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Abstract—Data outsourcing is a promising technical paradigm to facilitate cost-effective real-time data storage, processing, and
dissemination. In data outsourcing, a data owner proactively pushes a stream of data records to a third-party cloud server for storage,
which in turn processes various types of queries from end users on the data owner’s behalf. However, the popular outsourced
multi-version key-value stores pose a critical security challenge that a third-party cloud server cannot be fully trusted to return both
authentic and fresh data in response to end users’ queries. Although several recent attempts have been made on authenticating data
freshness in outsourced key-value stores, they either incur excessively high communication cost or can only offer very limited real-time
guarantee. To fill this gap, this paper introduces KV-Fresh, a novel freshness authentication scheme for outsourced key-value stores
that offers strong real-time guarantee for both point query and range query. KV-Fresh is designed based on a novel data structure,
Linked Key Span Merkle Hash Tree, which enables highly efficient freshness proof by embedding chaining relationship among records
generated at different time. Extensive simulation studies using a synthetic dataset generated from real data confirm the efficacy and
efficiency of KV-Fresh.
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1 INTRODUCTION

DATA outsourcing is a promising technical paradigm to
facilitate cost-effective real-time data storage, process-

ing, and dissemination of real-time data stream. In such a
system, a data owner proactively pushes one or multiple
high-volume data streams generated by distributed data
sources to a third-party cloud server for storage and backup,
which in turn processes various types of queries from many
end users on the data owner’s behalf. Doing so can relieve
the data owner from cumbersome management work and
result in significant saving in operation cost. Data out-
sourcing can also provide a more efficient query processing
service for end users because of the higher availability and
elasticity offered by cloud service providers.

This paper considers a data outsourcing system with a
multi-version key-value store [1], [2] to store, analyze and
access the large volume of unstructured data streams. A key-
value store is a non-SQL database storing a collection of
data records, each of which is a key-value pair that can be
efficiently retrieved using the key. In a multi-version key-
value store, the data value of a record has multiple versions,
each of which is an updated value received at a different
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time. Key-value stores outperform traditional relationship
database with higher scalability, simpler designs, and higher
availability. Key-value stores and other non-SQL databases
have gained increasing popularity in recent years, such as
MongoDB, Amazon DynamoDB, Azure Cosmos DB, and so
on. The market of non-SQL database is expected to reach 4.2
billion by 2020 [3].

Despite offering many advantages, data outsourcing al-
so poses critical security challenges in that cloud service
providers cannot be fully trusted to faithfully provide query
results to end users based on authentic and up-to-date data
for various reasons. First, a compromised cloud server may
return forged data in response to end users’ queries to
mislead users into making incorrect decisions. For example,
a cloud service provider may intentionally delete data or
return forged data in favor of the businesses with financial
interests [4]. Second, a cloud service provider may provide
authentic but stale data, which is more subtle and diffi-
cult to detect. For example, a cloud service provider may
purposefully drop some data for saving storage cost. Such
misbehavior is particularly economically appealing if the
data is of large volume and subjected to frequent update.
In comparison to the first attack, this attack can also lead to
bad decisions by end users but is more subtle and difficult
to detect. These situations call for sound authentication
techniques to ensure both authenticity and freshness of any
query result returned by the cloud service provider.

Despite many efforts on authenticating outsourced
query processing [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], authenticating data freshness poses unique challenges
and has thus far received very limited attention. Common
to existing solutions [16], [17], [18], [19], [20] is to divide
the time into intervals and let the data owner generate a
cryptographic proof for every key with no update in every

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 24,2022 at 02:31:25 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3172380, IEEE
Transactions on Dependable and Secure Computing

2

interval. On receiving a point query, the cloud server is
required to return the most recent value for the queried key
along with a freshness proof. While such approaches allow
end users to verify the freshness of query results, the size
of freshness proof is linear to the number of the intervals
after the most recent update and thus inversely proportional
to the length of the interval. As a result, existing solutions
[16], [17], [18], [19], [20] either suffer from excessively high
communication cost or can only support limited real-time
guarantee. For example, the state-of-art solution [20] can
only support interval size in minutes. Moreover, none of
the existing solutions [16], [17], [18], [19], [20] can sup-
port efficient range queries. While a range query can be
implemented by multiple point queries, doing so would
incur a communication cost proportional to the number of
keys in the queried range. There is thus a pressing need to
develop efficient mechanisms for freshness authentication
with strong real-time guarantee while supporting both point
and range queries.

In this paper, we tackle this open challenge by introduc-
ing KV-Fresh, a novel freshness authentication mechanism
for outsourced multi-version key-value store supporting
both point query and range query. We observe that the key
to simultaneously achieve strong real-time guarantee and
communication efficiency is to break the linear dependence
between the size of freshness proof and the number of
intervals after the latest update. Based on this observation,
we introduce a novel data structure that embeds chaining
relationship among updates in different intervals to real-
ize efficient freshness proof. Built upon this novel data
structure, KV-Fresh allows the cloud server to prove the
freshness of query results by returning information for only
a small number of intervals while skipping potentially many
intervals in between. Our contributions in this paper can be
summarized as follows.

• We identify a key limitation of existing solutions on
freshness authentication that they either suffer from
excessively high communication cost or can only
support limited real-time guarantee.

• We propose a novel data structure that allows highly
efficient proof of no update over a large of number
of intervals.

• We introduce KV-Fresh, a novel freshness authenti-
cation mechanism for outsourced multi-version key-
value stores that provides stronger real-time guar-
antee with low communication cost for both point
query and range query.

