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ABSTRACT
Mobile device losses and thefts are skyrocketing. The sen-
sitive data hosted on a lost/stolen device are fully exposed
to the adversary. Although password-based authentication
mechanisms are available on mobile devices, many users re-
portedly do not use them, and a device may be lost/stolen
while in the unlocked mode. This paper presents the de-
sign and evaluation of iLock, a secure and usable defense
against data theft on a lost/stolen mobile device. iLock
automatically, quickly, and accurately recognizes the user’s
physical separation from his/her device by detecting and
analyzing the changes in wireless signals. Once significant
physical separation is detected, the device is immediately
locked to prevent data theft. iLock relies on acoustic sig-
nals and requires at least one speaker and one microphone
that are available on most COTS (commodity-off-the-shelf)
mobile devices. Extensive experiments on Samsung Galaxy
S5 show that iLock can lock the device with negligible false
positives and negatives.

CCS Concepts
•Human-centered computing→Mobile devices; •Security
and privacy → Mobile and wireless security;

Keywords
Device locking, FMCW, audio ranging, smartphone security

1. INTRODUCTION
The human society is in a wireless and mobile era. Accord-

ing to the Cisco Virtual Networking Index [2], 497 million
mobile devices (mainly tablets, smartphones, and laptops)
were added in 2014, and the number of global mobile de-
vices in 2014 reached 7.4 billion and will reach 11.5 billion by
2019 at a CAGR of 9%. People are using mobile devices in
every aspect of life, including work, education, voice/video
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communications, Internet browsing, web transactions, on-
line banking, reading, multimedia playing, etc.

Mobile device losses/thefts are skyrocketing and posing
severe threats to data security. According to a 2012 Kensing-
ton study [1], one laptop is stolen every 53 seconds; 70 mil-
lion smartphones are lost each year, with only 7% recovered;
and 4.3% of company-issued smartphones are lost/stolen ev-
ery year. The true cost of a lost/stolen mobile device goes
far beyond the device cost due to the lost productivity, the
loss of intellectual property, data breaches, and legal fees.

The most common defense against device losses/thefts is
to set a password on the mobile device. Unfortunately, the
2015 Kaspersky Lab survey [4] shows that 31% of smart-
phones and 41% of tablets are not password-protected. In
addition, the time window for a password-protected device
going from the unlocked mode to the locked mode may be
long enough for a capable attacker to access all the sensi-
tive information on the lost/stolen device. For example, the
auto-lock options on iPad 2 include 2 min, 5 min, 10 min, 15
min, and NEVER. Many users choose a longer time period
or even NEVER for convenience. If an unlocked device is
lost/stolen, the user’s sensitive information is fully accessible
to whoever possesses the device.

Continuous authentication aims to continuously verify the
identity of the user using a mobile device and is natural-
ly a candidate defense against device losses/thefts. This
line of work aims to verify the behavioral biometrics of the
user exhibited in his keystrokes [18], finger touches on the
screen [14], or app usage [12]. In addition to their relative-
ly high false positives and negatives, these approaches often
require a relatively long time window to collect sufficient
data for capturing the behavioral biometrics. The attack-
er, however, may quickly access the user’s private data and
then completely wipe out the device for reinstallation, rather
than using the device for an extended period of time.

In this paper, we present iLock, a secure and usable de-
fense against device losses/thefts. iLock immediately and
automatically locks a mobile device once it leaves the vicin-
ity of its user. The key motivation behind iLock is that
the departure of a user from his device causes the physi-
cal environment to change and thus noticeable changes in
nearby wireless signals. So we can let the mobile device
automatically, quickly, and accurately recognize its physical
separation from its owner by detecting and analyzing the
changes in wireless signals. Once significant physical sepa-
ration from its user is detected, the device can immediately
and automatically lock itself. iLock cannot help retrieve a
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lost/stolen device, but it can help prevent data theft. Spe-
cially, after iLock locks the device, the user can use various
apps such as Find My Phone to track the device, remotely
disable it, and even completely erase it.

iLock relies on acoustic signals and requires at least one s-
peaker and one microphone that are available on most COTS
mobile devices, such as smartphones, tablets, laptops, and
all-in-one PCs. Once a user-defined vulnerable context (e.g.,
out of home) is automatically detected, the speaker keep-
s transmitting high-frequency acoustic signals inaudible to
human ears. The signals are reflected by the user’s body
and finally reach the microphone after some delay. The de-
vice can then estimate its distance from the user based on
the received signals and automatically lock itself once the
distance estimation exceeds a user-defined threshold.

How could the user-device distance be estimated? One
may simply let the speaker transmit an acoustic signal, which
reaches the microphone via the speaker-user-microphone path.
After computing the time-of-flight (ToF) as the difference
between signal transmission and reception time, the device
can estimate the user-device distance as c×ToF/2, where c
denotes the speed of sound about 340 m/s. This seemingly
simple method unfortunately does not work because of very
coarse-grained timestamps on mobile devices, which can be
due to many reasons such as various delays between the ap-
plication and physical layers [23]. For example, an error of
0.01 s may cause a distance-measurement error about 1.7 m
which is obviously not acceptable for device locking.

iLock adopts a technique called FMCW (frequency modu-
lated carrier wave) [16] to avoid computing the ToF directly
based on inaccurate timestamps on mobile devices. FMCW
transforms the time differences to frequency shifts between
transmitted and received signals. With FMCW, the speaker
changes the acoustic signal frequency linearly. The device
computes Δf , the frequency difference between the signal
transmitted at the speaker and the signal received by the
microphone at the same time. Since the slope of the linear
FMCW function is known, the ToF is roughly Δf

slope
, and the

user-device distance can still be estimated as c ∗ ToF/2.
Implementing FMCW-based iLock on COTS mobile de-

vices faces two critical challenges. First, the device must
compute the frequency drift Δf as the frequency difference
between the signals simultaneously transmitted at the s-
peaker and arriving at the microphone. This seemingly sim-
ple requirement is difficult to fulfill on COTS mobile devices
because the timestamps obtained from the OS are highly
inaccurate. Second, the signal arriving at the microphone
is actually a linear combination of multi-path signals com-
ing from the direct speaker-microphone path, the speaker-
user-microphone path, and other paths involving many other
physical objects. The device thus should be able to separate
the signal from the speaker-user-microphone path from oth-
er multi-path signals.

