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Abstract—Mobile payment apps are seeing explosive usage
worldwide. This paper focuses on Venmo, a very popular mo-
bile person-to-person (P2P) payment service owned by Paypal.
Venmo allows money transfers between users with a mandatory
transaction note. More than half of transaction records in Venmo
are public information. In this paper, we propose a Multi-Layer
Location Inference (MLLI) technique to infer user locations
from public transaction records in Venmo. MLLI explores
two observations. First, many Venmo transaction notes contain
implicit location cues. Second, the types and temporal patterns of
user transactions have strong ties to their location closeness. With
a large dataset of 2.12M users and 20.23M Venmo transaction
records, we show that MLLI can identify the top-1, top-3, and
top-5 possible locations for a Venmo user with accuracy up
to 50%, 80%, and 90%, respectively. Our results highlight the
danger of sharing transaction notes on Venmo or similar mobile
payment apps.

Index Terms—Mobile payment, security, privacy, location in-
ference.

I. INTRODUCTION

MOBILE payment apps are seeing explosive usage world-
wide. According to [1], the volume of mobile payment

transactions could rise from $25B in 2016 to nearly $275B by
2021, amounting to an average annual growth rate of 62%.
As another example, AliPay and WeChatPay, two popular
payment systems in China, have 100M daily active users in
December 2016 and 200M users in January 2016, respectively.

This paper focuses on Venmo, a very popular mobile person-
to-person (P2P) payment service owned by Paypal. Venmo
had 203 million active users and processed $6.8 billion in
payment volume in Q1 2017 [2]. It is essentially a combination
of social and transaction networks. On the one hand, Venmo
allows users to befriend each other as in Facebook-like online
social networks (OSNs). On the other hand, it allows money
transfers between users by phone numbers, Venmo usernames,
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or emails along with a mandatory transaction note in the form
of words, emojis, or their combinations. For example, Alice
paid Bob $5.1 for pizza or charged Bob $550 for . In
Venmo, users can make their transaction records viewable by
the public with the default system setting or by selected parties
only via privacy control. As reported in [3], almost half of
Venmo transaction records are public information.

This paper presents the first systematic study to infer
the home locations of Venmo users from public transaction
records. We follow the convention [4]–[15] to let a home
location (or location for short) refer to a permanent and
static city-level region where most of the user’s daily
activities occur. This study may have significant positive and
negative impacts. On the positive side, the knowledge about
user locations may benefit many applications such as socioe-
conomic studies, local event recommendation, and business
promotion. On the other hand, the disclosure of home locations
may subject the users to many attacks such as location-based
spam campaigns. This study is also very challenging because
explicit location clues are relatively sparse and often unreliable
in public Venmo transaction records. For example, our large-
scale dataset reveals that only 13.34% of public transaction
records contain geotagged information (city or state names in
USA), most of which are unrelated to the home locations of
Venmo users.

In this paper, we propose a Multi-Layer Location In-
ference (MLLI) technique to infer user locations in Venmo.
The design of MLLI is driven by two observations. First,
many Venmo transaction notes contain implicit location cues.
Second, the types and temporal patterns of user transactions
have strong ties to their location closeness. For example, if
David and Bob split lunch bills on a daily basis via Venmo,
they are in the same city (i.e., have the same location) with
overwhelming probability. In contrast, if they split monthly
wireless bills via Venmo, there is relatively low confidence
that they are in the same location because people far away
from each other can still share a wireless plan.

MLLI explores the above observations in four steps. First,
we use text mining algorithms to obtain the keywords for
each transaction note. Since distinct keywords have different
location relevance, we further divide the keywords and the
corresponding transaction records into four categories, where
the lower-numbered category corresponds to higher location
relevance. Second, we construct an undirected weighted trans-
action graph for each category, in which each edge corresponds
to two users with any transaction history in that category,
and the edge weight depends on their transaction pattern.
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For example, more intense and consistent transactions should
translate into higher edge weights than occasional ones. Third,
we identify a small set of users as seeds whose locations can
be directly obtained from their geotagged Venmo transaction
notes or via external means.1 Then we propose an iterative
multi-layer belief propagation scheme to propagate the loca-
tion beliefs to non-seed users in each category. Finally, we
perform a weighted combination of the location beliefs for
each user in the four categories and assign the most probable
home location to each user.

We validate the efficacy of MLLI using a large-scale
dataset containing 2.12M users and 20.23M Venmo transaction
records, which was collected through a 3-month period. Our
results show that MLLI can identify the top-1, top-3, and top-5
possible locations for a Venmo user with accuracy up to 50%,
80%, and 90%, respectively. Our results highlight the danger
of sharing transaction notes on Venmo.

There have been such efforts as [4]–[15] to infer the
user locations in traditional OSNs such as Facebook and
Twitter. Existing techniques can be classified into network-
based approaches [4]–[10] or content-based approaches [11]–
[15]. The former depend on the assumption that physically
close OSN users are more likely to interact with each other
so that a user’s location can be inferred from those of his/her
OSN neighbors. In contrast, content-based approaches always
utilize geographic hints (e.g., city landmarks) in user posts to
infer hidden locations. Our MLLI technique explores both net-
work information (transaction parties) and content information
(transaction notes) in the unique Venmo context.

