Then the
smartphone locates the “11110” flag in the end of the bit array,
which marks the end of the payload. The random number s is
finally recovered from the payload after possible bit de-stuffing.
If it equals the one received via the Bluetooth channel, the
smartphone gets unlocked. To deal with possible bit errors on
the vibration channel, we can relax the perfect-match constraint
by claiming a successful match as long as the number of
common bits in the two numbers exceeds a system threshold,
which can be obtained via simple training. If the user fails after
a few attempts, the password-based mechanisms is invoked as
the fall-back authentication method.

VI. SECURITY ANALYSIS

In this section, we analyze the resilience of WristUnlock
(including WristRaise and WristTouch) to common attacks.

Relay and co-located attacks. The relay attack involves two
attackers very close to and far away from the victim user,
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Fig. 4: Decoding acceleration data into bits.

respectively. The smartphone is possessed by the faraway
attacker. The attackers set up a stealthy, low-latency wireless
channel such as WiFi for relaying Bluetooth signals between
the user’s wrist wearable and the smartphone possessed by
the faraway attacker. Under the relay attack, the smartphone
and wrist wearable are outside each other’s Bluetooth trans-
mission range but can still exchange Bluetooth signals via
the adversarial wireless link. In contrast, the co-located attack
involves a single attacker who possesses the smartphone and
stays sufficiently close to the user such that the smartphone and
wrist wearable can directly exchange Bluetooth signals. Since
the Bluetooth communication range can be several tens of
meters, the co-located attacker may not risk exposing himself
especially in a crowded public environment such as a subway.

With WristRaise in place, the smartphone cannot produce
acceleration data to match those of the wrist wearable with re-
gard to the anticipated acceleration ratio. If WristTouch is used,
the smartphone cannot detect the random challenge transmitted
via the touch-based vibration channel unless the attacker risks
exposing himself by touching the smartphone against the user’s
wrist watch. So both WristRaise and WristTouch are immune
to the relay and co-located attacks.

Mimicry attack. In this attack, the attacker uses the possessed
smartphone to send an activation signal to the wrist wearable
and then synchronizes his movement with the victim. The
attacker needs to observe the victim’s behavior either directly
or through an accomplice very close to the victim.

For the WristRaise mode, the attacker has to wait until the
user performs the raise-to-wake gesture and then attempts to
raise the smartphone in the same way. WristRaise is robust
to the mimicry attack for two reasons. First, the user may
never perform the raise-to-wake gesture without holding his
smartphone. Although an advanced attacker may substitute the
true smartphone with a fake one to trigger the user’s raise-to-
wake gesture, this attack may be too advanced. Second, the
anticipated acceleration ratio obtained in the training phase
is closely tied to the phone-holding gesture, hand geometry,
and wrist-wearing habit of the legitimate user. In addition,
the acceleration ratio is recalculated based on the fresh data
obtained in each raise-to-wake gesture for comparison with the
anticipated one. It is also very difficult to perfectly emulate the



victim’s gesture which usually lasts less than 2 s. Therefore,
the attacker should have little chance to induce qualifying
acceleration data on the stolen smartphone.

For the WristTouch mode, the mimicry attack is infeasible
unless the victim touches his wrist wearable against a fake
smartphone substituted by the attacker. In this worst-case
scenario, the wrist wearable transmits a random challenge
(encrypted and authenticated) via the secure Bluetooth channel
to the stolen smartphone. Since the attacker does not know
the exact random challenge a priori, he can only use his own
wrist wearable to transmit a randomly guessed challenge via the
vibration channel to the smartphone in a synchronized fashion
with the victim. Given an n-bit random challenge, the attacker
can succeed with probability 1/2n. The smartphone can disable
WristTouch after a few failed unlocking attempts, so n need
not be very long for sufficient security. The attacker may obtain
the correct random challenge through the fake smartphone and
then replay it to the stolen smartphone. This strategy requires
a higher cost on the attacker because the fake phone need
be indeed functional. A simple but effective defense is to
additionally verify the decoding latency in WristTouch, which
is at least doubled by the attacker. Therefore, WristTouch is
invulnerable to the mimicry attack.