Our contributions in this paper are summarized as follows.

• We design iLock, the first system to immediately and
automatically lock a COTS mobile device once its phys-
ical separation from its owner is significant. iLock can
effectively thwart data theft on a lost/stolen mobile
device without any user involvement.

• We propose a novel method to implement iLock based
on the FMCW technique, which is applicable to almost

all COTS mobile devices with at least one speaker and
one microphone.

• We implement iLock and conduct extensive experi-
ments on Samsung Galaxy S5 against various attack-
ers. Our evaluation results show that iLock can imme-
diately lock the device with negligible false positives
and negatives.

The rest of the paper is organized as follows. Section 2
introduces the adversary model and our design goals. Sec-
tion 3 details the iLock design. Section 4 presents the ex-
perimental evaluations. Section 5 discusses the energy con-
sumption of iLock and other possible solutions. Section 6
briefs the related work. Section 7 concludes this paper.

2. ADVERSARY MODEL AND DESIGN
GOALS

Adversary Model. We assume that the mobile device to
protect is unlocked. This can be because the auto-lock op-
tion is disabled or has not taken effect if a long time window
(e.g., 5 min) is chosen. The attacker possesses the device
and tries to access sensitive information stored there. We
consider three types of attackers according to their initial
distance from the device relative to the (legitimate) user.

• Type-I attacker: This kind of attackers find the device
the legitimate user accidentally lost in public places
such as streets, restrooms, coffee shops, and subways.
Type-I attackers are initially much farther away from
the device than the user.

• Type-II attacker: Such attackers are still farther away
from the device than the user, but the distance dif-
ference is very small. For example, the attacker can
be a thief trying to steal the device from the user on
a crowded bus/subway, and the attacker may also be
a malicious coworker who just sat with the user for
a meeting and saw the user leave without taking the
device on the conference table.

• Type-III attacker: These attackers are closer to the
device than the user. For example, the user may acci-
dently put the device closer to the malicious coworker
on the conference table and leave the meeting without
taking the device.

Since iLock relies on acoustic signal transmissions and re-
ceptions, one may think about defeating iLock by letting
the attacker jam the acoustic channel. Such jamming at-
tacks are very easy to detect and mitigate. So we focus on
dealing with the three types of attackers above.

Design Goals. iLock cannot help retrieve a lost/stolen
device, but it can help prevent data theft on a lost/stolen
device. We have the following design goals.

• iLock should be device-free and does not rely on any
auxiliary device. It should also be applicable to most
COTS mobile devices.

• iLock should immediately lock the device once the user-
device distance exceeds a pre-defined threshold to min-
imize the time opportunity for data theft.
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Figure 1: FMCW illustration. The frequency of the trans-
mitted signal (red solid line) repeatedly increases from f0 to
f1. After a time delay Δt, the signal arrives at the receiver
(blue dashed line). The frequency shift Δf can be extracted
by performing FFT over each sweep.

Figure 2: The system framework of iLock.

• iLock should be automatic and user-friendly. It should
not require any explicit interaction between the user
and device. Nor does the user’s device-use habit need
to be changed.

• iLock should be very accurate in detecting the user-
device distance, which can translate into very low false
positives and negatives for triggering device locking.

3. ILOCK
This section details the iLock design. We start by in-

troducing FMCW in Section 3.1. Then we discuss how to
defend against Type-I, Type-II, and Type-III attackers in
Sections 3.2, 3.3, and 3.4, respectively.

3.1 Frequency-Modulated Carrier Waves
Fig. 1 gives a high-level overview of FMCW, and we refer

the reader to [16] for a more detailed illustration. FMCW
operations proceed in rounds. In each round referred to
as a sweep, the transmitter linearly increases the transmis-
sion frequency from f0 to f1, where f0 and f1 are prede-
termined minimum and maximum frequencies. Each signal
arrives at the receiver after some delay Δt (the so-called
ToF). The transmitted and received signal frequencies for
each sweep are depicted by red solid and blue dashed lines
in Fig. 1, respectively. According to Fig. 1, it is clear that
Δt = �f

f1−f0
Tsweep, where Tsweep is the duration of each

sweep. Finally, we can estimate the signal-travel distance
d = cΔt, where c is the signal propagation speed.

3.2 Defeating Type-I Attackers: When Attack-
ers Are Initially Farawy

iLock relies on FMCW to dynamically estimate the user-
device distance and automatically locks the device once the
user-defined safe distance is exceeded. iLock uses acoustic
signals so that it can work on most COTS mobile devices

with standard build-in microphones and speakers. Thus c is
the speed of sound of about 340 m/s. The minimum FMCW
frequency f0 is set to be sufficiently high (e.g., 18 kHz) so
that the signal is almost inaudible to human ears, and the
maximum FMCW frequency f1 can be set to half the high-
est sampling frequency of the microphone. For example,
most COTS smartphones support the sampling frequency
up to 44.1 kHz, so we can set f1 equal to 22 kHz. Tsweep

is a design parameter dictating the tradeoff between maxi-
mum detection range and frequency drift resolution, which
becomes clear shortly.