The rest of this paper is outlined as follows. Section II
introduces Venmo and presents the problem formulation. Sec-
tion III discusses how we crawl the dataset and collect the
ground truth. Section IV details how we construct categorized
transaction graphs from public transaction records. Section V
presents the MLLI technique. Section VI analyzes the conver-
gence and time complexity of MLLI. Section VII evaluates
MLLI with the real dataset. Section VIII outlines the related
work. Section IX concludes this paper.

II. PROBLEM FORMULATION

In this section, we provide a brief introduction to Venmo
and then the problem formulation.

Venmo is PayPal’s mobile P2P payment service that has
been gaining extreme popularity. It allows direct money
transfer between registered users via a mobile app or web
interface. Each transaction must have a short note indicating
the transaction purpose. A transaction note can consist of
words, emojis, or their combinations. The transaction records
of each user are public information by default. A user can
make his/her transaction records viewable by selected parties
only as well. The recent study [3] reveals that almost half of
Venmo transaction records are public information that can be
easily obtained by invoking Venmo APIs.

We explore public Venmo transaction records to construct
an undirected weighted transaction graph G = 〈N , E〉, where

1Some Venmo users link their Venmo accounts to Facebook accounts and
disclose their locations on Facebook.

N and E refer to the user set and edge set, respectively.
An edge ei,j ∈ E is formed between any users i and
j as long as they have historical transactions in Venmo.
Who is the payment sender or receiver of any transaction
has no bearing on our scheme design, so we ignore the
directions of Venmo transactions. A set of transaction records
are associated with each edge ei,j . We use text mining
algorithms to infer a keyword for each transaction record,
referred to as its transaction purpose. Then we can group
the transactions of the same purpose into a time series.
For example, we can have {Dinner:{01/14/2017@6:00pm,
01/17/2017@5:30pm}; :{02/27/2017@9:00am}} associ-
ated with edge ei,j , meaning that users i and j split dinner
expenses twice and rent once at the corresponding time. Let
N ∗ ⊂ N denote the set of users with known home locations
(called seed users) and N+ ⊂ N denote the remaining users
with unknown home locations (called non-seed users). So we
have N = N ∗∪N+. We aim to tackle the following problem.
ĥi for each non-seed user i ∈ N+ as close to its true

location hi as possible.
Location Inference in Venmo: Given a Venmo transaction

graph G = 〈N , E〉 with an observed location hj for each seed
user j ∈ N ∗, estimate top-κ possible home locations ĥi for
each non-seed user i ∈ N+. Let N− be the number of non-
seed users whose true location hi located at ĥi. We aim to
make |N−| as close to |N+| as possible.

III. DATA CRAWLING

In this section, we introduce our data crawling process and
the ground-truth dataset.

A. Data Collection

We used the public Venmo v5 API to retrieve
historical transaction records in Venmo. Each retrieval
request is a URL with a constant field and a
Unix timestamp. As an example, the request is
https://venmo.com/api/v5/public?until=1488
369600 when the time is set to 03/01/2017@12:00pm
(UTC). Venmo returns the most recent 20 records before the
specified time in each retrieval request. By sweeping through
the timestamps from December 24, 2016 to March 24, 2017,
we obtained 8.2M unique users and 37.46M transactions
in total. For our purpose, each transaction record contains
the transaction initiator and receiver along with their public
profiles, the transaction time, and the mandatory transaction
note. Other information returned by Venmo is ignored. Our
technique applies to the users with sufficient transactions.
In this study, we only consider users with more than 10
transaction records in the crawled dataset, which correspond
to 2.12M users with 20.23M transaction records in total.
During the data collection, we limited the query rates to avoid
disruption to Venmo’s services. Although the transaction
records in our dataset is publicly accessible via the Venmo
v5 API, we will not share the dataset with others unless a
written consent from Venmo can be obtained.
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(a) Purified transaction note length.
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(b) Keyword frequency.

Fig. 1. The distributions of purified note length and keyword frequency.

B. Ground Truth
It is critical to obtain a ground-truth dataset for our al-

gorithm execution and performance evaluation. About 6% of
Facebook users have elected to enter their home addresses in
their public profiles [4]. Since a user can register for Venmo
with his/her Facebook credentials, we used the following
process to crawl the ground truth. We first identified the
users whose profiles contain firstname+lastname as well as
a user image or a friend list from the crawled transaction
records. Then we searched the firstname+lastname for each
such Venmo user on Facebook. Any discovered Facebook user
is considered the same person as the Venmo user if they
two have the same image or a highly similar friend list. If
the Facebook user specifies the home location in the profile,
the home location of the Venmo user is considered known,
corresponding to one piece of ground truth. With this process,
we obtained a ground-truth dataset of 1000 users from our
original dataset.

IV. CATEGORIZED TRANSACTION GRAPHS

Our MLLI technique explores the observation that public
transaction notes in Venmo contain implicit cues for accurate
location inference. In this section, we first extract meaningful
keywords from the crawled transaction notes. Since different
keywords vary in location relevance, we further group the
keywords into four categories whereby to construct four cate-
gorized transaction graphs for subsequent use. Note that we do
not harness explicit location cues in transaction notes, which
are not only rare but also unrelated to home locations.

