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Abstract—The emerging Connected Vehicle (CV) technology is
widely expected to greatly enhance traffic safety and efficiency
by enabling vehicles, pedestrians, and infrastructures to commu-
nicate with one another. As a promising CV application, CV-
based traffic signal control aims to improve the traffic efficiency
at intersections by dynamically optimizing traffic signal control
plans based on the mobility information submitted by surround-
ing CVs. Effective CV-based traffic control relies on accurate
estimation of the queue length i.e., the number of vehicles
waiting at intersections, to determine the optimal traffic signal
control plans. Despite significant efforts on accurate queue length
estimation, the robustness of queue length estimation has so far
received very limited attention. A recent study has demonstrated
that it is possible for malicious CVs to significantly manipulate the
queue length estimation by reporting false mobility data, which
can cause severe traffic congestion. To tackle this challenge, we
introduce a robust queue length estimation mechanism that first
utilizes the mobility data reported by all the CVs waiting in the
queue to calculate multiple preliminary queue length estimates.
Then, the robust statistical methods are adopted to derive a
resulting estimated queue length whose accuracy is kept at an
acceptable level even though there exist multiple malicious CVs
in the queue. The simulation results confirm the effectiveness of
the proposed mechanism.

Index Terms—Security, Connected Vehicles, Intelligent Trans-
portation Systems, Data Spoofing Attack

I. INTRODUCTION

Connected vehicle (CV) technology is widely expected

to greatly improve traffic efficiency and safety by enabling

vehicles to communicate with other vehicles, transportation

infrastructures, and pedestrians. The CV-based traffic signal

control is one of the emerging CV applications, which relies

on wireless communication between CVs and traffic control

infrastructures to reduce congestion and improving traffic mo-

bility at road interactions. In a CV-based traffic signal control

system, vehicles equipped with communication capabilities

periodically report their speed, location, heading, etc. to the

infrastructures via the dedicated short-range communications

(DSRC), and the traffic control system determines the op-

timized traffic signal plans according to the current traffic

conditions at intersections.

The queue length at a signalized intersection, i.e., the

number of vehicles waiting in line, is one of the most crucial

parameters for determining optimal traffic signal control plans.

In particular, the optimal traffic signal plan is largely affected

by the estimated queue length, as the traffic signal control

system needs to allocate sufficient time for the waiting vehicles

to pass the intersection. In the absence of CV-technology,

the queue length is currently estimated with the assistance of

vehicular detectors, such as inductive loop, video cameras, and

microwave sensors [1]. They not only incur high maintenance

costs but also fail to produce accurate estimates during heavy

traffic jams or bad weather. In contrast, the CV-based traffic

signal control system can operate normally under oversaturated

traffic flow conditions and low visibility conditions.

The current low market penetration rate of CVs makes

queue length estimation a challenging problem. Ideally, if all

the vehicles waiting at the intersection are equipped with CV

technologies, queue lengths would be easily obtained by count-

ing the number of CVs in queues. However, as the market pen-

etration of CV-based vehicles remains low and is not expected

to reach 0.95 before 2045 [2], queue length estimation needs

to be based on the reported data from sporadic CVs. Consider

as an example the Intelligent Traffic Signal System (I-SIG),

which is an arterial traffic signal application developed in the

Dynamic Mobility Applications (DMA) program launched by

the USDOT [3]. The I-SIG adopts the Estimation of Location

and Speed (EVLS) algorithm to estimate the trajectory data

of the non-connected vehicles [4]. Queue length needs to be

estimated in this process. To this end, the EVLS algorithm

utilizes the information of stopping positions and stopping

times reported by the last two CVs in the queue [5].