The implementation of FMCW-based iLock on COTS mo-
bile devices faces two critical challenges. First, the device
must compute the frequency drift Δf as the frequency differ-
ence between the signals simultaneously transmitted at the
speaker and arriving at the microphone, as shown in Fig. 1.
To do so, the transmitted and received signals for the same
sweep should be properly aligned. This seemingly simple
goal is difficult to achieve on COTS mobile devices because
the timestamps obtained from the OS are highly inaccurate
in contrast to the short sweep duration. Specifically, there
are many reasons for the skew between the sending times-
tamp and actual signal-emission time [23]. For example, the
transmission instructions have to be transferred from the ap-
plication layer to the physical layer, which may be delayed
by many system events such as system interrupts. Similar
reasons can also account for the skew between the receiving
timestamp got from the OS and the actual receiving time
by the microphone circuit. More accurate time measure-
ments can be obtained from the kernel, but this option is
not feasible on mobile devices. Second, the signal arriv-
ing at the microphone is actually a linear combination of
multi-path signals coming from the direct path between the
speaker and microphone, the speaker-user-microphone path,
and other paths involving many other physical objects. The
device thus should be able to separate the signal from the
speaker-user-microphone path from other signals.

Below we illustrate how iLock tackles these two challenges
with the system diagram in Fig. 2. We assume Type-I at-
tackers in this section such that the signals are reflected by
only one human object (the user him/herself).

The Signal Alignment module is designed to deal with the
first challenge. Specifically, the speaker transmits acoustic
signals with the frequencies sweeping from f0 to f1, which
arrive at the microphone after some delay. In ideal situations
with accurate timestamps and static signal propagation en-
vironments, the time gap between transmitted and received
signal vectors for the sweep that can be obtained from the
transmitted and received timestamps should be constant, as
shown in Fig. 1. Such gaps, however, may vary a lot across
each sweep mainly due to inaccurate timestamps.

Our design leverages the observation that the physical dis-
tance between the speaker and microphone is fixed and usu-
ally very short relative to the user-device distance,1 so the
signals arriving from the direct speaker-microphone path
dominate other multi-path components. If the sweep du-
ration is so short that signal propagation environments are
approximately static, the time gap between transmitted and
received signal vectors on the direct path should be constant
across each sweep regardless of inaccurate timestamps. Let

1For example, the distances of the speaker to two micro-
phones on a Samsung Galaxy S5 are 4.5 cm and 12.3 cm,
respectively.
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sin(ftxt) and sin(frxt) denote the transmitted and received
signals at the same timestamp, respectively. The Signal
Alignment module computes sin(ftxt) sin(frxt) =

1
2
(cos[(ftx−

frx)t] − cos[(ftx + frx)t]) and then uses a low-pass filter to
get cos[(ftx − frx)t]. Then we advance the received signal
vector by an offset k to minimize the frequency difference
ftx − frx. If the microphone only receives the signals from
the direct speaker-microphone path, there can be an almost
perfect overlap between the transmitted and received sig-
nal vectors after the shifting with ftx − frx ≈ 0. Due to the
presence of the user and other physical objects, the transmit-
ted and received signals cannot overlap each other. Finally,
the transmitted signals correspond to the red solid line in
Fig. 1, and the advanced received signals correspond to the
blue dashed line in Fig. 1.

Then the Mixer module is invoked to compute cos[(ftx −
frx)t] in the same way as in the Alignment module for the
transmitted and received signals at the same instant in the
same sweep. Different physical objects lead to different re-
flection paths, each corresponding to a different time shift.
So the FFT module is subsequently used in each sweep to
extract these different frequency shifts. Since each frequency
shift corresponds to a different ToF measurement and thus
a different signal-travel distance, we plot the received signal
powers at different distances in Fig. 3a, which are obtained
from a microphone on a Samsung Galaxy S5 with f0 = 18
kHz, f1 = 22 kHz, and Tsweep = 20 ms. There are many
horizontal strips with each corresponding to a different path
the signal traveled from the speaker to microphone. Some
strips are not stable with time, as user movements change
the multi-path propagation environment. The strips around
distance zero are the brightest, corresponding to the direct
speaker-microphone path.

We then use the Background Substraction module to high-
light the effect of user movements. Specifically, the physi-
cal objects other than the user (e.g., doors and walls) can
be assumed to be static relative to user movements, which
generally holds given the very short duration to detect user
movements and then lock the device. Therefore, the reflec-
tion paths due to these static objects are static across the
sweeps, so we can easily remove their effects via subtrac-
tion. Fig. 3b shows the substraction result, where the signal
power decreases as the distance increases.

Next, we use the Kalman filter in the Outlier Rejection
and Filtering module to smooth out the data. Fig. 3c shows
the user’s movement trace before and after outlier rejection
and filtering. In this experiment, the user initially sits on
the chair with the smartphone on the table. Then he stands
up and turns around to move away from the table and thus
his smartphone. As we can see, his distance to the smart-
phone decreases when he stands up (around 2,000 ms) and
increases when he moves away (after 2,000 ms).

When should the device be locked? In everyday
life, the device is often placed within the arm’s reach, so
the user can set a threshold δ1 about the arm length when
installing iLock. We also define another distance threshold
δ2, beyond which the user can hardly put his device. iLock
immediately and automatically locks the device when the
user-device distance starts below δ1 and then exceeds δ2.
We set δ1 = 60 cm and δ2 = 1 m in the experiments, and
the user can freely adjust them in practice.

How accurate are the distance measurements in
iLock? The resolution of distance measurements relies on

that of ToF measurements which further depends on that of
frequency measurements. The minimum frequency drift in
iLock equals 1/Tsweep (i.e., the size of one FFT bin), which

translates into a ToF resolution of
1/Tsweep∗Tsweep

f1−f0
. So the

user-device distance resolution can be derived as c
2(f1−f0)

,

for which we assume that the user-device distance is half
of the speaker-user-microphone path length. With f1 = 22
kHz, f0 = 18 kHz, and c = 340 m/s, the user-device distance
resolution is about 4.25 cm, which is sufficient to detect the
user’s significant departure from the device.