A. Keyword Extraction

We use text mining techniques to extract meaningful key-
words from crawled transaction notes. For the words in each
transaction note, we first remove the stop words using a
stop-word list,2 in which such words as “the” and “those”
are considered too general and meaningless. People may use
different inflected words in their transaction notes. So we
further conduct stemming [16] to reduce inflected words to
their stemforms. For example, “play”, “playing”, and “played”
are all reduced to “play”. Each transaction note is translated
into its purified version after these two steps. All the words
or emojis in a purified transaction note are considered its
keywords. Fig. 1(a) shows the length distribution of 20.23M

2http://www.textfixer.com/resources/
common-english-words.txt

purified transaction notes involving 2.12M Venmo users. As
we can see, more than 62% of transaction notes have one
keyword, and about 20% have two keywords. This result
provides firm evidence that the keywords can well characterize
Venmo transaction notes. Table I shows the frequencies of the
top-10 common keywords. We also draw the distribution of
keyword frequency in Fig. 1(b), which shows that more than
75% of the keywords appeared only once.

TABLE I
TOP-10 COMMON KEYWORDS WITH THEIR FREQUENCIES.

Rank Keywords Freq. (%) Rank Keywords Freq. (%)
1 food 1.74 6 0.59
2 uber 1.55 7 0.58
3 1.11 8 0.54
4 0.65 9 stuff 0.52
5 rent 0.62 10 0.51

B. Keyword Categorization

Different transaction keywords vary in relevance to user
locations. For example, “rent” is a more reliable indicator than

that the two users are in the same city (or location). Armed
with this observation, we categorize the transaction keywords
into four categories such that lower-numbered categories have
higher location relevance than higher-numbered ones.

The keywords in category1 and category2 relate to physical
or social activities that two users must conduct face to face. For
example, “rent” and “electricity” are the strongest indicators
that the two users involved live together and thus have the same
location, so both belong to category1. In contrast, “movie” and
“party” correspond to face-to-face activities as well, but they
are classified into category2 because they are less stronger co-
location indicators than “rent”.

The keywords in category3 correspond to the activities that
can happen face to face or not. For example, a transaction with
the “gift” keyword can involve two users who split the gift cost
for a common friend. The two users may live in the same city
or not, so “gift” has weaker co-location relevance than “movie”
and is assigned to category3. In contrast, the keywords in
category4 are not explicitly correlated with locations.

We show some examples for each category below to help
understand our categorization rule.
• Category1: apartment, , rent, electricity, cleaning, etc.
• Category2: food, , , party, movie, uber, gas, , etc.
• Category3: gifts, clothing, music, medical, etc.
• Category4: airfare, game, phone, insurance, etc.

We have obtained 493, 314, 356, and 337 keywords in
category1, category2, category3, and category4, respectively.
Recall that our crawled dataset comprises 2.12M users and
20.23M transaction records, where each user has at least
10 transaction records. We further classify the transaction
records into four subsets if they have the keywords in the
corresponding categories. A transaction record can belong
to multiple subsets if it has multiple keywords in different
categories. Those without any categorized keyword do not
belong to any subset and will not be further considered in
our algorithm. Finally, we have subset1 with 1.83M users
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and 4.48M transaction records, subset2 with 1.82M users
and 4.24M transaction records, subset3 with 1.83M users and
4.07M transaction records, and subset4 with 1.83M users and
4.11M transaction records. In addition, we have 87.7% of the
transactions in one subset, 11.1% in two subsets, 1% in three
subsets, and only 0.07% in all the four subsets.

One limitation of our method is that involves manual clas-
sification. While it is feasible in our case, we left automating
the process as our future work, which would need incorporate
effective natural language processing techniques. In addition,
our categorization method above is empirical and exemplary,
and a finer classification of the transaction keywords can be
adopted as well.

We also explore the ground-truth dataset to derive a co-
location coefficient for each transaction subset. For each
subset, we count the number of transaction records between
any two users in the ground-truth dataset as well as those
between any two users in the ground-truth dataset and also
the same city (location). The co-location coefficient for this
transaction subset is the later count divided by the former.
Subset1, subset2, subset3, and subset4 have the co-location
coefficients of 0.823, 0.739, 0.684, and 0.588, respectively.
These results validate our assumption that the keywords in
lower-numbered keyword categories are more reliable indica-
tors that two transaction users are in the same location.

C. Construction of Categorized Transaction Graphs
The same keyword may have very different co-location

relevance to different pair of users. Intuitively speaking, more
consistent transactions of the same keyword should translate
into stronger location closeness. For example, Tom and Bob
live in different cities and split a drink bill occasionally when
they attend the same conference. In contrast, Tom and Jerry are
colleagues and often split after-hour drink bills. The “drink”
keyword is obviously more relevant between Tom and Jerry
than between Tom and Bob.

To capture this observation, we construct an undirected
weighted transaction graph Gz = 〈Nz, Ez〉 for each categoryz
based on the transaction subsetz , ∀z ∈ [1, 4]. The node set Nz
includes all the users in subsetz , and an edge ei,j,z ∈ Ez exists
if subsetz contains transaction records between users i and j.
Each edge ei,j,z has a weight wi,j,z that models the location
closeness between users i and j. We use the following methods
to derive the edge weights.
• Sum-based. In this method, wi,j,z equals the total num-

ber of transaction records between users i and j in the
transaction subsetz .

• Entropy-based. In this method, we divide time into
epochs of the same length (say, one week). Let d(i,j)

x,z

denote the number of transactions in subsetz between
users i and j in epoch x. We define

wi,j,z = (1−
∑
x

d
(i,j)
x,z∑
x d

(i,j)
x,z

· log
d

(i,j)
x,z∑
x d

(i,j)
x,z

) ·
∑
x

d(i,j)
x,z .