The overreliance on the stopping position of the last con-

nected vehicle for queue length estimation makes CV-based

traffic signal control systems vulnerable to data spoofing

attacks. In particular, a recent study [4] demonstrates that

even a single malicious CV can deceive the CV-based traffic

control system, I-SIG, into accepting a significantly inflated

queue length through reporting false mobility data. The in-

flated estimated queue length can cause the I-SIG to allocate

unnecessarily a long period for the lane with the malicious CV

and cause congestion or disrupt traffic flow at intersections,

resulting in worse traffic mobility than that without using the

I-SIG system. There is thus a pressing need for developing

a robust queue length estimation mechanism resilient to data

spoofing attacks to fully unleash the potential of CV-based

traffic signal control.

In this paper, we tackle this challenge by introducing the

design and evaluation of a robust queue length estimation
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mechanism for CV-based traffic signal control system. We

observe that the key to thwarting data spoofing attacks is to

fully utilize the mobility data of all the available CVs waiting

in the queue instead of the last one alone. Specifically, our

mechanism estimates the queue length based on each indi-

vidual CV’s report and then aggregates multiple estimates to

produce a final estimated queue length using robust statistical

methods. Our contributions in this paper can be summarized

as follows.

• We introduce a novel robust queue length estimation

mechanism against data spoofing attacks for CV-based

traffic signal control systems.

• Detailed simulation studies confirm the effectiveness of

the proposed mechanism. For example, our mechanism

can reduce the capability of the attacker in terms of

skewing the resulting estimated queue length by 86.6%,

79.3%, and 70.4%, when the number of attacking CVs

in the queue is 1, 2, and 3, respectively.

The rest of the paper is structured as follows. We review

the related work in Section II and introduce the problem

formulation in Section III. We then present the proposed

mechanism in Section IV and report the simulation result in

Section V. This paper is finally concluded in Section VI.

II. RELATED WORK

As a serious threat to CVs and intelligent transportation

systems, data spoofing attacks have drawn growing attention

in recent years. Besides the position spoofing attack studied

in [4], the impact of arrival time spoofing attacks on different

backpressure-based scheduling algorithms in traffic signal con-

trol (TSC) was studied in [6]. In addition, Dedinsky et al. [7]

introduced a vision system against the data spoofing attacks

by monitoring the position of incoming vehicles and verifying

their behaviors. Moreover, Ta and Dvir [8] presented a secure

traffic congestion detection and management system to defend

against data spoofing attacks that using a vehicular public key

infrastructure. Li et al. [9] designed a blockchain-based and

decentralized architecture to secure the CV-based traffic signal

control systems. None of these works consider robust queue

length estimation.

Besides data spoofing attacks targeting traffic control sys-

tems, the vulnerabilities of connected/autonomous vehicles

(C/AV) have been exploited to attack a platoon of vehicles

[10], [11] or a single vehicle [12], [13]. Amoozadeh et al.
[10] and Abdo et al. [11] studied different security attacks on

Cooperative Adaptive Cruise Control, which can affect a group

of vehicles. Sun et al. [12] explored the vulnerability of current

LiDAR-based perception architectures in AVs and perform

the LiDAR spoofing attack. Shen et al. [13] showed that the

Multi-Sensor Fusion (MSF) algorithms in AVs are vulnerable

to the strategically performed GPS spoofing attacks. These

works address different problems and are thus orthogonal to

our work.

The subject of queuing at signalized intersections has been

studied extensively in the past. As early as the 1940s and

1950s, Clayton [14], Wardorp [15], and Beckmann et al. [16]

CV non-CV

S

Fig. 1. Illustration of a CV-based traffic control system at a four-arm
intersection.

discussed the queues at fixed-cycle traffic light. The inductive-

loop detector was introduced in the early 1960s and has be-

come the most widely used traffic sensor [17]. The traffic flow

data collected by inductive-loop detectors have been used to

estimate the queue length at intersections [18], [19]. Recently,

the emerging ITS and CV technologies have given rise to new

mechanisms for queue length estimation. There have been

two major approaches for queue length estimation in CV,

including shockwave theory approach [20]–[25] and statistical

approach [26]–[29]. Our proposed queue length estimation

mechanism belongs to the statistical approach. Comert and

Cetin [26] proposed to use the location information of the last

CV in the queue to estimate the queue length. Tiaprasert et
al. [27] applied the least-mean-square-error (LMSE) method

estimate the queue length. However, none of these solutions

can withstand the data spoofing attack addressed in this paper.