• We confirm the high efficiency of KV-Fresh via ex-
tensive simulation studies using a synthetic dataset
generated from a real dataset. In particular, our
simulation results show that KV-Fresh reduces the
communication cost by up to 99.6% for proving
data freshness and achieves up to nine times higher
throughput in comparison with the state-of-art solu-
tion INCBM-TREE [20].

The rest of the paper is structured as follows. Section 2
discusses the related work. Section 3 presents the system
and adversary models and design goals. Section 4 intro-
duces a novel data structure, LKS-MHT and proposes an ef-
ficient freshness authentication mechanism, KV-Fresh built

upon LKS-MHT. We evaluate the performance of KV-Fresh
in Section 5 and finally conclude this paper in Section 6. .

2 RELATED WORK

Our work is mostly related to authenticating data fresh-
ness and existing solutions can be generally classified into
two categories. The first category relies on the data owner
to construct and maintain a proper data digest such as a
Merkle Hash tree or its variants at the cloud server. In each
interval, the data owner sends an updated data digest to the
cloud server by recomputing the root of the Merkle hash
tree and sign its root, which would require the data owner
either maintain a full copy of the local data [16], [18], [21]
or download records [17], [22]. The second category [23],
[24], [25] detects the cloud server’s misbehavior through
offline audit, which cannot guarantee data freshness in real-
time. To authenticate data freshness in real time, Yang et al.
introduced a design based on trusted computing hardware
[19]. In [20], Tang et al. introduced INCBM-TREE, a data
structure based on the Bloom filter and multi-level key-
ordered Merkle hash tree. INCBM-TREE can only sup-
port relaxed real-time freshness check at the granularity of
minute-based intervals, as the size of the freshness proof is
inversely proportional to the interval length. Our work is
mostly related to [20] and enables freshness verification at
much smaller time granularity.

Our work is also related to authenticating outsourced
query processing, where a data owner outsources its dataset
to a third party service provider which in turns answers
data queries from end users on the data owner’s behalf.
Significant efforts have been devoted to ensuring query
integrity and completeness, i.e., the query result contains
all the intact data records satisfying a query. Various types
of queries have been studied, including relational queries
[5], [6], [7], [26], [27], [28], [29], range queries [8], [9], [30],
top-k queries [13], [14], [15], [31], [32], skyline queries [10],
[11], [12], [33], kNN queries [34], [35], [36], shortest-path
queries [37], etc. None of these works consider the freshness
of returned data records, and they are thus inapplicable to
the problem addressed in this paper.

Our work is also loosely related to the lines of research
on verifiable database (VDB) and secure storage outsourc-
ing. VDB seeks to provide a resource-limited data owner
the capability of storing a large database on a cloud server,
retrieving and updating any data record in a verifiable way.
Benabbas et al. [38] presented the first VDB scheme based on
verifiable delegation of polynomials, which cannot support
public verification, i.e., only the data owner can verify the
proof returned by the cloud server. More recently, vector
commitment and its variants [39], [40], [41], [42], [43] were
proposed to support efficient public verification. In secure
storage outsourcing, a data owner outsources the storage
a large database on an untrusted cloud server and can
verify that the server possesses the original data without
any tampering. For example, Ateniese et al. [44] presented
a Provable Data Possession (PDP) scheme to prove the in-
tegrity and ownership of clients’ data without downloading
data. As another example, Erway et al. [45] extended the
PDP model and proposed dynamic PDP to support provable
updates of stored data. Moreover, Zhu et al. [46] introduced
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a cooperative PDP scheme to support verifiable cooperative
storage over multiple cloud servers. None of these schemes
can be directly applied to freshness authentication as any
user other than the data owner can detect whether cloud
server returns authentic but stale data records.

3 PROBLEM FORMULATION

In this section, we introduce our system and adversary
models and design goals.

3.1 System Model
We consider a data outsourcing system consisting of

three parties: a data owner, a third-party cloud server, and
many end users. The data owner outsources a multi-version
key-value store to the cloud server, which in turn answers
data queries from end users on the data owner’s behalf.

The data owner maintains the key-value store at the
cloud server by proactively pushing data updates to the
cloud server as they become available. We assume that the
keys can be ordered and denote by K = {1, . . . , |K|} the
key space. The key-value store consists of a collection of
data records, each of which contains a unique key k ∈ K
and a data value that can have multiple versions received
over different time. Each version corresponds to an update
in the form of (k, v, t), where k is the key, v is the update
value, and t is the timestamp indicating the time at which
the update is issued.

Users access data records in the key-value store through
the cloud server’s GET API that supports both point query
and range query. Specifically, a point query is represented
as Q(k, tq), where k is the queried key and tq is an optional
parameter indicating the point of time up to which the
data record is requested. On receiving query Q(k, tq), the
cloud server needs to return the most recent data record
for key k as of tq . Moreover, a range query is modeled by
Q([l, r], tq), where 1 ≤ l < r ≤ |K| and [l, r] denotes the
range of keys being queried. On receiving query Q([l, r], tq),
the cloud server needs to return the most recent data records
for every key k ∈ [l, r] as of tq . It is easy to see that point
query is a special case of range query where l = r. For both
point queries and range queries, the absence of the optional
parameter tq indicates that the user is asking for the most
recent data record for a specific key or the most up-to-date
records for a set of keys belonging to the key range as of
now.