Neither method above is perfect. In particular, the sum-
based method translates more transactions into higher edge
weights (location closeness), but it does not capture the

temporal information in transaction records. Continue with the
previous Tom-Bob-Jerry example. Tom and Bob may have a
lot of Venmo transactions in a short period (say, one week)
while attending the same conference. But Tom and Jerry may
have one Venmo transaction every week in the past month. The
sum-based method will give a wrong co-location indication
in this scenario. In contrast, the entropy-based method can
produce a much higher edge weight between Tom and Jerry
than between Tom and Bob, but it cannot reflect the transaction
volume.

V. MULTI-LAYER LOCATION INFERENCE (MLLI)
In this section, we present our multi-layer location inference

(MLLI) technique to infer the locations of Venmo users from
categorized transaction graphs {Gz}4z=1.

We use the following key notation. Assume that there is
an ordered list of all possible cities (locations). For example,
there are 307 cities with more than 100K residents in the
United States in 2016. Let pi denote a vectorized location
belief for each user i, where the kth element pi(k) denotes
the probability that user i is in the kth city in a predefined list.
pi is inferred from the combination of {Gz}4z=1. We also use
pi,z to denote user i’s location belief inferred from Gz alone,
whose kth element is denoted by pi,z(k).

MLLI derives pi for each user i in three steps. First, we
partition each transaction graph Gz into communities. Second,
we select a few seed users in each community whose location
beliefs can be known a priori, and then we use the Max-
Product Belief Propagation technique to iteratively propagate
the location beliefs inside each community. Finally, we derive
pi as a weighted combination of the individual location beliefs
{pi,z}4z=1 in an iterative fashion.

A. Community Division
The users in the same city can be expected to have more

intense Venmo transactions with each other than with others in
different cities, leading to a strongly connected community in
each categorized transaction graph Gz . The community struc-
ture in a large undirected graph can be inferred by maximizing
the modularity [17]. We adopt the Louvain method [18], [19],
a popular modularity-based technique to divide each Gz into
communities. The Louvain method is a greedy optimization
method that attempts to optimize the modularity of a partition
in the graph, which is defined as a value between -1 and 1 that
measures the density of links inside communities in contrast
to those between communities. In [20], the modularity of each
graph Gz = 〈Nz, Ez〉 is defined as

Qz =
1

2 ·mz
·
∑
i,j

[wi,j,z−
∑
j wi,j,z ·

∑
i wi,j,z

2 ·mz
]·δ(ρi,z, ρj,z) ,

where wi,j,z denotes the edge weight between users i and j,
mz = 1

2

∑
i,j wi,j,z is the total edge weight in Gz ,

∑
j wi,j,z

is the total edge weight concerning user i, ρi,z and ρj,z refer
to the community indexes of nodes i and j, respectively, and
δ(ρi,z, ρj,z) is a Kronecker delta function. In particular,

δ(ρi,z, ρj,z) =

{
1, ρi,z 6= ρj,z,

0, ρi,z = ρj,z.
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We explain the intuition of the modularity as follows. Con-
sidering any two users i and j, we utilize

∑
j wi,j,z·

∑
i wi,j,z

2·mz

to denote the expectation that they can form an edge in graph
Gz . If their communities are not the same (i.e., ρi,z 6= ρj,z),
they have no contribution to Qz . If i and j belong to the same
community (i.e., ρi,z = ρj,z), they have positive impact on Qz
if they are neighbors and negative impact otherwise.

With the Louvain method, we obtain a community set Cz

for each graph Gz . Table II lists the number of communities
with the modularity in each graph Gz . According to [21], any
modularity greater than 0.3 indicates meaningful community
structures. So our four categorized transaction graphs all have
very meaningful community structures, with 95.51%, 93.79%,
94.86%, and 94.59% of the transactions taking place within
communities, respectively.

TABLE II
# OF COMMUNITIES AND MODULARITY

Graphs # of communities Modularity
G1 130029 0.95
G2 109344 0.93
G3 126181 0.94
G4 125665 0.93

B. Max-Product Location-Belief Propagation (MP-LBP)
Recall our conjecture that user transactions in Venmo ex-

hibit strong geographic locality in the sense that users in the
same area tend to have more intensive transactions with each
other than with those from outside. Therefore, after obtaining
the community set Cz for each graph Gz , we can expect that
the location of each user can be inferred from those of others
in the same community. The locations of some users may be
known a priori, e.g., by using the same method for constructing
the ground-truth dataset (see Section III-B). These users are
referred to as seed users whose location beliefs are accordingly
known as well. For example, if seed s is in the kth city,
the location belief ps has 1.0 in the kth position and 0s in
all the other positions. For each seed user, we apply belief
propagation techniques to propagate the location beliefs within
its community to evaluate the likelihood that all the other users
in the community are in the same location (city).