III. PROBLEM FORMULATION

A. System Model

We consider a CV-based traffic signal system at a four-

arm intersection shown in Fig. 1. The CV-based traffic signal

system periodically receives mobility report from nearby CVs

whereby to estimate the queue length of each lane to determine

the signal control plans. We focus on queue-length estimation

in this paper, and how to determine the optimal traffic signal

plan based on the estimated queue length is out of the scope

of this work.

We assume that the time is divided into epochs of the

same length. Our subsequent discussion considers a single

lane at a given epoch t. Assume that there are l vehicles

in the lane waiting after the stop line, including m CVs

denoted by V1, . . . , Vm, and l − m non-connected vehicles.

Each CV Vi periodically broadcasts a status report containing

its location and velocity at a frequency of 10Hz. We denote

the status report broadcasted by CV Vi during epoch t by

Ri,t = 〈IDi, pi, vi, t〉, where IDi is the unique ID of Vi

assigned by a trusted authority, e.g., the DMV, and pi and vi
are the position and velocity of Vi in epoch t, respectively. We

assume that the length of each epoch is sufficiently small, e.g.,

100ms, such that each CV only broadcasts one status report. In

addition, for the CVs that are waiting in the queue, its speed is

typically low, e.g., lower than 2m/s, and the distance it travels
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during each epoch is negligible. Moreover, we assume that

every beacon message is digitally signed by the sender with

its private key to ensure the integrity of the message. We also

assume that the current CVs’ market penetration rate ρ ∈ (0, 1)
is known to the traffic control system. Given the status reports

from the m CVs, R1,t, . . . , Rm,t, the traffic control system S
intends to produce an estimated queue length l̂.

B. Adversary Model

We consider an adversary whose goal is to deceive the traffic

control system into producing an inflated estimated queue

length whereby to cause suboptimal traffic signal plans and

significant traffic congestion in other lanes and directions. In

particular, the prior study has shown that it is much easier

for the adversary to inflate the estimated queue length using

forged mobility reports containing fake locations that are far

away from the stop line. In contrast, it is much difficult

for the adversary to mislead the traffic control system into

significantly underestimating the queue length as long as there

is at least one legitimate CV reporting a location behind the

fake CVs.

We assume that the adversary has control over c > 0
attacking CVs which may launch data spoofing attack by

submitting forged mobility reports under its instruction. A

forged mobility report may contain a fake location of the

adversary’s choice but must include a valid CV’s ID and

appropriate digital signature. The adversary may launch the

attack in different ways. First, it may have the CVs under its

control be physically present at the target lane. Second, it may

use a mobile device with a powerful transmitter to impersonate

the CVs and send forged mobility reports on their behalf from

a nearby location. In both cases, the adversary has the valid

security credentials, e.g., private keys issued to the IDs, and

can send mobility reports with proper digital signatures that

can pass the verification at the traffic control system, and we

thus will not differentiate the two cases hereafter.

C. Design Goals

We seek to design a robust queue length estimation mech-

anism to meet the following goals.

• Resilience against data spoofing attack: The estimated

queue length should be sufficiently accurate in the pres-

ence of data spoofing attacks.

• Accuracy in the absence of attack: The queue length

estimated by the proposed mechanism should be close to

existing solutions in the absence of data spoofing attacks.

IV. ROBUST QUEUE LENGTH ESTIMATION

In this section, we present a novel robust queue length

estimation mechanism that is resilient to the data spoofing

attacks.