3.2 Adversary Model
We assume that the data owner is trusted to faithfully

perform all system operations. In contrast, the cloud server
cannot be fully trusted and may launch the following two
attacks. First, the cloud server may return forged or tam-
pered data records that do not belong to the data owner’s
dataset. Second, the cloud server may return authentic but
stale data records in response to the user’s point or range
query.

We assume that the communication channels between
the data owner and the cloud server as well as between
the cloud server and users are secured using standard
techniques, e.g., TLS [47]. In addition, we also assume that
the data owner cannot predict the keys that the user will
query in advance.

3.3 Design Goals

Strict freshness verification—also referred to as real-time
freshness check in [20]—requires the cloud server to not
only push authenticated data updates to the cloud sever
as soon as there are available but also constantly inform the
cloud server even if there is no update, which would result
in prohibitive processing and communication cost. As in the
state-of-art solution in [20], we seek to achieve relaxed real-
time freshness verification. Specifically, we assume that time
is divided into intervals of equal length, which means that
the data owner pushes authenticated data updates to the
cloud server on the interval basis. To ease the presentation,
we assume that in every interval, every data object k ∈ K
has either no or just one new updated value. Note that
our proposed mechanism can be easily adopted to support
multiple updated values in one interval.

In view of the aforementioned two attacks, we aim to
design a freshness authentication mechanism to allow a user
to verify whether the query result returned by the cloud
server satisfies the following two conditions.

• Query-result integrity: for each queried key k, the
returned data value v is indeed an updated value
from the data owner and has not been tampered
with.

• Query-result freshness: for each queried key k, there is
no update in any interval that starts after t and ends
before or exactly at tq .

In other words, we aim to achieve relaxed real-time fresh-
ness verification because it cannot guarantee no update for
key k in the interval that encloses tq . The smaller the interval
size, the stronger the real-time guarantee, and vice versa. We
aim to support strong real-time guarantee with millisecond-
based interval and low communication and computation
costs. In particular, the mechanism should incur low update
cost between the data owner and the cloud server as well as
low communication and computation cost for proving data
freshness.

4 KV-FRESH

In this section, we first introduce two strawman ap-
proaches for freshness authentication followed by an
overview of KV-Fresh. We then introduce a novel data struc-
ture that underpins KV-Fresh and its construction. Finally,
we detail the design of KV-Fresh.

4.1 Two Strawman Approaches

We first introduce two strawman approaches to enable
query-result integrity and freshness verification.

Strawman Approach 1. The first approach adopts a sim-
ilar idea [16], [18], [21], which lets the data owner maintain
the most recent update for every key and build a Merkle
hash tree over all data records in every interval, some of
which are updated in the current interval and the rest are
copied from the previous interval. The data owner pushes
the Merkle hash tree to the cloud server. With the Merkle
hash tree constructed for every interval, the cloud server
can prove the integrity and freshness of the query result.
This approach incurs low communication cost for proving
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Proof size
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Fig. 1. Comparison of Strawman Approach 1, Strawman Approach 2 and
KV-Fresh

data freshness but excessively high update cost between
the data owner and cloud server, as the data owner has
to transmit information for every key even if many have no
update in the short interval. In particular, the update cost
between the data owner and the cloud server is linear to the
size of the key space. Strawman Approach 2. The second
approach is to let the cloud server construct a Key-Ordered
Merkle Hash Tree (KOMT) for every interval over only keys
with update, where the absence of a key implicitly indicates
that the most recent update for this key happened in one of
the previous intervals. Given a batch of key-value records,
the data owner sorts the records according to their keys
and builds a Merkle hash tree over the sorted list. Doing
so can minimize the communication cost between the data
owner and the cloud server due to fewer leaf nodes in each
KOMT. However, it still incurs high communication cost for
proving data freshness if each key is updated infrequently,
as the cloud server needs to prove that there is no update in
possibly many intervals after the most recent update. More
importantly, the number of intervals after the most recent
update is inversely proportional to the size of interval,
which means that strong real-time guarantee, i.e., small
interval size, would incur significant communication cost
for proving data freshness. INCBM-TREE [20] can be viewed
as a variant of Strawman Approach 2.

4.2 Overview Of KV-Fresh

KV-Fresh is designed to strike a good balance between
the update cost between data owner and cloud service
provider and the size of freshness proof by taking the
advantages of both strawman approaches. In particular,
Strawman Approach 1 achieves small freshness proof size
by copying the most recent value of every key to the Merkle
hash tree constructed in each interval. Doing so allows
the cloud server to prove data freshness using only the
Merkle hash tree constructed for the current interval. On
the other hand, Strawman Approach 2 achieves low update
cost between the data owner and the cloud server by greatly
reducing the number of leaf nodes of the Merkle hash tree
constructed for every interval. KV-Fresh realizes efficient
freshness authentication with strong real-time guarantee
by simultaneously maintaining a small Merkle hash tree
size while realizing efficient proof of no update in possibly
many intervals after the most recent update. Fig. 1 shows a
comparison of KV-Fresh and the two strawman approaches
in terms of the proof size and update cost.

hi,1−4

hi,1−2 hi,3−4

hi,1 hi,2 hi,3 hi,4

〈1, vi1, ti1〉 〈[2, 4], 3〉 〈[5, 7], 2〉 〈8, vi8, ti8〉

Fig. 2. An example of LKS-MHT.