The maximum detection range for the user-device distance
depends on both the sweep duration and also the speaker
volume. Considering the sweep duration alone, we can com-
pute the maximum user-device distance as cTsweep/2, which
equals 3.4 m if Tsweep = 20 ms. The speaker volume corre-
sponds to transmission power and thus distance: the larger
the speaker volume, the larger the transmission power con-
sumption, the larger the detectable user-device distance, and
vice versa. In our experiments, the 71% volume level leads
to a maximum detection range at about 1.5 m.

Another issue worth mentioning is the impact of initial
signal alignment on distance measurements. The net effect
of initial signal alignment is to virtually place the speaker
and microphone together. So each subsequent microphone-

object-speaker distance measurement is actually d
′
= d −

dsm, where d is the actual signal travel distance, and dsm
means the distance between the speaker and microphone.
For most portable mobile devices, dsm is relatively small in
contrast to user movements and can be safely ignored. For
larger mobile devices such as laptops and all-in-one PCs, dsm
can be easily estimated and then used to obtain d.

3.3 Defeating Type-II Attackers: When At-
tackers Get Closer

The basic iLock design in Section 3.2 assumes that the at-
tacker is initially faraway from the device, so only the move-
ment of the user him/herself needs to be tracked. In this
section, we discuss how to defeat Type-II attackers which
are initially also close to the device but still at a greater dis-
tance than the user-device distance. There are many such
scenarios in daily life. For example, the user leaves a confer-
ence room without taking his/her device on the table, where
malicious coworkers or conference attendees try to access
sensitive data on the user’s device. The device may also slip
out of the user’s pocket or suitcase on public transport tools
and be picked up by malicious passengers nearby. The exis-
tence of multiple persons (including the target user) nearby
causes the target device to detect multiple movement traces.
So the essential challenge is to identify the movement trace
associated with the legitimate user, based on which to make
salient device-locking decisions.

To begin with, we consider a common scenario that only
one person near the device moves away from it. Even if
other persons do not move, they may still have minor body
movements which can be detected by the device. Since the
target user is assumed to be initially closer to his/her device
than other persons, his/her movement trace can be easily
singled out based on the initial closer distance measurement.
Fig. 4 shows an exemplary scenario where the target user
leaves but the attacker stays, and Fig. 5 corresponds to the
case that the attacker leaves but the user stays. It is very
clear that the target user’s movement trace can be easily
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Figure 3: Single user tracking with FMCW. Figure (a) plots the spectrogram after we take FFT on each sweep. Figure (b)
eliminates static multipath by subtracting the power of a previous sweep from the current sweep. Figure (c) illustrates the
user’s moving traces before and after outlier rejection and filtering.

identified, based on which the device can determine whether
to lock itself according to the same rules in 3.2.

There can be ambiguity if the user-device distance is not
much smaller than the attacker-device distance, especially
when there are more than two persons near the device who
may leave or stay with the device around the same time. For
example, multiple passengers (including/excluding the tar-
get user) may exit at the same bus stop. As a result, there
can be multiple movement traces corresponding to leaving
persons and also multiple ones for staying persons. Leav-
ing traces are easier to be distinguished from staying traces
because the latter correspond to relative stable and smaller
distances. But the leaving traces themselves may intersect,
so may the staying traces themselves. The limited resources
on COTS mobile devices make it impossible to accurately
identify the movement trace for each individual person. For-
tunately, our goal is to preserve data security in the case of
device thefts/losses, so it makes more sense to weigh false
positives over false negatives. Under the assumption that
the target user is initially closer to the device than other
persons nearby, we can take an aggressive approach as fol-
lows. We first construct a set of candidate leaving traces
from the distance measurements. For example, if two per-
sons leave the device with their leaving traces intersecting
each other, we can construct four candidate leaving traces.
Among the candidate traces satisfying the locking condi-
tion (i.e., starting below δ1 and exceeding δ2), we select the
one whose minimum distance measurement is the smallest,
denoted by dL. Similarly, we construct a set of candidate
staying traces, from which to select the one whose minimum
distance measurement is the smallest, denoted by dS. Let ω
denote the maximum possible distance measurement error.
As long as dL ≤ dS + 2ω, iLock associates the leaving trace
with the target user and immediately locks the device.

3.4 Defeating Type-III Attackers: When At-
tackers Are Closer than the User

Now we illustrate how iLock withstands a Type-III at-
tacker, the strongest one who is even closer to the device
than its legitimate user (e.g. two scenarios in Fig. 6). Such
attack scenarios are not unusual. For example, the user sits
very close to the attacker in a conference room and acciden-
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Figure 4: The scenario where the user leaves and attacker
stays. The user departs from about 0.2m from the device.
The attacker stays at 0.5m from the device with small move-
ments. In this case, the device should be locked.
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Figure 5: The scenario where the user stays and attacker
leaves. The attacker departs from about 0.5m from the de-
vice. The user stays at 0.3m from the device with small
movements. In this case, the device should not be locked.
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Figure 6: Two scenarios in which the attacker is closer to
the device than the target user. In the left scenario, the
attacker and target user are easier to be differentiated, be-
cause they are closer to Mic1 and Mic2, respectively. In the
right scenario, the attacker and target user are difficult to
be differentiated, because each of them have same distance
to both microphones.

tally puts the device closer to the attacker. The previous
defenses against Type-I and Type-II attackers thus fail.

The fact that more and more COTS mobile devices have
two or more microphones enables possible defenses against
Type-III attackers. For example, Fig. 6 shows dual micro-
phones on one smartphone, where Mic2 at the bottom is
mainly used for voice recording, and Mic1 at the top is de-
signed for noise cancellation. Such dual-microphone config-
urations are very typical on current smartphones. The left
sub-figure in Fig. 6 depicts a scenario where the user and
attacker are closer to Mic2 and Mic1, respectively. In this s-
cenario, the user’s significant departure from the device can
still be identified based on the distance measurements at
the two microphones, in which case the device can be im-
mediately locked. In contrast, the right sub-figure in Fig. 6
corresponds to a scenario in which the attacker and target
user have similar distance to both microphones. The system
will also lock the device immediately to ensure strong data
security when there is an ambiguity in the right scenario.