We use the classical Max-Product Belief Propagation
(MPBP) technique [22], [23] as an example for location-belief
propagation, and many other belief propagation techniques can
be applied as well. We rename the technique MP-LBP. To
avoid introducing a new set of notation, we assume that graph
Gz corresponds to a single community where one or more
seeds are in the k city. Each seed s has its kth location-belief
element (probability) ps,z(k) = 1.0. In contrast, every non-
seed user i ∈ Gz has pi,z(k) = 0.5 initially, corresponding
to the equal probability that user i is in the kth city or not.
We follow [24] to model Gz as a pairwise Markov Random
Field (pMRF). Consider any two neighbors i and j in Gz .
Let xi(k) be a binary indicator about whether user i lives
in the kth city: xi(k) = 1 if so and xi(k) = 0 otherwise.
MP-LBP is an iterative process. Let p(t)

i,z(k) denote the result
in iteration t ≥ 0), where p

(0)
i,z (k) = 0.5. We also define

gi,z(k) = p
(t−1)
i,z (k) (∀t ≥ 1), i.e., the prior probability that

user i is in the kth city before iteration t. We further define a
node potential for each node i as

θi,z(k) =

{
gi,z(k), if xi(k) = 1,

1− gi,z(k), if xi(k) = 0,

and an edge potential for each edge ei,j,z as

ϕi,j,z(k) =

{
Ji,j,z, if xi(k) = xj(k),

1− Ji,j,z, if xi(k) 6= xj(k).

Here Ji,j,z = (1 + exp{−wi,j,z

di,z
})−1, and di,z =

∑
j wi,j,z

denotes the total edge weight concerning user i in graph Gz .
Note that the node potential θi,z(k) represents the possibility
that whether user i lives in the kth city or not, and the edge
potential ϕi,j,z(k) denotes correlations between xi(k) and
xj(k) in the graph Gz .

In each iteration of MP-LBP, each node receives messages
from its neighbors simultaneously, then updates its location
belief, and finally sends a new message to each neighbor in
the end of the iteration. For any two neighboring nodes i and
j in Gz , we define message m

(t)
i,j,z(xj(k)) as the influence that

the state of node j in the kth city (i.e., xj(k)) has on user i’s
location belief in the tth iteration (t ≥ 0). Following the prior
work [25], we set m

(0)
i,j,z = 0.5 for any two neighbors i, j.

MPBP iteratively updates each message as

m
(t)
i,j,z(xj(k)) = max

xi(k)
ϕi,j,z(k)·θi,z(k)·

∏
u∈Γi/j

m
(t−1)
u,i,z (xi(k)) ,

(1)
where Γi/j means all neighbors of user i except user j.
Eq. (1) means that we always select the more likely result
between user i’s two possible states for city k, i.e., xi(k) =
1 and xi(k) = 0. MPBP repeats until the messages become
negligible in two consecutive iterations (e.g., the l1 distance
of changes becomes smaller than 10−3), or it reaches the
predefined maximum number of iterations. After convergence
in iteration t, we estimate the belief p(t)

i,z(xi(k) = 1) (denoted
by p

(t)
i,z(k)) as

gi,z(k) ·
∏
u∈Γi

m
(t)
u,i,z(k)

gi,z(k) ·
∏
u∈Γi

m
(t)
u,i,z(k) + (1− gi,z(k)) ·

∏
u∈Γi

(1−m
(t)
u,i,z(k))

.

(2)
The above iterative process is run in every community of

each graph Gz (∀z ∈ [1, 4]) where a seed user exists. If there
are multiple seeds in one community, a single run is done
per each unique seed location, in which all the seeds in the
same location are simultaneously involved. Each user i in Gz
belongs to only one community, and how many of user i’s
location-belief elements are updated from the initial 0.5 equals
the number of unique seed positions in the same community.

C. Multi-Layer Location-Belief Propagation (ML-LBP)

Recall that user i may belong to multiple categorized
transaction graphs if he/she has transaction records in different
categories. This means that user i may have obtained different
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Algorithm 1: Multi-Layer Location-Belief Propaga-
tion

Input: Community set {Cz}4z=1, L
Output: Location belief pi for each user i

1 Initialize p
(0)
i,z for each user i, ∀z ∈ [1, 4];

2 p
(0)
i ←

∑
z∈[1,4] βz · p

(0)
i,z ;

3 l← 1;
4 while l ≤ L do
5 for each community set Cz do
6 Compute p

(l)
i,z by MP-LBP with p

(l−1)
i,z as the

input for each community in Cz;

7 p
(l)
i ←

∑
z∈[1,4] βz · p

(l)
i,z,∀i;

8 if ||p
(l)
i −p

(l−1)
i ||1

||p(l−1)
i ||

< 10−3,∀i then

9 return p
(l)
i ,∀i

10 l← l + 1;

11 return p
(l)
i ,∀i

location-belief values at the same location, say k, in different
categories (layers). We thus design a Multi-Layer Location-
Belief Propagation (ML-LBP) scheme to propagate location
beliefs across different categories.

ML-LBP is also an iterative process, and the pseudocode
is summarized in Algorithm 1. Each iteration starts after MP-
LBP has terminated in each graph Gz . Consider any iteration
l ≥ 1. We abuse the notation by letting p

(l)
i,z(k) denote user i’s

current location-belief value at position k in category z. Then
we compute p

(l)
i (k) =

∑4
z=1 βzp

(l)
i,z(k) for every node i in

each graph Gz , where βz refers to the normalized co-location
coefficient for categoryz defined in Section IV-B. Next, MP-
LBP is executed again in each graph Gz with the updated
location beliefs at each node. ML-LBP halts until there is no
more significant change in each user’s location belief between
two consecutive iterations, or a maximum tolerable number of
iterations are reached. The final p(l)

i (k) values for all possible
k compose user i’s location belief pi.

Finally, we can identify top-κ possible locations for each
non-seed user i with the associated probabilities from its final
location belief pi. Any position with probability no larger than
0.5 is considered unlikely.