KV-Fresh is built upon Linked Key Span Merkle Hash Tree
(LKS-MHT), a novel data structure to achieve small Merkle
hash tree size in every interval while allowing efficient
proof of no update in possibly many intervals. The key idea
behind the LKS-MHT is to bundle adjacent keys with no
update in one interval as a key block to limit the number
of leaf nodes and reduce the update cost between data
owner and cloud server in comparison with Strawman
Approach 1. To enable efficient proof of no update over
multiple intervals, each key block embeds the index of an
earlier interval if none of the key in the block has received
any update after the earlier interval, which allows the cloud
server to skip potentially many intervals in between in the
freshness proof. LKS-MHT can effectively break the linear
dependence between the freshness proof size and the num-
ber of intervals with no update and thus significantly reduce
the size of freshness proof in comparison with Strawman
Approach 2.

Under KV-Fresh, the data owner constructs one LKS-
MHT in every interval, which contains information for
every key in the key space, either an updated value received
in the current interval or an index of an earlier interval,
for which the LKS-MHT contains the most recent update
or the index of another earlier interval. The data owner
signs the LKS-MHT and pushes the LKS-MHT along with
its signature to the cloud server. On receiving a query
from the end user, the cloud server returns a list of LKS-
MHT leaf nodes containing the queried key. The chaining
relationship embedded in the returned leaf nodes allows the
user the verify both the integrity and freshness of the query
result. In what follows, we first introduce LKS-MHT and its
construction and then detail the operations of KV-Fresh.

4.3 LKS-MHT:Linked Key Span Merkle Hash Tree
We now introduce LKS-MHT, the data structure that

underpins KV-Fresh. An LKS-MHT Ti is a binary tree con-
structed for each interval i with θi leaf nodes Li,1, . . . , Li,θi .
Every leaf node Li,j , 1 ≤ j ≤ θi, consists of the following
fields.

(1) A key block Ki,j = [li,j , ri,j ] with li,j , ri,j ∈ K and
li,j ≤ ri,j . If li,j = ri,j , then Ki,j represents a single
key li,j .

(2.a) An interval index γi,j ∈ {0, . . . , i− 1} that indicates
that there is no update for any key in Ki,j from
interval γi,j + 1 to i. In other words, the information
about the most recent update for each key in Ki,j can
be found in interval γi,j or earlier.
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Fig. 3. Illustration of LKS-MHT-based freshness authentication

(2.b) Or an updated key value vik along with timestamp tik,
if Ki,j represents a single key k (i.e., k = li,j = ri,j)
which receives an update in interval i.

Given Li,1, . . . , Li,θi , the LKS-MHT is constructed similar
to the traditional Merkle hash tree. In particular, we first
calculate hi,j = H(Li,j) for all 1 ≤ j ≤ θi, where H(·)
denotes a cryptographic hash function such as SHA-256.
We then computes every internal node as the hash of the
concatenation of its two children. Note that if the number of
leaf nodes is not a perfect power of two, some dummy leaf
nodes need be introduced.

Fig. 2 shows an example of the LKS-MHT constructed
for an interval i with the key space K = {1, . . . , 8}. The first
leaf node corresponds to key Ki,1 = 1 with the updated
value vi1 and timestamp ti1 received in interval i; the second
leaf node corresponds to a key block Ki,2 = [2, 4] and an
interval index 3, meaning that the most recent information
for keys in [2, 4] can be found in interval 3 or earlier; the
third leaf node corresponds a key block Ki,3 = [5, 7] and an
interval index 2, meaning that the most recent information
about any key in [5, 7] can be found in interval 2 or earlier;
and the last leaf node corresponds to key Ki,1 = 8 with
updated value vi8 and timestamp ti8.

To see how LKS-MHT can be used to realize efficient
freshness authentication, consider Fig. 3 as an example,
where eight LKS-MHTs T1, . . . , T8 are constructed for in-
tervals 1 to 8 over key space K = {1, 2, 3, 4}. Assume that
the user issues a GET query as Q(2, tq), where tq is the end
of interval 8. Since the most recent update for key 2 is v3

2

received in interval 3, the cloud server needs to prove that
there has been no update in intervals 4 to 8. To do so, the
cloud server only needs to return the first leaf node in LKS-
MHT T8, which is a key block [1, 2] and embeds an interval
index 6, and the second leaf node in LKS-MHT T6, which is
a key block [2, 3] and embeds an interval index 3, and the
second leaf node in LKS-MHT T3, which is a single key 2
with updated value v3

2 . As we can see, there is no need for
the cloud server to return any information about intervals 4,
5, and 7.

In the next two subsections, we introduce how to con-
struct the LKS-MHT for the first interval and the subsequent
intervals, respectively.

4.4 LKS-MHT Construction in the First Interval

We first show how to construct LKS-MHT Ti for the
first interval i (i = 1). Denote by K1 ⊆ K the subset of
keys that receive updates in the first interval. Without loss
of generality, suppose K1 = {k1,1, k1,2, . . . , k1,λ1}, where
λ1 = |K1| and k1,1 < k1,2 < · · · < k1,λ1 . We can see that
the λ1 keys, K1 = {k1,1, k1,2, . . . , k1,λ1}, split the whole key
spaceK = {1, . . . ,K} into λ1+1 key blocks without update,
B1 = [1, k1,1 − 1], B2 = [k1,1 + 1, k1,2 − 1], . . . , Bλ1+1 =
[k1,λ1 + 1,K]. For simplicity, we assume that none of these
key blocks are empty, from which we can form θi = 2λ1 + 1
key blocks {K1,j}θij=1, where

K1,j =

{
B(j+1)/2, if j is odd,
k1,j/2, if j is even,

for all 1 ≤ j ≤ θi. We then create one leaf node L1,j for each
key block K1,j , where

L1,j =

{
〈B(j+1)/2, 0〉, if j is odd,
〈k1,j/2, v

1
kj/2

, t1kj/2〉, if j is even.