A. Overview

We observe that the vulnerability of existing queue length

estimation techniques to data spoofing attacks stems from their

reliance on the reported position of the last CV in the queue.

In particular, the estimated queue length is largely affected by

the position of the last CV, which can be easily manipulated

by even a single malicious CV. To achieve robust queue length

estimation against data spoofing attacks, it is thus important

to minimize the impact of the last CV’s position. Based on

this observation, our mechanism estimates the queue length

from each individual CV report based on the CV’s reported

location, its ranking among all CVs, and the total number

of CVs using maximum likelihood estimation. The estimated

queue length from individual CV report is thus not affected by

the last CV’s location. Given a set of estimated queue lengths,

we then compute a final estimated queue length by aggregating

them using a robust estimator that is resilient to outliers.

In what follows, we detail to the two phases of the proposed

mechanism.

B. Queue Length Estimation from Individual CV Report

In this subsection, we introduce how to estimate the queue

length based on a single CV’s mobility report through maxi-

mum likelihood estimation.

First, we estimate the rankings of each CV among all the

CVs and among all the vehicles based on the m reports

R1,t, . . . , Rm,t. Specifically, we sort all the CVs according

to their distances to the stopping lines. For each report

Ri,t = 〈IDi, pi, vi, t〉 received in epoch t, we first compute

the distance between its position pi and the stopping line as di.
Without loss of generality, assume that d1 < d2 < · · · < dm.

It follows that CV Vi is ranked ith among all CVs. Moreover,

we estimate CV Vi’s ranking in the queue as

ri =

⌊
di
h

⌋
,

where h is the empirical value of the space headway, which

is the average distance between the front bumpers of two

successive vehicles and equals to the length of a vehicle plus

the gap between two successive vehicles.

Second, for each CV Vi, we estimate a queue length l̂i
based on CV Vi’s rankings of each CV among all the CVs

and among all the vehicles. Let Rc and R be the random

variables representing the rankings of a CV among all the

CVs and among all vehicles, respectively. Also let L and M
be the random variables representing the queue length and the

total number of CVs in the queue, respectively. Assume that

each vehicle in the queue is equally likely to be a CV with

probability ρ, i.e., the penetration rate. Observing a CV with

a ranking Rc = i among all the CVs and a ranking R = ri
among all the vehicles is equivalent to the event that there are

i− 1 CVs out of the first ri − 1 vehicles, the rith vehicle in

the queue is a CV, and m − i out of the last l − ri vehicles

are CVs. The likelihood of the event given there are l vehicles

waiting in the queue is given by

�����������	
���

�������	���	��
����������
�	��������
�����������



L(Rc = i, R = ri|M = m,L = l)

=

(
ri − 1

i− 1

)
ρi−1(1− ρ)ri−iρ

·
(
l − ri
m− i

)
ρm−i(1− ρ)l−ri−(m−i)

=

(
ri − 1

i− 1

)(
l − ri
m− i

)
ρm(1− ρ)l−m .

(1)

Further define the likelihood function as

fi(l) =

(
ri − 1

i− 1

)(
l − ri
m− i

)
ρm(1− ρ)l−m. (2)

The queue length estimated from report Ri is then given by

l̂i = argmax
l∈{ri,...,lmax}

f(l) , (3)

where lmax is the maximum queue length determined by the

physical road condition known in advance. The problem in

Eq. (3) can be solved using either exhaustive search or the

Newton’s method.

C. Final Queue Length Estimate via Huber’s M-Estimators

Given estimated queue lengths l̂1, . . . , l̂m, we compute a

final estimated queue length using a robust estimator. The most

intuitive way is to estimate the queue length as the mean of

the m estimated queue lengths l̂1, . . . , l̂m. However, the mean

is not a robust measure and can be easily affected by a small

number of outliers, which makes the estimates vulnerable to

data spoofing attacks.