D. Seed Selection

A remaining issue is how to select seed users for multi-layer
location-belief propagation. We say that a user is profiled as
long as he/she is in the same community of at least one seed
user in any category graph. Each seed user is profiled as well
based on this definition. Intuitively, the more seeds we have,
the more distributed the seeds are to different communities,
the more non-seed users that can be profiled. In practice, it
involves nontrivial effort to discover trustworthy seed users
with the same method for constructing the ground-truth dataset
(see Section III-B). So we are interested in the minimum of
seeds needed to reach the given coverage-ratio λ such that the
percentage of profiled users is no smaller than γ. Alternatively,
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Fig. 2. Seed selection.

given a budget on the number of seeds, how should we select
the seeds to maximize the coverage-ratio?

Seed selection can translate into the conventional max-
imum coverage problem (MCP). In particular, recall that
{C1,C2,C3,C4} denote all the possible communities in the
four categories, and the communities at different categories
may include the same user who has transaction records in
multiple categories. We abuse the notation by letting each
Cz (∀z ∈ [1, 4]) denote the set of users there as well.
So we have

⋃4
z=1 Cz equivalent to the node set N in

the original transaction graph G = 〈N , E〉. Let C′ denote
an arbitrary set of communities in {C1,C2,C3,C4}, i.e.,
C′ ⊆ {C1,C2,C3,C4}. Seed selection can be casted as the
following problem.

Definition 1. [Seed Selection]: Given a coverage ratio λ and
a set family {C1,C2,C3,C4}, find a minimum-size subset
C′ ⊆ {C1,C2,C3,C4} such that |

⋃
Ĉ∈C′ Ĉ|

|
⋃4

z=1 Cz|
≥ λ.

The above definition assumes that no more than one seed is
chosen in each community to maximize the coverage ratio for
a given number of seeds. Seed selection is equivalent to the
classical MCP which is known to be NP-hard. We address seed
selection with the generic greedy algorithm [26], [27] which
can approximate MCP in the best-possible polynomial time.
Figure 2(a) depicts the number of seeds versus the coverage
ratio λ.

The generic greedy algorithm only outputs the communities
for a given λ, but we may not be able to discover a seed
user in each such community. If this happens, we consider the
corresponding community non-profitable and run the generic
greedy algorithm again by ignoring it. Our experiments indi-
cate that this situation is rare. Fig. 2(b) depicts the percentage
of communities with at least one seed, which is over 90% for
different coverage ratios.

VI. THEORETICAL ANALYSIS

A. Convergence Analysis
In this section, we analyze the convergence of MP-LBP

and ML-LBP. MP-LBP is a linearized MPBP scheme over a
pMRF. Following the work in [25], [28], we linearize Eq. (2)
with two steps. In the first step, when user i sends a message
to his/her neighbor j, we need to consider the message that
his/her neighbor j sends to i instead of excluding this message.
In this case, we have the following equation

m
(t)
i,j,z(xj(k)) ∝ max

xi(k)
ϕi,j,z(k) · p(t−1)(xi(k)) . (3)
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In the second step, we define the residual values p̂
(t)
i,z(k) and

ĝi,z(k) as p
(t)
i,z(k)−0.5 and g

(t)
i,z(k)−0.5, respectively. Based

on these notation, we replace Eq. (2) by

p̂
(t)
i,z(k) = ĝi,z(k) +

∑
u∈Γi

m̂
(t)
u,i,z(k) . (4)

The proof can be found in Appendix A of [25]. Incorpo-
rating Eq. (4) into Eq. (3) yields two cases: if xi(k) = 1,
p̂

(t)
i,z(k) = ĝi,z(k) + Vi · (ϕi,j,z(k) · (p̂(t−1)

i,z (k) + 0.5)− 0.5);
if xi(k) = 0, p̂

(t)
i,z(k) = ĝi,z(k) + Vi · ((1 − ϕi,j,z(k)) ·

(0.5 − p̂
(t−1)
i,z (k)) − 0.5). Note that Vi denotes the ith row

in the adjacency matrix Mz of the graph Gz . To simplify
the analysis, we set ϕi,j,z(k) as J for any two users [25].
According to [29], the convergence condition for an iterative
linear process y(t) ← c + My(t−1) is that the spectral radius
of the matrix M (i.e., %(M)) is no larger than 1. Therefore,
the sufficient and necessary condition that the linearized MP-
LBP converges is J < 1

%(Mz) . ML-LBP is more complicated
and involves many calls of MP-LBP. We could not guarantee
whether ML-LBP will converge. When applying ML-LBP in
practice, we terminate it empirically until there is no more
significant change in the location beliefs in two consecutive
iterations, or a maximum tolerable number of iterations are
reached.

B. Complexity Analysis
In this paper, the computational time of MLLI includes the

time for community division and time for ML-LBP. For a
graph G = 〈N , E〉, the exact time complexity of community
division is unknown, but we can run the Louvain method
in time O(|N | log |N |) [20]. Since we deploy the Louvain
method to four graphs and obtain their corresponding com-
munities, the time complexity of community division in our
scheme is O(|N | log |N |). As discussed in [23], the compu-
tation complexity of MP-LBP for the graph G is O(t · |E| ·σ),
where t is the number of iterations in MP-LBP, and σ is the
number of unique locations. In ML-LBP, MP-LBP is applied to
all the graphs in the community set {C1,C2,C3,C4} in each
iteration, so the time complexity of ML-LBP is O(l·ν ·t·|E|·σ).
Here, l denotes the number of iterations in ML-LBP, and ν
denotes the total number of communities in {C1,C2,C3,C4}.