4.5 LKS-MHT Construction in Subsequent Intervals

We now discuss how to construct LKS-MHT Ti for the
subsequent interval i (i ≥ 2), for which the key question
is to determine the set of key blocks with corresponding
interval index. Let Ki = {ki,1, ki,2, . . . , ki,λi

} be the subset
of keys that have received updates in the subsequent in-
terval i, where λi = |Ki| and ki,1 < ki,2 < · · · < ki,λi

.
For every subsequent interval i, the leaf nodes of Ti are
determined jointly by the leaf nodes of Ti−1 and Ki in two
steps: (1) constructing a set of candidate leaf nodes and (2)
determining the leaf nodes.

Candidate leaf nodes. First, we can obtain a set of
candidate leaf nodes based on Li−1,1, . . . , Li−1,θi−1

, and
Ki. Consider as an example a leaf node Li−1,j with key
block Ki−1,j = [li−1,j , ri−1,j ] and interval index γi−1,j < i.
Assume that |Ki−1,j | ≥ 2. If no key in Ki−1,j receives any
update in interval i, we create one candidate leaf node the
same as Li−1,j . Otherwise, we split Ki−1,j into multiple
non-overlapping key blocks and create one candidate leaf
node from each of them. Each candidate leaf node either
contains a key with update in interval i or a key block with
no update that inherits the interval index γi−1,j from Li−1,j .
For example, if a single key k ∈ Ki−1,j is updated in interval
i and li−1,j < k < ri−1,j , we can split Ki−1,j into three
smaller candidate blocks and create three candidate leaf
nodes: the first one with key block [li−1,j , k−1] and the same
interval index γi−1,j , the second one with a single key k and
updated value vik and timestamp tik, and the third one with
key block [k + 1, ri−1,j ] and the same interval index γi−1,j .
We summarize the general procedure for constructing a list
of candidate leaf nodes in Appendix A of the supplement
file.

Leaf nodes. We now determine the leaf nodes for Ti
from the candidate leaf nodes, for which the key is to merge
some adjacent candidate leaf nodes into one to maintain a
small number of leaf nodes. Without merging, the number
of leaf nodes would increase monotonically at every interval
and eventually reach |K|, resulting in excessive update
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Fig. 4. An example of LKS-MHTs constructed under maximum merging.

cost between the data owner and the cloud server as in
Strawman Approach 1.

Under what condition can adjacent candidate leaf nodes be
merged? We observe that multiple adjacent candidate leaf
nodes can be merged into one if none of the keys in the cor-
responding key blocks is updated in interval i. Specifically,
for a group of adjacent candidate leaf nodes Ci,j , . . . , Ci,j+s
for some s ≥ 1, if none of the keys in their respective key
blocks

⋃j+s
x=j Ki,x have received any update in interval i,

then we can merge key blocks Ki,j , . . . ,Ki,s into one and
create a new leaf node as 〈

⋃j+s
x=j Ki,x, i−1〉, which indicates

that the most recent information about any key in
⋃j+s
x=j Ki,x

can be found in Ti−1.
Which adjacent candidate leaf nodes should be merged? A

plausible answer is to merge every group of consecutive
candidate leaf nodes into one to minimize the number of
leaf nodes and thus the update cost between the data owner
and the cloud server. However, doing so would increase the
size of freshness proof, as the cloud server needs to return
information for more intervals. Fig. 4 shows an example of
blindly merging all possible leaf nodes for 8 LKS-MHTs.
Assume that the end user issues a GET query as Q(2, tq),
where tq is at the end of interval 8. The cloud server needs
to return the first leaf node of T8, which is a key block [1, 3]
and embeds an interval index 7, and the first leaf node in
LKS-MHT T7, which is a key block [1, 2] and embeds an
interval index 6, the second leaf node of T6, which is a key
block [2, 4] and embeds an interval index 5, the first leaf
node in LKS-MHT T5, which is a key block [1, 3] and embeds
an interval index 3, and the second leaf node of T2 which
is a single key 2 with the updated value v3

2 . In comparison
with the previous example shown in Fig. 3, the cloud server
needs to return two more leaf nodes.

We first observe that some merging decisions can be
made based on whether related keys have updates in the
two intervals. Let Ci = 〈Ci,1, . . . , Ci,φi

〉 be the list of
candidate leaf nodes output by Algorithm 1, where φi is the
number of candidate leaf nodes. We define bj as the decision
variable such that bj = 1 if Ci,j and Ci,j+1 are merged into
one and 0 otherwise for all 1 ≤ j ≤ φi − 1. We find that bj
can be predetermined in the following two cases.

• Case 1: If either Ci,j or Ci,j+1 corresponds to a single
key that has received an update in interval i, then
bj = 0, as the corresponding leaf node needs to

record the update value and thus cannot be merged
with the other.

• Case 2: If neither Ci,j nor Ci,j+1 each correspond to
a single key that has received an update in interval
i − 1, i.e., |Ki,j | = |Ki,j+1| = 1 and γi,j = γi,j+1 =
i − 1, then we should merge them into one, i.e.,
bj = 1. Doing so can reduce the number of leaf nodes
without increasing freshness proof size, because the
cloud server needs to return the leaf node for at least
one interval after the most recent update in interval
i− 1.