We choose the location M-estimator with Huber’s function

Ψ [30] to produce a final estimated queue length. Specifically,

given m estimates of the queue length l̂1, . . . , l̂m, we compute

the final estimated queue length l̂ as the Huber’s M-estimator

[31], which is a robust estimator that generalizes sample mean

and sample median. Specifically, the Huber’s M-estimator of

l̂1, . . . , l̂m is the solution of the following problem

m∑
i=1

Ψ

(
l̂i − l̂

σ

)
= 0 (4)

where function Ψ is defined as

Ψ(x) =

⎧⎪⎨
⎪⎩
K if x > K,

x if |x| ≤ K,

−K if x < −K,

(5)

K > 0 is a factor which can be adjusted to balance the

accuracy and robustness of the estimate [32], and σ is a robust

measure of statistical dispersion.

A typical choice is the Normalized Median Absolute Devia-

tion about the median (MADN). Specifically, given l̂1, . . . , l̂m,

the Median Absolute Deviation about the median (MAD) is

defined as

MAD(l̂1, . . . , l̂m) = Median(|l̂1 − l̂med|, . . . , |l̂m − l̂med|). (6)

where l̂med is the median of l̂1, . . . , l̂m. The Normalized MAD

(MADN) is then defined as

MADN(l̂1, . . . , l̂m) =
MAD(l̂1, . . . , l̂m)

Φ−1( 34 )
(7)

where Φ−1(·) is the quantile function for the standard normal

distribution, and Φ−1( 34 ) ≈ 0.6745 is the MAD of a standard

normal random variable [33].

The Huber’s M-Estimators generalizes both mean and medi-

an. In particular, l̂ would be the median and mean of l̂1, . . . , l̂m
if K = 0 and ∞, respectively. Note that there is no closed-

form expression for l̂ in Eq. (4), and we use the Newton’s

method to compute l̂.

V. SIMULATION EVALUATION

In this section, we evaluate the performance of the proposed

queue length estimation mechanism via detailed simulation

studies using MATLAB R2019b.

A. Simulation Settings

We compare the several variants of the proposed mechanism

with a Baseline mechanism [3], which is the I-SIG system

evaluated in [4]. As mentioned earlier, the I-SIG system esti-

mates the queue length using the last CV’s stopping location.

We subsequently refer to Huber K=1 and Huber K=2 as the

proposed mechanism with factor K set to 1 and 2, respectively.

In addition, we use Mean and Median to denote the two

special cases of the Huber’s M-estimator with the factor K
set to ∞ and 0, respectively. In our simulations, we set the

maximum queue length lmax to 50, which serves as the farthest

stopping position any attacking CV can report. Without such

constraint, the attacker can report a false stopping position

that is infinitely far away from the stopping line, which is

impractical.

We use the Mean Absolute Percentage Error (MAPE) to

evaluate the performance of the different queue length estima-

tion methods, which is defined as

MAPE =
1

n

n∑
i=1

|l̂i − l|
l

,

where n is the total number of runs, and l and l̂i are the ground

truth queue length and the estimated queue length of the ith
run, respectively.

For each run of the simulation, we first randomly choose the

m− c vehicles out of the total l vehicles and then enumerate

all possible combinations of the remaining c attacking CVs’

positions to find the one that leads to the largest Absolute

Percentage Error.

B. Simulation Results

We now report the simulation results where every data

point represents the average of 1,000 runs unless mentioned

otherwise.
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Fig. 2. Comparison of the five queue length estimation methods with different
market penetration rates of CVs ρ and different ground truth queue length.