Relying on dual microphones, our solution applies to Type-
III attackers with arbitrary locations with regard to the mi-
crophones and the user. We additionally assume that the
relative orientation changes between the device and user be-
fore user movements can be automatically estimated with
high precision through existing techniques. For example, the
latest result we are aware of [30] can reach a precision of 5◦

based on IMU sensors. Since the initial relative orientation
when the user is using the device is known (i.e., either land-
scape or portrait mode), we can calculate the final relative
orientation when the user stop using the device. As a result,
we just need to compare the orientation of candidate leaving
user measured by two microphones with the orientation of
target user calculated by IMU sensors. We also notice that
the relative user-device orientation is approximately fixed,
as a normal user typically walks along a straight line with a
short distance from the device instead of in a zigzag fashion.

Our solution uses the distance measurements at Mic1 and
Mic2 in a cohesive way. Specifically, every moving phys-
ical object near the device can lead to a speaker-object-
microphone distance measurement at both Mic1 and Mic2
according to the FMCW technique. Let d1(t) and d2(t) de-
note the distance measurements of Mic1 and Mic2 at time
t, respectively. Note that COTS devices allow these two

Figure 7: Mic1 is at the top of the phone, and Mic2 is at
the bottom. The red center of the circle corresponds to the
center of the phone. The phone is rotated around the center
with an interval of 45◦ counterclockwise. We assume the
user’s leaving direction is fixed.

measurements to be perfectly aligned in time, i.e., with the
same sampling clock. Consecutive distance measurements
of the same object at the same microphone lead to a move-
ment trace, either staying or leaving. Since Mic1 and Mic2
are very close to each other on the device in contrast to the
user-device distance, they produce highly correlated move-
ment traces for the same object. Assume that iLock finds
two such correlated traces, so the next step is to determine
whether these leaving traces should be associated with the
user and triggers device lock if so. However, the distance
measurement isn’t accurate and stable enough to discover
the orientation of candidate leaving trace, so we introduce a
new metric as follows,

η(t) =

⎧⎨
⎩

−1 if d1(t)− d2(t) > δdual,
0 if |d1(t)− d2(t)| ≤ δdual,
1 if d2(t)− d1(t) > δdual,

where δdual is a system threshold and set to the theoret-
ical distance resolution of 4.25 cm. We proceed to com-
pute η̂ = 1

N

∑N
t=1 η(t), where N denotes the number of dis-

tance measurements. Obviously, η̂ always belongs to [−1, 1].
When η̂ is closer to 1 (-1), the object is closer to Mic1 (Mic2).
If η̂ is closer to 0, the object is about the same distance from
Mic1 and Mic2.

We conjecture that η̂ is closely tied to the device-object
orientation and confirm it by experiments on a Samsung
Galaxy S5. As shown in Fig.7, we fix the user’s moving
direction and evaluate η̂ in eight different orientations (45◦

separation) by rotating the phone around its fixed center.
20 experiments are done for each orientation, and the distri-
bution of η̂ is shown in Fig. 8. We can observe that the data
for symmetric orientations with regard to the vertical axis
(e.g., 225◦ vs. 135◦) overlap. So do the data for adjacent
orientations (e.g., 45◦ vs. 90◦). This observation is antici-
pated due to distance measurement errors and also because
η̂ relates to only relative distance measurements. But there
is a clear distinction between the data for orientations far
apart (e.g., 0◦ vs. 180◦ and 45◦ vs. 225◦).

The above observation can be explored as follows. First,
we obtain a more fine-grained η̂-orientation distribution than
that in Fig. 8, which can be device-specific. The obtainment
of this distribution is a one-time process and can be done
when the user installs and enrolls into iLock. Once two
correlated leaving traces are detected, iLock computes η̂ as

938



0 45 90 135 180 225 270 315
Orientation (Degree)

-1

-0.5

0

0.5

1

Figure 8: We calculate η̂ in eight different orientations as
illustrated in Fig. 7. The red line is the median, and the
bottom and top edges of the box indicate the 25 and 75
percentiles, respectively. The whiskers extend to the most
extreme data points not considered as outliers, and the out-
liers are plotted individually using the ’+’ symbol.

above, based on which to find the most probable orientation
η̂ corresponds to. If the likelihoods for multiple orientations
are sufficiently close, all of them are candidate orientations.
Recall that the initial user-device orientation can be pre-
cisely obtained beforehand, and the user normally works in
the same orientation within a short distance where iLock
targets. If any candidate orientation is within a predefined
threshold from the initial user-device orientation, the leaving
traces are determined to be associated with the legitimate
user, so iLock immediately locks the device.

4. IMPLEMENTATION AND EVALUATION
We implement iLock and obtain similar evaluation results

in several COTS Android devices such as Samsung Galaxy
S5 and Xiaomi Redmi 2. For lack of space, only the ex-
perimental data on Samsung Galaxy S5 are reported in this
paper. The Samsung Galaxy S5 phone has a Quad-core 2.5
GHz Krait 400 CPU, 2 GB RAM, and a 5.1-inch display.
There are also two microphones, Mic1 at the top and Mic2
at the bottom. The speaker-Mic1, speaker-Mic2, and Mic1-
Mic2 distances are 4.5 cm, 12.3 cm, and 14 cm, respectively.
By default, the FMCW frequencies range from f0 = 18 kHz
to f1 = 22 kHz; the sweep duration is Tsweep = 20 ms; and
the speaker volume is 71%. One experiment is done in the
university library, and all the others are done in a typical
12′×24′ research office with desks, cabinets, computers, and
six students. Unless specifically noticed, our experiment be-
low is done on a table of 72cm height in our office with
the orientation 0◦; and the user stands up, turns around,
and walks away with normal speed about 1.51 steps/second.
Below we report the performance of iLock against Type-I,
Type-II, and Type-III attackers, respectively.