Based on the above observations, we define three index sets
as Φ = {1, . . . , φi− 1},Φ0 = {j|j ∈ Φ,Ki,j ∈ Ki ∨Ki,j+1 ∈
Ki} and Φ1 = {j|j ∈ Φ, |Ki,j | = |Ki,j+1| = 1, γi,j =
γi,j+1 = i − 1}, where Φ0 and Φ1 correspond to the first
and second cases, respectively. In other words, bj = 0 for all
j ∈ Φ0 and bj = 1 for all j ∈ Φ1. We further note that if
we set bj = 1 for all j ∈ Φ \Φ0, i.e., merging every possible
pair of candidate leaf nodes, then it would take |Φ| − |Φ0|
merging operations and the number of remaining leaf nodes
is given by

φi − (|Φ| − |Φ0|) = φi − (φi − 1− |Φ0|)
= |Φ0|+ 1 .

Therefore, the minimum number of leaf nodes that Ti can
have is |Φ0|+ 1.

We make the remaining merging decisions through an
optimization approach. In what follows, we introduce two
optimization problem formulations with different objective
functions and present their solutions.

4.5.1 Formulation 1: Expected Freshness Proof Size Mini-
mization

Our first formulation aims to minimize the expected size
of freshness proof under the constraint of the maximum
number of leaf nodes. We observe that the size of freshness
proof is linear to the number of intervals for which the
cloud server needs to return a leaf node in response to
a point query. Let hk,i and hk,i−1 denote the numbers of
leaf nodes the cloud server needs to return in response to
queries Q = (k, i) and Q = (k, i − 1), respectively, for all
k ∈ K. Also let pk be the probability of each key k being
queried, where

∑
k∈K pk = 1. If every key is equally likely

being queried, we then have pk = 1/K for all k ∈ K. Let
4hk = hk,i − hk,i−1 for all k ∈ K. The expected number of
leaf nodes that the cloud server needs to return for freshness
proof is given by

E(hi) =
∑
k∈K

pkhk,i

=
∑
k∈K

pkhk,i−1 +
∑
k∈K

pk4hk ,
(1)

where E(·) denotes expectation. Since merging deci-
sions in interval i have no impact on the first term∑
k∈K pkhk,i−1, minimizing E(hi) is equivalent to minimiz-

ing
∑
k∈K pk4hk.

Next, we analyze the relationship between decision vari-
ables b1, . . . , bφi−1 and

∑
k∈K pk4hk. First, we observe that

4hk = 1 if key k belongs to a candidate leaf node being
merged with another adjacent one and 0 otherwise. Let
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Φ′ = Φ \ (Φ0

⋃
Φ1) and {bj |j ∈ Φ′} be the remaining

decision variables that need be determined. Further denote
by Φ′1 = {bj = 1|j ∈ Φ′} and Φ′0 = {bj = 0|j ∈ Φ′}
the subsets of decision variables set to one and zero, re-
spectively. Given Φ′1 and Φ1, a candidate leaf node Ci,j is
merged with another one if either j − 1 or j ∈ Φ′1

⋃
Φ1. Let

Π = {j|j − 1 ∈ Φ′1
⋃

Φ1 ∨ j ∈ Φ′1
⋃

Φ1 ∧ j ∈ Φ}. We have∑
k∈K

pk4hk =
∑
j∈Π

∑
k∈Ki,j

pk,

where Ki,j is the key block of Ci,j .
Let f(Φ′1) =

∑
j∈Π

∑
k∈Ki,j

pk. We formulate the merg-
ing decisions as the following programming problem.

minimize f(Φ′1)

subject to Φ′1 ⊆ Φ′,

φi − |Φ1

⋃
Φ′1| ≤ max(τ, |Φ0|+ 1),

bj = 0,∀j ∈ Φ0

⋃
Φ′0,

bj = 1,∀j ∈ Φ1

⋃
Φ′1,

(2)

where φi − |Φ1

⋃
Φ′1| is the number of leaf nodes after

|Φ1

⋃
Φ′1| merging operations, and τ is a system parameter

that limits the number of leaf nodes for every LKS-MHT and
usually set to be the larger the expected number of updates
in each interval. Also note that parameter τ serves as an
upper bound for the number of LKS-MHT leaf nodes in
every interval as the average number of keys with update
in each interval is inversely proportional to the size of the
interval.

We now introduce an efficient greedy algorithm to
solve the above optimization problem with guaranteed ap-
proximation ratio. We can see that the objective function
f : 2Φ′ → R is a set function, and the following theorem
characterizes its properties.

Theorem 1. The objective function f(·) in Eq. (2) is non-
negative, submodular, and monotone.

We give the proof in Appendix B of the supplement file.
A well known result is that for any objective function

that is non-negative, submodular, and monotone, a greedy
algorithm that iteratively selects the local optimal element
at every step can output a solution with guaranteed approx-
imation ratio of 1− 1/e, and no polynomial-time algorithm
can achieve a better guarantee unless P = NP [48].

We now detail the greedy algorithm for the merging
decision in Algorithm 1. We first initialize the number of
leaf nodes θi to φi − |Φ1|, i.e., φi candidate nodes after
|Φ1| merging operations (Line 1). We then initialize Φ′1 to
empty set and the set of remaining decision variables Φ′

to Φ \ (Φ0

⋃
Φ1). We then iteratively make the remaining

merging decisions (Lines 4 to 9). In each iteration, we find
j∗ ∈ Φ′ with the smallest f(Φ′

{
j∗}) and move j∗ from Φ′ to

Φ′1. This process continuous until the number of leaf nodes
θi reaches max(τ, |Φ0|+1). Finally, Φ′1 and Φ′0 = Φ′ \Φ′1 are
output for constructing the leaf nodes for LKS-MHT Ti.