Fake-message attack. Aiming at both WristRaise and Wrist-
Touch, the attacker impersonates the wrist watch to send fake
messages to the smartphone via the Bluetooth channel, which
matches the acceleration data he induces on the possessed
smartphone. We rely on the secure Bluetooth channel for the
smartphone to detect and ignore such fake messages.

Denial-of-service (DoS) attack. The attacker does not possess
the victim’s smartphone in this scenario. Instead, he may dis-
turb legitimate unlocking operations by jamming the Bluetooth
channel when observing the victim’s unlocking attempts. Such
jamming attacks apply to all authentication protocols exploring
wireless channels such as WearUnlock [6]. The attacker also
needs great effort to continuously launch the jamming attack.

Another DoS attack is that the attacker keeps sending fake
activation signals to the wrist wearable which may quickly
drain its battery by verifying and then ignoring such fake
signals. This attack can be easily mitigated by enforcing rate
limiting in both WristRaise and WristTouch.

VII. PERFORMANCE EVALUATION

In this section, we report the evaluation of WristRaise and
WristTouch through prototype implementations on a Google
Nexus 7 smartphone and a Huawei Watch 2.

A. Evaluation of WristRaise
1) Experiment setup: We invited 10 volunteers to evaluate

WristRaise, which are all graduate students on campus. Each
volunteer was asked to hold the smartphone in his/her own way
with the smartwatch on the same arm. Then each volunteer
performed his/her own raise-to-wake gesture 30 times, leading
to 300 samples of acceleration ratios in total. During the
process, the volunteers were asked to stand or sit naturally
and still, and try not to have movements.
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Fig. 5: Acceleration ratios of different users.
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Fig. 6: Success rates of legitimate users.

2) Results: Fig. 5 depicts the acceleration ratios of different
users obtained in the training phase, where rave and rmax denote
the average acceleration ratios obtained from all the available
data or only from the interval that contains the maximum
number of data points (see Section IV-B). It is interesting
to see that the volunteers have diverse acceleration ratios due
to different arm structures, watch-wearing habits, and phone-
holding gestures.

Fig. 6 shows the success rates of legitimate users (i.e., true-
positive rates), where the distance threshold θ = 0.01. We
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Fig. 7: Impact of the distance threshold θ.
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Fig. 9: Illustration of touch positions and orientations.

used repeated random sub-sampling to generate this result.
In particular, we varied the number t of training samples to
emulate different training time for each volunteer. For each
t ∈ [2, 7] and each volunteer, we randomly selected t samples
from the 30 available ones for training and used the remaining
30− t samples for testing. This process was repeated 10 times
for each volunteer and each t. The average was reported in
Fig. 6 and is over 95% in most cases.

Fig. 7 demonstrates the impact of the distance threshold
θ. As expected, the larger θ (corresponding to more relaxed
security requirements), the higher the success rate, and vice
versa. θ can be trained and dynamically updated in practice.

Fig.8 shows the success rates of the mimicry attack (i.e.,
false-positive rates) on each volunteer, which are reasonably
low under the distance threshold θ = 0.01. In this experiment,
we used the 270 samples of all other volunteers as the attack
samples against each volunteer. We had no surprise to find
that the volunteers with more unique arm structures, hand
geometries, watch-wearing habits, and phone-holding gestures
are much less vulnerable to the mimicry attacks.

B. Evaluation of WristTouch

1) Experiment setup: This experiment involved one volun-
teer. Unless otherwise stated, the smartphone laid flat on a
table in a quiet lab; the volunteer touched the worn smartwatch
against Area II on the smartphone with his fingers following
Orientation 4 in Fig. 9. We also conducted experiments in other
contexts. We wrote a pair of apps and installed them on the
smartphone and smartwatch, respectively. A 20-bit frame was

used in our experiments, including a beginning flag “11110”,
a random challenge s of 10 bits, and an ending flag “11110”.
Since WristTouch is highly secure as analyzed in Section VI,
we focused on evaluating WristTouch in the legitimate context
by adopting the success rate (or TPR) and authentication
latency as the main performance metrics.