Each step in MLLI can be easily parallelized to reduce its
complexity. Specifically, in the step of community division, the
graphs in {G1,G2,G3,G3} are independent, so we can deploy
the Louvain method for graphs in parallel and thus reduce
the computation time 75%. As in parallel MP-BP [30], [31],
we can also parallelize MP-LBP by calculating the following
equation at the beginning of each iteration,

m̃
(t−1)
i,z (xi(k)) =

∏
u∈Γi

m
(t−1)
u,i,z (xi(k)) .

Then we replace Eq. (1) by

m
(t)
i,j,z(xi(k)) = max

xi(k)
ϕi,j,z(k) · θi,z(k) ·

m̃
(t−1)
i,z (xi(k))

m
(t−1)
j,i,z (xi(k))

.

Besides, each iteration in ML-LBP can be viewed as applying
MP-LBP to the corresponding graphs of all independent

TABLE III
THE #TP, #FP AND #UN FOR DIFFERENT DATASETS.

S1 S2 S3

#TP1 #FP1 #UN1 #TP2 #FP2 #UN2 #TP3 #FP3 #UN3
U1 78 14 8 74 14 12 73 15 12
U2 76 16 8 74 17 9 75 18 7
U3 73 14 13 75 15 10 72 17 11

communities. Thus, MP-LBP can be run on these graphs in
parallel. Accordingly, all these parallelizations can dramati-
cally decrease the overhead of ML-LBP, which should be quite
affordable for a determined adversary.

VII. EVALUATIONS

In this section, we thoroughly evaluate our MLLI scheme
using real datasets. We implement all our functions using
Python 2.7. All the experiments are carried out on Amazon
EC2, with instance type r4.2xlarge, 64GB memory, a 64GiB
SSD hard disk, and Ubuntu 16.04 OS.

A. Dataset and Methodology

To evaluate MLLI’s efficacy for datasets with different sizes,
we generate three datasets from the whole dataset we collected
in Section III. Recall that we have crawled three-month data
from 12/24/2016 to 3/24/2017. The three datasets S1, S2,
and S3 start from 12/24/2016, 1/24/2017, and 2/24/2017,
respectively, but all end on 3/24/2017. The number of users
and transaction records of S1, S2, and S3 are (2.12M, 20.23M),
(2.07M, 14.61M), and (1.96M, 6.88M), respectively. Among
the 1000 ground-truth users, we select 500 ground-truth users
who appear in all three datasets as seeds.

We use the three datasets S1, S2, and S3 including the
remaining 500 ground-truth users therein to evaluate MLLI.
Since it is infeasible to verify the correctness of the inference
result other than the ground-truth users, we evaluate MLLI
using the none-seed users of S1, S2, and S3. For each of S1,
S2, and S3, we denote by U1, U2 and U3 the 100 none-seed
users with most transaction records, the 100 none-seed users
with fewest transaction records, and the 100 randomly chosen
none-seed users not in U1 or U2, respectively.

We use sum-based edge weights for Category1, Category3,
and Category4 graphs but entropy-based edge weights for
Category2 graphs. The reason is that the keywords in
Category2 correspond to the activities that may happen in
the same city or not. If the transactions of some keywords
happen consistently, the transaction parties are very likely to
be in the same city. Entropy-based edge weights can provide
better distinction in such cases and are thus better suited for
Category2.

B. Inference Accuracy

We first evaluate the accuracy of MLLI. For this experiment,
we execute both MP-LBP and ML-LBP for no more than
five times, both of which have converged. Let #TP denote the
number of users with correct inferred locations, #FP denote
the number of users with incorrect inferred locations, and #UN
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(c) Impact of l on accuracy.
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(d) Impact of κ on accuracy.

Fig. 3. Impact of the parameters l, t and κ on different metrics for S1. The results for S2 and S3 are similar and omitted here.
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Fig. 4. Inference accuracy of MLLI.

denote the number of users with uncertain locations. For each
set Si (i = 1, 2, 3) and each Uj (j = 1, 2, 3), we calculate #TP,
#FP, and #UN as follows. For each user in Ui, if he/she does
not belong to the 500 remaining ground truth users, then #UNj
is increased by one. If the user belongs to Ui, is one of the
remaining 500 ground-truth users, and the inferred location
is the same as one in his/her profile, the value of #TPj is
increased by one. Otherwise, #FPi is increased by one.

Table III shows the results for each dataset. The inference
accuracy for Si and Uj is defined as

Accuracyi =
#TPi

#TPi + #FPi
.

We consider the top-κ possible locations for each non-seed
user. A hit happens as long as his/her true location is in the
top-κ possible locations output by MLLI. Fig. 4 depicts the
inference accuracy for each dataset. As we can see, MLLI can
achieve 83.9%, 81.5%, and 82.71% inference accuracy for U1,
U2, and U3, respectively. Since the users in U1 have more
transaction records than those in U2 and U3, it is reasonable
to see that Accuracy1 is the highest. Likewise, Accuracy2 is
of no surprise to be the lowest.

C. Impact of Key Inference Parameters

Now we evaluate the impact of t, l and κ on MLLI, where t
and l denote the maximum number of iterations for MP-LBP
and ML-LBP, respectively.