4.5.2 Formulation 2: Minimizing Maximal Size of Freshness
Proof

Our second formulation seeks to minimize the maximal
freshness proof size among all keys, i.e., maxk∈K{hk,i},

Algorithm 1: Minimizing Expected Proof Size
input : Candidate leaf nodes Ci,1, . . . , Ci,φi , Φ, Φ0, Φ1,

and τ
output: Φ′1 and Φ′0

1 θi ← φi − |Φ1|;
2 Φ′1 ← ∅;
3 Φ′ ← Φ \ (Φ0

⋃
Φ1);

4 while θi > max(τ, |Φ0|+ 1) do
5 j∗ = arg minj∈Φ′ f(Φ′

⋃
{j});

6 Φ′1 ← Φ′1
⋃
{j∗};

7 Φ′ ← Φ′ \ {j∗};
8 θi ← θi − 1;
9 end

10 Φ′0 ← Φ′ \ Φ′1;
11 return Φ′1 and Φ′0;

under the constraint of the maximal number of leaf nodes.
Note that this would require the data owner to keep track
of {hk,i|k ∈ K}. Again let hk,i and hk,i−1 be the number
of leaf nodes that need be returned in response to queries
Q = (k, i) and Q = (k, i − 1), respectively, for all k ∈ K.
Recall that Ki ⊆ K is the subset of keys that receive an
update in interval i. It follows that hk,i = 1 for all k ∈ Ki.
Since hk,i ≥ 1 for all k ∈ K, we have

max
k∈K
{hk,i} = max

k∈K\Ki

{hk,i}. (3)

Let C−i = {Ci,j |Ki,j

⋂
Ki = ∅}, i.e., Ci,j contains no key

that receives an update in interval i. For every candidate
leaf node Ci,j ∈ C−i , denote its maximum freshness proof
size in response to Q = (k, i − 1) and Q = (k, i) by
mi−1,j = maxk∈Ki,j{hk,i−1} and mi,j = maxk∈Ki,j{hk,i},
respectively. It follows that

max
k∈K\Ki

{hk,i} = max
Ci,j∈C−i

{mi,j}

= max
Ci,j∈C−i

{mi−1,j +4mj},
(4)

where 4mj = mi,j −mi−1,j for all Ci,j ∈ C−i .
We now analyze the relationship between decision vari-

ables b1, . . . , bφi−1 and maxCi,j∈C−i
{mi−1,j+4mj}. Similar

to Formulation 1, 4mj = 1 if the candidate leaf node
Ci,j is merged with another and 0 otherwise. Again let
Φ′ = Φ \ (Φ0

⋃
Φ1) and {bj |j ∈ Φ′} be the remain-

ing decision variables that need be determined. Also let
Φ′1 = {bj = 1|j ∈ Φ′} and Φ′0 = {bj = 0|j ∈ Φ′}
be the subsets of decision variables set to one and zero,
respectively. Given Φ′1 and Φ1, a candidate leaf node Ci,j
is merged with another one if either j − 1 or j ∈ Φ′1

⋃
Φ1.

Let Π = {j|j − 1 ∈ Φ′1
⋃

Φ1 ∨ j ∈ Φ′1
⋃

Φ1 ∧ j ∈ Φ}. We
have

max
Ci,j∈C−i

{mi,j} = max({mi−1,j + 1}j∈Π, {mi−1,j}j∈Φ\Π).

(5)

Let g(Φ′1) = max({mi−1,j + 1}j∈Π, {mi−1,j}j∈Φ\Π). We
formulate the remaining merging decisions as the following
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optimization problem.

minimize g(Φ′1)

subject to Φ′1 ⊆ Φ′,

φi − |Φ1

⋃
Φ′1| ≤ max(τ, |Φ0|+ 1),

bj = 0,∀j ∈ Φ0

⋃
Φ′0,

bj = 1,∀j ∈ Φ1

⋃
Φ′1.

(6)

The following theorem shows that the objective function
g(·) is also non-negative, submodular, and monotone, for
which the proof is given in Appendix B of the supplement
file.

Theorem 2. The objective function g(·) in Eq. (6) is non-
negative, submodular, and monotone.

We give the proof in Appendix C of the supplement file.
The above optimization problem can be solved with an

efficient greedy algorithm. While choosing the local optimal
with the smallest g(·) can lead to an efficient greedy algo-
rithm with guaranteed approximation ratio as in the first
formulation, we notice that there may be multiple choices
with the same minimal g(·) in each step. We therefore
further prioritize the merging decision that involves the new
candidate leaf nodes with the smallest key block size. We
detail the procedure for making the merging decisions in
Algorithm ?? given in Appendix D.

4.6 Point Query Processing
We now detail the procedure of KV-Fresh for point

queries, which consists of three phases: update preprocessing,
query processing, and query-result verification. We assume that
the data owner has a public/private key pair that supports
batch verification of digital signatures such as RSA [49].