1) Performance in the Absence of Attack: Fig. 2a shows the

MAPEs of the five queue length estimation methods where the

actual queue length l = 20 and CVs’ market penetration rate

ρ varies from 0.1 to 0.9, and Fig. 2b shows the MAPEs of

the five queue length estimation methods when CVs’ market

penetration rate ρ = 0.4 and the actual queue length l varies

from 10 to 45. Fig. 2a shows that in the absence of attack,

the proposed queue length estimation mechanisms, including

Mean, Huber K=1, Huber K=2, and Median achieve similar

MAPEs as the Baseline that relies on the stopping location of

the last CV. The MAPEs of the five methods are also lower

than 0.34 even when the CVs’ market penetration rate ρ is

only 0.1. If ρ reaches 0.5, which means half of vehicles on

the road are CVs, the MAPEs of the proposed mechanism will

be around 0.1. When the actual length is 20, an MAPE of 0.1

represents an error of two vehicles, which is quite acceptable

in practice. Fig. 2b shows that the proposed mechanism and the

Baseline method achieve similar MAPE under various actual

queue lengths with the Baseline method slightly outperforming

the other four methods when l ≥ 10.

2) Impact of CVs’ Market Penetration Rate ρ: Fig. 3

compares the MAPEs of the Baseline, Mean, Huber K=2,

Huber K=1, and Median with CVs’ market penetration rate

ρ varying from 0.1 to 0.9, where the actual queue length

l = 20. As we can see, the MAPE of the Baseline method

is not affected by the change in the CVs’ market penetration

rate as the estimated queue length is determined by the last

CV’s position in the queue and the attacking CV will always

report the maximum value 50. In contrast, the MAPEs of the

proposed mechanisms including Mean, Huber K=2, Huber
K=1, and Median decrease as ρ increases, especially when

ρ increases from 0.1 to 0.3. This is because the proposed

mechanisms estimate the queue length by using the stopping

positions of all the CVs in the queue. If the number of

attacking CVs is fixed, the more normal CVs in the queue, the

weaker the impact attacking CVs can have on the estimated

queue length l̂. Moreover, for any fixed l, the expected number

of normal CVs in a queue increases as ρ increases. As we can

see from Fig. 3c, when ρ = 0.1, the MAPEs of the Mean,

Huber K=2, Huber K=1, and Median methods are similar to

that of the Baseline method. This is because when ρ = 0.1
and l = 20, the expected number of normal CVs in the queue

equals to 2 which is smaller than the number of attacking CVs.

If the number of attacking CVs is close to, or even greater than

the number of normal CVs in the queue, the estimated queue

length l̂ will be dominated by the attacking CVs, which is

similar to the Baseline method. However, generally speaking,

the proposed mechanisms including Mean, Huber K=1, Huber
K=2, and Median outperform the Baseline method.

3) Impact of the Actual Queue Length: Fig. 4 compares

the MAPEs of the Baseline, Mean, Huber K=2, Huber K=1,

and Median with the actual queue length l varying from 10 to

45, where CVs’ market penetration rate ρ = 0.4. The MAPEs

of the five methods all decrease as l increases. The reason is

that the longer the actual queue length, the smaller the relative

estimation error, and vice versa. Moreover, we can see from

Fig. 4a, Fig. 4b, and Fig. 4c, the more attacking CVs, the larger

the MAPEs of Huber K=1, Huber K=2, and Median, and

Mean, which is expected. Furthermore, the Huber K=2, Huber
K=1, and Median methods outperform the Mean method, as

they all use robust estimator to compute the final queue length.

Generally speaking, as long as there are sufficient normal CVs

in the queue, the impact of attacking CVs can be greatly

mitigated by normal CVs using robust estimators. In addition,

as l increases from 10 to 30, the MAPEs of Mean, Huber
K=1, Huber K=2, and Median are significantly lower than

that of the Baseline method as they estimate the queue length

by aggregating individual estimated queue lengths instead of

relying on the position of the last CV. These results confirm the

advantage of the proposed method over the Baseline method.