The first experiment checks the relationship between t and
the convergence of MP-LBP. We count the total number of
communities in the zth category (∀z ∈ [1, 4]), as well as
the number of communities that converge within t iterations
under MP-LBP. Then we define ηz as the later count divided
by the former. For each iteration, we utilize the average
η =

∑
z ηz/4 to evaluate the convergence of MP-LBP. From

Fig. 3(a), we can see that more than 98% of the communities
reach convergence within five iterations under MP-LBP, which
indicates the validity of our previous results where t = 5.

The second experiment checks the relationship between
l and ML-LBP with fixed t = 5. We define the average
probability difference of each user i in iterations l and l − 1

as χ(l)−(l−1)
i =

||p(l)
i −p

(l−1)
i ||1

||p(l−1)
i ||

. Therefore, the average prob-

ability difference of all users is ξ(l)−(l−1) =
∑

i χ
(l)−(l−1)
i

||p|| .
The results in Fig. 3(b) show that ξ(5)−(4) is smaller than
10−3 when l=5, which satisfies our convergence condition.
Furthermore, we explore the impact of l on inference accuracy
by varying l from 1 to 5. Fig. 3(c) shows that (1) the larger
l, the higher inference accuracy, which is as expected; (2) the
inference accuracy becomes stable when l exceeds 5, as our
scheme has converged after at most 5 iterations.

Finally, we show in Fig. 3(d) that inference accuracy in-
creases with κ. This result is very intuitive.

VIII. RELATED WORK

Our work is most relevant to the prior work on location pro-
filing in OSNs, which can be classified into network-based [4]–
[10] and content-based schemes [11]–[15]. In [4], the authors
proposed an estimation algorithm to profile a user’s location,
which outperforms IP-based geolocation. Kong et al. [6]
extended Backstrom’s work [4] by assigning different weights
for neighbors who have potentials to be most predictive of
locations. McGee et al. [7] developed a location estimator
to predict a user’s location based on the distance between
two users and the strength of online social ties. Jurgens [8]
proposed to propagate location assignments through social
networks with a small number of initial locations. Rout et al.
[9] proposed a geolocation inference scheme to infer a user’s
location based on the locations of his friends. In [10], the
authors systematically compared these schemes [4]–[9] in real-
world conditions. All these schemes [4]–[9] assume that the
probability of being online friends for given physical distance
is the same for different users. Obviously, this assumption may
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not hold in practice; e.g., a famous user is more likely to have
a follower far away than a regular user. In addition, Cheng
et al. [11] predicted a user’s location based on the content of
tweets, where they identified a set of geographic hints (e.g.,
“New York”) and utilized them to associate the user with some
locations. In [12], the authors proposed an improvement over
[11] by associating a user’s original tweets to himself and his
retweets to the initial users. Furthermore, Mahmud et al. [13],
[14] utilized an ensemble of statistical and heuristic classifiers
to predict locations, but these schemes treat geographic hints
and locations as discrete labels and overlook their explicit
relations. Later on, Li et al. [32] explored a probabilistic model
to profile users’ locations, which utilizes OSN connections
and tweets in a unified and discriminative manner. Finally,
Zhang et al. [33] proposed a novel and lightweight system to
find the majority of the users in a specific geographical area
without scanning the whole Twittersphere. Public transaction
records in Venmo do not have sufficient geographic cues. So
this technique [33] is not directly applicable to our context.

There is also significant research on inferring sensitive user
information other than locations. For example, Zhang et al.
[34] proposed a new framework to profile the hidden ages
of microbloggers by exploring public content and interaction
information. In [35], the authors explored the relation between
age and language use for inferring age categories, life stages,
and exact ages. Besides, Weinsberg et al. [36] proposed to
infer gender by considering the rating scores for different
movies. Jia et al. [25] explored user behaviors to learn a
binary classifier and then used it to predict the prior probability
that each target user has a specific attribute value. Then they
used a binary random variable to characterize each user and
modeled the joint probability distribution of all binary random
variables as a pairwise Markov Random Field based on the
OSN structure. Given the training dataset and prior probability,
they used Loopy Belief Propagation (LBP) to propagate label
information and obtained the posterior probability to predict
whether a target user has the attribute or not. This work [25]
motivates us to use a pairwise Markov Random Field for max-
product location-belief propagation (MP-LBP).

IX. CONCLUSION AND DISCUSSION

In this paper, we studied the implicit leakage of personal
location information in Venmo, a popular mobile P2P system.
We developed MLLI, a novel multi-layer location inference
algorithm to infer hidden user locations from public transac-
tion records in Venmo. Based on a real dataset consisting of
2.12M users and 20.23M transaction records, we showed that
MLLI can identify the top-3 possible locations for a Venmo
user with accuracy up to 80%.

Our experimental results show that the attackers can infer
Venmo users’ home locations with high accuracy. Here we
briefly discuss two potential countermeasures. First, Venmo
App may change its default system setting for users’ transac-
tions. In particular, the current default system setting is that
user’s transactions are public, and we recommend to change
it to non-public. As reported by the Rainie and Duggan’s
reports [37], most people are not aware of potential privacy
risks, even giving up privacy for convenience [38]. Since users

seldom change system default settings, doing so can effectively
prevent the attacker from learning the temporal patterns of
user transactions and thus thwart location inferrence. Second,
Venmo APP can reduce the number of public transaction
records and thus dilute the weights among users. This can
decrease the inference accuracy as the belief propagation
processes in the MLBP technique mainly depend on the
weights among users.
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