2) Results: We first evaluated the impact of bit vibration
time T ranging from 50 ms to 300 ms. To avoid doing bit
stuffing, we chose decimal numbers 547, 593, 613, 657, 681,
785, 787, 789, 795, 835, 851, and 859 to emulate random
challenges, as each of them has a 10-bit binary representation
without three consecutive bit-1s. Table I shows the average
result. As we can see, it is hard to achieve successful authen-
tication if T < 150 ms, which is mainly due to the hardware
constraints of the vibrator and accelerometer on the smartwatch
and smartphone, respectively. Although larger T ≥ 200 ms
ensures zero bit error rate via the vibration channel and thus a
100% success rate, the authentication latency may be too large
to bear if T is too large. The optimal choice in our experiment
is T = 200 ms, which can serve as a reference parameter for
other device models.

Then we checked the impact of environments and also
body motion. In this experiment, the bit vibration time T
was fixed as 200 ms. We did the experiments in five common
environments: a quiet room, a noisy room, outdoors, a still
car with the engine on, and a moving car. We also considered
three cases during the vibration process in each environment:
(1) the user is still without relative movement between the
two devices; (2) the user has casual body movement without
relative device movement; and (3) the user is still with slight
relative device movement. Fig. 10 shows the average number of
transmissions needed to achieve successful authentication for
each combination of settings, where each point is the average
of 9 to 15 trials. It is clear that WristTouch is highly robust
and efficient in various contexts.
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Fig. 10: Impact of environments and body motion.

Finally, we evaluated the impact of touch positions and
orientations, which are plotted in Fig. 9. In particular, we
divided the phone front into three areas and identified four pos-
sible relative wearable-phone orientations (represented by four
double-arrow lines). Fig. 11 shows the success rate for different
combinations of touch positions and orientations, where the
real touch position and orientation were approximated to the
closest in Fig. 9. Each result in Fig. 11 represents the average of



TABLE I: Impact of bit vibration time.

Vibration time 50 ms 100 ms 150 ms 200 ms 250 ms 300 ms
Success rate 25.00% 41.67% 91.67% 100.00% 100.00% 100.00%

Authentication latency 1.271 s 2.275 s 3.276 s 4.279 s 5.289 s 6.294 s
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Fig. 11: Impact of touch positions and orientations

15 trials. It is clear that we can achieve a very high success rate
in all scenarios. We also put the phone face down on the table
and let the wrist wearable touch Area II on the device back
along Orientation 4. The phone successfully got unlocked in all
trials. These results indicate the high usability of WristTouch
in the sense that the user can touch his smartphone with the
wrist wearable in an arbitrary way.

VIII. ADDITIONAL RELATED WORK

Most related to WristUnlock are ShakeUnlock [5] and
WearUnlock [6], which have been discussed and compared in
Section I. In this section, we outline some other related work,
which is by no means an exhaustive list.

There are some token-based smartphone authentication
schemes, e.g., [9]–[12]. Such hardware tokens have to be
specially built and are not available on the market. In con-
trast, WearUnlock explores COTS wrist wearables that have
penetrated into everyday life.

Recent years have also seen a surge of interest (e.g., [13]–
[16] in authenticating smartphone users based on behavioral
biometrics. WearUnlock is orthogonal to and complimentary
to this line of research.

In addition, the vibrator-accelerometer channel has been
explored to communicate between mobile devices (e.g., [17],
[18]. Our WristTouch implements and apply the vibration
channel in a totally different way.

One may consider using RF distance bounding [19] to verify
the proximity between the smartphone and wrist wearable. But
distance bounding has a high hardware requirement that is not
available on most COTS smartphones and wrist wearable.

IX. CONCLUSION

In this paper, we presented the design, analysis, and evalua-
tion of WristUnlock, a secure and usable technique to unlock a
smartphone with a wrist wearable on the same user. WristUn-
lock explores both the physical proximity and secure Bluetooth
connection between the smartphone and wrist wearable. We

thoroughly analyze the security of WristUnlock and confirmed
its high efficacy through detailed experiments.
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