4) Impact of the Number of Attacking CVs: Fig. 5 compares

the MAPEs of the Baseline, Mean, Huber K=1, Huber K=2,

and Median methods with the number of attacking CV(s)

varying from 0 to 3, where different CVs’ market penetration

rate ρ = 0.3 and 0.4 and the actual queue length l = 15
and 20. As Fig. 5 shows, the MAPE of the Baseline method

depends on whether there is an attacking CV or not but is

not affected by the number of attacking CV(s). The reason is

that the Baseline method estimates the queue length based on

the last attacking CV’s position. In contrast, the MAPEs of

the Mean, Huber K=2, Huber K=1, and Median methods all

increase as the number of attacking CVs increases, which is

expected. As we can see from Fig. 5b, Fig. 5c, and Fig. 5d,

the MAPE of the Baseline method is slightly lower than that

of Mean, Huber K=2, Huber K=1, and Median in the absence

of the attack. However, the Mean, Huber K=2, Huber K=1,

and Median significantly outperform Baseline when there is at

least one attacking CV. Meanwhile, the performance of Huber
K=2, Huber K=1, and Median are much better than that of

the Mean method in the presence of at least one attacking CV.

5) Comparison of Mean, Huber K = 2, Huber K = 1, and
Median: We now compare the Mean, Huber K=1, Huber K=2,

and Median methods. As shown in Fig. 3 and Fig. 4, with

different number of attacking CVs, the curves of Mean and

Median represent the upper and lower bounds of the MAPE

that the proposed mechanism can achieve through adjusting the

factor K, as they represent the Huber’s M-estimator with K =
∞ and 0, respectively. Moreover, we can see from Fig. 3 and
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Fig. 3. Comparison of the five queue length estimation methods with different market penetration rates of CVs ρ, where l = 20 and c = 1, 2, and 3.
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Fig. 4. Comparison of the five queue length estimation methods with different actual queue lengths, where the market penetration rate of CVs ρ = 0.4 and
c = 1, 2, and 3.)
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Fig. 5. Comparing the the five queue length estimation methods with ρ and l, where c = 1, 2, and 3.

Fig. 4 that the proposed mechanism performs better with small

K than with large K. Therefore, the smaller the factor K,

the more robustness of the proposed queue length estimation

mechanism, and vice versa.

On the other hand, the factor K also affects the estimation

accuracy in the absence of the attack. As shown in Fig. 2a,

when there is no attacking CV, the Median method incurs

higher MAPE than the other three methods, especially when

the CVs’ market penetration rate ρ is between 0.1 and 0.3.

When ρ is above 0.3, all four methods have similar MAPEs.

Moreover, Fig. 5 shows that the Mean method has a smaller

standard deviation in MAPE than the other three methods.

Fig. 2a and Fig. 5 reflect the fact that the accuracy of the

proposed mechanism increases as the factor K increases. In

addition, Fig. 2a shows that, in the absence of the attack,

Huber K=1 achieves the same level of estimation accuracy

as the Mean method. Meanwhile, Fig. 3 and Fig. 4 show that

Huber K=1 is as competitive as the Median method in the

presence of the attacks. Generally speaking, Huber K=1 is a

good option for the proposed mechanism. Fig. 5 shows that the

Median method is more robust in the presence of the attacks,

although its estimation accuracy is slightly lower than the other

methods in the absence of the attack. Therefore, when CVs’

market penetration rate ρ = 0.3 and 0.4, the Median method

is a preferable choice for the proposed mechanism.
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VI. CONCLUSION

In this paper, we have presented a novel robust queue

length estimation mechanism for CV-based traffic control

systems. Unlike prior schemes that estimate the queue length

based on the last CV’s position, the proposed mechanism

estimates the queue length from each individual CV’s report

based on their rankings among the CVs and all the vehicles

and then aggregates them to produce a final estimate using

Huber’s M-Estimators. By doing so, we greatly mitigate the

impact of attacking CVs reporting fake faraway positions from

the stopping line. Detailed simulation studies confirm that

the proposed mechanism outperforms prior solutions in the

presence of data spoofing attacks at a slight sacrifice of the

estimation accuracy in the absence of the attacks.
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