4.1 Evaluation with Type-I Attackers
Recall that Type-I attackers are far away from the device

when the user moves away. iLock in this scenario just needs
to recognize the movement trace of the user alone and then
locks the device if the trace starts below the near-distance
threshold δ1 and exceeds the far-distance threshold δ2. The
experiments are conducted in a 12′×24′ office with six PhD
students. We set δ1 = 0.6 m (a typical arm’s reach) and

δ2 = 1 m beyond which a typical user does not put the de-
vice. In our experiments, a male user uses the phone for a
while and then leaves it unlocked on the table, in which case
iLock is automatically activated. Note that the triggering
events for iLock can be automatically detected by many ex-
isting methods, e.g., through detecting when the user stops
touching/holding the unlocked phone via inertial gyroscope
and accelerometer sensors.
False Negatives. We first evaluate the false-negative rate
of iLock through 400 experiments. In each experiment, the
user puts his phone in a random position and an arbitrary
orientation within δ1. The user leaves the device in his usual
way. As soon as the user-phone distance exceeds 1 m (i.e.,
δ2), iLock theoretically should lock the phone. The results
are quite encouraging. Specifically, the phone is successfully
locked 395 times, which lead to a locking rate (true-positive
rate) of 98.75% or a false-negative rate of 1.25%.
False Positives. We then evaluate the false-positive rate
of iLock. In this experiment, we put the unlocked phone ran-
domly on the desk just besides the user (within δ1). Instead
of leaving the desk and phone, the user performs regular mi-
nor movements such as typing, writing, drinking, rotating
his head/shoulder, and swinging back-and-forth. Zero false
device locking occurs in the entire 15 minutes, indicating an
extremely low false-positive rate in practice.
Impact of Phone Orientations. The next experiment is
to investigate the effect of phone orientations. We change
the phone’s relative orientation to the user by rotating it
according to Fig. 7. For each orientation, the user moves
away from the phone 50 times in his own way, for which
each movement starts from a random position within δ1 and
goes beyond δ2 from the phone.

Fig. 9 illustrates the maximum detection ranges of Mic1
and Mic2 for different phone orientations. When the phone
orientation is around 0◦ (180◦), Mic2 (Mic1) yields a larger
maximum detection range due to the closer distance between
the user and Mic2 (Mic1). On the Samsung Galaxy S5,
Mic2 is the master microphone, and Mic1 is designed for
noise cancellation. So we can see that the average maximum
detection range of Mic2 is larger than that of Mic1. Finally,
combing the distance measurements from Mic1 and Mic2,
iLock can always detect the user movement up to 1.4 m for
any orientation.

Fig. 10 plots the true-positive rates for each orientation
based on Mic1, Mic2, and their combination Mic1+Mic2.
As expected, the peak performance for using Mic1 alone and
Mic2 alone occur around 180◦ and 0◦ orientations, respec-
tively. In addition, Mic2 shows better performance overall
due to its higher capability as the master microphone. Fi-
nally, if we lock the phone as long as either one microphone
detects a leaving trace, the true-positive rate is always above
90% regardless of initial phone orientations.
Impact of Initial Phone Positions. We also evaluate
the impact of initial phone positions. In this experiment,
the initial phone-user distance changes from 10 cm to 20
cm, 30 cm, 40 cm, and 50 cm, and the phone orientation is
fixed to 0◦. Fig. 11 and Fig. 12 show the maximum detection
ranges and true-positive rates, respectively. We can see that
the true-positive rate with Mic2 alone or Mic2 and Mic1
together can yield very high true-positive rates up to 100%
for all distance settings. So initial phone positions have very
little impact on iLock.
Impact of Departing Gestures. The user may leave the
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Figure 9: Maximum detection range vs. orientations.
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Figure 10: True-positive rates vs. orientations.

device with different gestures. Intuitively speaking, the de-
parting gesture should not affect the detection performance,
as iLock only measures the user-device distance. We confirm
this intuition by experimenting three common gestures. In
the first gesture which is the default in our experiments, the
user stands up, turns around, and walks away. In the second
gesture, the user initially stands facing the phone and then
steps back to leave. In the final gesture, the user rotates
the chair, stands up, and then moves away. Each gesture
is performed 20 times, and the average maximum detection
ranges and true-positive rates are shown in Fig. 13. We can
see that Mic2 and Mic1+Mic2 produce very high and stable
true-positive rates for all three gestures.
Impact of Departing Speeds. To evaluate the impact of
moving speeds, we let the user perform the second gesture
above with slow, normal, and fast speeds, corresponding to
about 1.15, 1.51, and 2.0 steps/second, respectively. In this
experiment, the user leaves 20 times for each speed setting,
while the phone is initially 20 cm away at the 0◦ relative
orientation. As we can see from Fig. 14, the performance
of iLock becomes non-satisfactory when the user steps back
at 2.0 steps/second. The main reason is that the fast speed
reduces the time span for the same distance range, which
in turn reduces the number of distance measurements given
that the microphones have the constant sampling frequency.
Fortunately, a normal user does not step back as fast as
2.0 steps/second. So the true performance of iLock is more
reflected under the relatively slow and normal speeds.
Impact of Vertical Positions. The phone’s vertical posi-
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Figure 11: Maximum detection range vs. phone-user dis-
tance.
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Figure 12: True-positive rate vs. phone-user distance.

tion may be different in various scenarios. For example, we
tend to leave the phone on the desk around 70 cm high while
in an office, on a chair about 40 cm high while on a subway,
and the bar table about 100 cm high while in a bar. Fig. 15
shows the performance of iLock under different heights: 36
cm, 72 cm, 92 cm. For each height, the user moves away
with the second gesture above for 20 times. We can see that
different heights have very little impact on the true-positive
rates of iLock.
Impact of Speaker Volumes. iLock detects the leaving
movement by signal reflections, so the signal strength can
potentially affect its performance. We conduct the experi-
ment under three volume levels corresponding to three sig-
nal strengths: low (26%), medium (52%), and large (71%).
From Fig. 16, it is of no surprise to see that the performance
via Mic2 alone or Mic1+Mic2 are quite high for medium and
high volume settings.
Impact of Different Users. We also ask six PhD students
to use iLock. Each student leaves in his own way for 20 times
with the gesture and speed he likes. As shown in Fig. 17,
iLock achieves a true-positive rate of 85% for student 2, 95%
for student 5, and 100% for the rest. It is worth noting that
student 2 walks much faster than others in the experiments,
leading to the similar observation as in Fig. 14
Impact of Experimental Environments. We finally
evaluate iLock in the lobby of the university library. The
lobby is about 32,000 square feet and contains many tables,
sofas and public desktop computers. During our experiment,
there is a lot of noise from the vending machines, public
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Figure 13: Performance of three leaving gestures.

computers, and student talks. In addition, the students walk
around without our control, but we make sure that they
are at least 1 m from the phone. The user puts the phone
randomly on a table and leaves it 20 times with a normal
speed under gesture 2. We obtain a true-positive rate of
almost 100% by using Mic2 alone or Mic1+Mic2. So iLock
can work very well in noisy and uncontrolled environments.

4.2 Evaluation with Type-II Attackers
We also evaluate iLock against Type-II attackers who get

closer to but are still farther away from the device than
the legitimate user. With the presence of Type-II attack-
ers, iLock can detect multiple movement traces and needs
to decide which trace is associated with the user. For this
experiment, we use the Precision and Recall metrics defined
as follows,

Precision =
#TP

#TP+#FP
and Recall =

#TP

#TP+#FN
, (1)

where #TP is the number of user departures correctly as-
sociated with the user, #FP is the number of other users’
departures incorrectly associated with the user, and #FN

refers to the number of user departures not associated with
the user by mistake.

The experiment involves the user and one attacker, and
their distance difference to the device varies from 20 cm to
30 cm, 40 cm, 50 cm, and 60 cm. For each distance differ-
ence, the user leaves 20 times while the attacker stays, and
then the attacker leaves 20 times while the user stays. The
Precision and Recall results based on Mic1+Mic2 are shown
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Figure 14: True-positive rate vs. leaving speeds.
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Figure 15: True-positive rates vs. phone heights.

in Fig. 18. We can see that precision is always above 95%,
corresponding to very low false-alarm rates. In contrast, the
recall increases from 80% to 95% when the distance differ-
ence becomes larger, as larger distance difference makes it
easier to distinguish the user’s trace from the attacker’s.

4.3 Evaluation with Type-III Attackers
Now we report the performance of iLock against Type-III

attackers. This experiment involves the user and one attack-
er who is always closer to the phone than the user. As shown
in Fig. 20, we use five representative scenarios in which the
user and attacker are in different positions and orientation-
s relative to the phone. In each scenario, the user leaves
the device 20 times while the attacker stays, and then the
attacker leaves 20 times while the user stays. In addition,
the initial orientation of the device relative to the user can
be accurately estimated with existing techniques [30]. Once
two highly correlated leaving traces are detected, the metric
η̂ is computed according to the description in Section 3.4.
Then we find the most probable orientation for η̂ based on a
fine-grained η̂-orientation distribution, which we obtain be-
forehand for the Samsung Galaxy S5. Next, we compare
the discovered orientation with the device’s initial orienta-
tion relative to the user. Note that, in Fig. 8, η̂ distributions
of adjacent orientations overlap with each other, so we as-
sociate the traces discovered in nearby orientations to the
target user to improve true positive rate. For example, if
the device’s initial orientation relative to the user is 180◦,
the leaving traces discovered between [135◦, 225◦] will be as-
sociated to the target user and the system locks the device
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Figure 16: True-positive rates vs. different volumes.
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Figure 17: True-positive rates vs. different users.

immediately to ensure data security. Users can devise their
own mechanism to balance Precision and Recall.

As we can see in Fig. 20, the Precision and Recall results
are overall quite acceptable for all five scenarios. The worst
performance is observed when there is a small orientation d-
ifference between the user and attacker relative to the phone
(i.e., 0◦-270◦ and 180◦-270◦). This result is expected, as the
smaller orientation difference makes it harder to distinguish
the user’s movement from the attacker’s.

5. DISCUSSION

5.1 Energy Consumption
iLock incurs additional energy consumption on a mobile

device in two main aspects. First, iLock needs to transmit
high-frequency modulated acoustic signals and also record
the signals reflected by physical objects. It is shown [28]
that such acoustic transmitting and recording on Samsung
Galaxy S5 may incur an energy consumption of about 800mW
with Monsoon Power Monitor. Secondly, iLock consumes
energy in data processing such as filtering, FFT, and mix-
ing. In practice, iLock does not need to be activated all
the time. In particular, iLock can only be activated when
the device enters a vulnerable context. One such context is
when the user stops using the device while the screen is still
unlocked, and it is can be easily detected by exploring iner-
tial sensors such as touchscreen, gyroscope, and accelerom-
eter. Also note that many users spend most of the time in a

0.2 0.3 0.4 0.5 0.6
Distance Difference to the Phone (m)

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n/
R

ec
al

l

Precision
Recall

Figure 18: Precision and Recall with a Type-II attacker.

Figure 19: Representative scenarios with Type-III attack-
ers, where x-y corresponds to the user’s orientation x and
attacker’s orientation y in the shown orientation graph.

safe zone such as home and office. Sophisticated localization
techniques allow the device to accurately determine whether
it is in a predefined safe zone. iLock is only activated when
the device is out of the safe zone. So the energy consump-
tion of iLock is quite amenable in contrast to its potentially
huge benefits.

5.2 Other Potential Solutions
We also investigate and experiment other potential so-

lutions. The most intuitive alternative is to directly ana-
lyze the received signals which can be perturbed by leaving
movements. In the experiment, we indeed find some poten-
tial signal patterns for specific leaving gestures. So one may
think about training a classifier to detect a user’s leaving
gesture. However, different users have different gestures, so
every user who wants to use the system has to train a clas-
sifier, a time-consuming and clumsy process. In addition,
even the same user may leave the device in a different way
in different scenarios. As a result, it is almost impossible to
train a classifier that can differentiate all possible gestures
of the same user. So we give up this method.

Another candidate approach is to rely on the Doppler ef-
fect caused by user movements. In particular, the speaker
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Figure 20: Precision and Recall with a Type-III attacker.

transmits acoustic signals with a fixed high frequency f0,
and the microphone records the reflected signals with fre-
quency fr. It follows that fr = c−vr

c−vs
f0, where vs is the

speed of the reflection object (user), and c is the speed of
sound. Since the receiver is stationary, vr = 0. Then we
can do an integration over vs to get the distance the user
moves. The Doppler shift, however, is very sensitive and
can be induced by any body movement. Also, the frequency
shifts by different body movements at different distances to
the device are mixed together. As a result, we can hardly
extract the user’s movement pattern based on the Doppler
effect and give up this idea as well.

Finally, one may think about implementing iLock based
on WiFi or Bluetooth signals rather than acoustic signals.
There are two primary reasons for not doing so. First, WiFi
and Bluetooth interfaces are often very busy and occupied
for data communications, while the speaker and microphone
have much more idle time. Second, WiFi and Bluetooth sig-
nals propagate in the speed of light and have much higher re-
quirement for time/frequency measurement accuracy, which
is not attainable on COTS mobile devices. This is also the
reason why existing FMCW implementations on WiFi sig-
nals use complicated and customized hardware not available
on COTS mobile devices.

6. RELATED WORK
There are three ways to prevent the attackers’ illegal ac-

cess to mobile devices and the sensitive data therein. The
first one is one-time authentication that authenticates users
when they try to unlock and use the device. The second one
is to authenticate users continuously when they are using
the device. The third one is to lock the device immediately
once the current user has left. We will analyze advantages
and disadvantages of each method in what follows.

There are significant research and practice related to one-
time authentication. Typically, one-time authentication schemes
can be classified into three categories: Something-You-Know,
Someone-You-Are, and Something-You-Have. In the Something-
You-Know paradigm, users are asked to input a simple PIN,
an alphanumeric password, or a gesture/graphical password.
This method is vulnerable to shoulder-surfing attacks. The
Something-You-Have paradigm requires auxiliary hardware
(e.g. Signet Ring [29]) which is possessed only by the le-
gitimate user. We note that the non-COTS hardware is a
potential obstacle for the wide adoption of this paradigm. A
growing body of work follows the Someone-You-Are paradig-

m [3, 7, 27]. This approach relies on physiological or behav-
ioral biometrics which are unique to each person. Com-
mon physical features consist of fingerprints, facial features,
retina patterns, etc. Physiological authentication methods
may be vulnerable to spoofing attacks [3]. Behavioral bio-
metrics may include keystroke patterns [17, 19], touching
gestures [24, 25], gaits [10, 13], etc. As said, a significant
number of mobile users do not password-protect their de-
vices, not to mentioning adopting more advanced one-time
authentication techniques. In addition, the time window for
a password-protected device going from the unlocked mode
to the locked mode may be long enough for a capable attack-
er to access all the sensitive information on the lost/stolen
device. If an unlocked device is missing or stolen, the user’s
sensitive information is completely exposed.

Continuous authentication can complement one-time au-
thentication by continuously authenticating the current us-
er. In this way, after the attacker uses the device for a
while, the device can detect the unauthorized user and log
out. In [18], the user needs to wear a bracket with a built-in
accelerometer, a gyroscope, and a radio. When using a desk-
top computer(typing the keyboard and using the mouse),
the bracket records and sends the movement data to the
computer. The computer checks whether the input to the
computer matches the data from the bracket. A recent pa-
per [11] points out attacks on the technique in [18]. The
technique in [9] continuously authenticates users based on
behavioral biometrics with 30 features. The equal error rates
drop to 2%-3% with 11 to 12 strokes. Similar techniques
based on behavioral biometrics are also presented in [8, 26].
We note that continuous authentication can only detect the
attacker after he has used the device for a while. As a result,
the attacker still has a good chance to obtain the victim’s
sensitive data before being logged out. In addition, if the
attacker just watches content (e.g. photos and messages)
on the screen and does not use the device, he would not be
detected by continuous authentication methods at all.

Our method falls into the last category that the device
locks itself immediately when the user leaves. If our method
is combined with one-time and continuous authentication
mechanisms, the attacker can hardly get any opportunity
to access the user’s sensitive data even if he possesses the
missing mobile device. Our work is the first in this category
to the best of our knowledge.

iLock is also related to recent work on object tracking
and ranging. In particular, FMCW is used in WiTrack [6]
for RF-based indoor localization and achieves the position-
ing accuracy of centimeter. WiTrack 2.0 [5] uses more an-
tennas to support multi-user localization based on FMCW.
Their methods are based on WiFi signals and customized
transceivers that are not available on COTS mobile devices.
In addition, the techniques in [21,22] use FMCW with audio
signals to track the chest motion and finger movement, re-
spectively. Finally, the work in [15, 20, 23] work on acoustic
ranging between devices. iLock differs from these work in
the research problem and also system implementation.

7. CONCLUSION
In this paper, we presented the design and evaluation of

iLock, a secure and usable defense against data theft on
a lost/stolen mobile device. iLock automatically, quickly,
and accurately detects the user’s physical separation from
his/her device. Once significant physical separation is de-
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tected, iLock immediately locks the device to thwart data
theft. Relying on acoustic signals, iLock can be deployed
on most COTS mobile devices with standard built-in micro-
phones and speakers. Extensive experiments on Samsung
Galaxy S5 confirmed the high efficacy of iLock with negligi-
ble false positives and negatives.
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