Update Preprocessing. Assume that the data owner
receives data records {〈vik, tik〉|k ∈ Ki} in each interval i
for i = 1, 2, . . . . At the end of each interval i, the data
owner generates the leaf nodes Li,1, . . . , Li,θi according to
the procedures presented in Section 4.4 if i = 1 or Section 4.5
otherwise. The data owner then constructs an LKS-MHT Ti
over Li,1, . . . , Li,θi . Let pk = (n, e) and sk = (d) be the data
owner’s RSA public/private key pair and Ri the root of Ti.
The data owner computes

si = H(i||Ri)d mod n. (7)

Finally, the data owner sends all the leaf nodes
Li,1, . . . , Li,θi and its signature si to the cloud server, where-
by the cloud server can compute all the intermediate nodes
and root of Ti.

Note that if no key receives any update in interval i, the
data owner can simply resign the root of the LKS-HMT Ti−1,
i.e., Ri−1, in concatenation with the new interval index i as
in Eq. (7) and sends the signature to the cloud server, which
results in an update cost of O(1).

Query Processing. Assume that a data user issues a
point query Q(k, tq) asking for the most recent data record
for key k as of the end of interval q1. Also assume that vik
is the most recent update for key k received at time tik in
interval i, where i ≤ q1.

The cloud server constructs the query result in a recur-
sive fashion. Specifically, the cloud server first finds the leaf

node Lq1,j1 in LKS-MHT Tq1 such that k ∈ Kq1,j1 . There are
two cases. First, if i = q1, then we have Lq1,j1 = 〈k, vik, tik〉,
i.e., Lq1,j1 contains the most recent value for key k. Second,
if i < q1, then we Lq1,j1 = 〈Kq1,j1 , γq1,j1〉, i.e., Lq1,j1 points
to an earlier interval γq1,j1 , and the cloud server continues
to check LKS-MHT Lq2 . In general, for every x = 1, 2, . . . ,
the cloud server finds the leaf node Lqx,jx in LKS-MHT Tqx
such that k ∈ Kqx,jx . It follows that Lqx,jx = 〈k, vik, tik〉
if qx = i and 〈Kqx,jx , γqx,jx〉 otherwise. The cloud server
returns

Rx = 〈qx, Lqx,jx ,A(Rqx |Lqx,jx), sqx〉, (8)

where Rqx is the root of LKS-MHT Tqx , and A(Rqx |Lqx,jx)
is the set of internal nodes in Tqx needed for computing root
Rqx from leaf node Lqx,jx . If qx > i, then the cloud server
set qx+1 = γqx,jx and repeat the above process until qx = i,
i.e., the most recent update for key k received in interval i is
found.

Query-Result Verification. Assume that the user has
received the query result in the form of R = 〈R1, . . . ,Rr〉,
where Rx = 〈qx, Lqx,jx ,A(Rqx |Lqx,jx), sqx〉, for all 1 ≤ x ≤
r. The data user first verifies the integrity of the query result.
Specifically, for every x = 1, . . . , r, the user first computes
Rqx from Lqx,jx using A(Rqx |Lqx,jx). It then verifies all r
signatures in batch by checking whether

(
r∏

x=1

sqx)e
?
=

r∏
x=1

H(qx||Rqx) mod n,

where (n, e) is the data owner’s RSA public key. If so, the
user considers the query result authentic.

The data user then verifies the freshness of the query
result using the interval indexes embedded in the returned
leaf nodes. Assume that q1 > · · · > qs. The user first checks
if qs = q1 because the cloud server should always return the
leaf node for the queried interval q1. If so, the user further
checks whether qx+1 = γqx,jx for all x = 1, . . . , s − 1.
Finally, the user verifies whether leaf node Lqs,js contains
the updated value vik and timestamp tik. If so, the user
considers the query result fresh.

Theorem 3. KV-Fresh can detect any inauthentic and/or stale
point query result.

We provide the proof in Appendix C.

4.7 Range Query Processing

We now discuss how to extend the above solution into
range query. A straightforward solution is to convert any
range query into multiple point queries with each corre-
sponding to one unique queried key, which would result
in a proof size approximately linear to the size of query
range. Our key observation is that the point query responses
of adjacent queried keys have large overlap and can be
merged to significantly reduce the communication cost. In
what follows, we detail the procedure of query processing
and query-result verification as the procedure update pre-
processing remains the same.

Query Processing. Assume that the cloud server receives
a range query Q([l, r], tq) asking for the most recent data
record for every key k ∈ [l, r] as of the end of interval q.
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Also assume that vk is the most recent update received at
time tik in interval ik, where ik ≤ q for all k ∈ [l, r]).

The cloud server first generates a point query result for
every queried key k ∈ [l, r]. Let Rk = {Rk1 , . . . ,Rkrk} be the
query result for each queried key k ∈ [l, r], where rk is the
number of partial query results and

Rkx = 〈qkx, Lkqx,jx ,A(Rkqkx |L
k
qx,jx), sqkx〉, (9)

for all 1 ≤ x ≤ rk. It is easy to see that qk1 = q for all
l ≤ k ≤ r as the query result for every queried key must
contain the information about interval q.

Given all the partial query results {Rkx|l ≤ k ≤ r, 1 ≤
x ≤ rk}, the cloud server constructs the final query result by
eliminates any duplicate leaf nodes. First, the cloud server
sorts {Rkx|l ≤ k ≤ r} first according to interval index qkx and
then key k such that partial query results for the adjacent
keys and the same interval appear next to each other. The
cloud server then identifies and eliminates any duplicate
partial query results for the same interval. Second, the cloud
server merges all remaining the partial query results into
one for every interval that appears in {Rkx|l ≤ k ≤ r}.
Specifically, let i∗ = mink∈[l,r]{ik} be the earliest interval
with the most recent update for any queried key. For every
interval j ∈ [i∗, q] with at least one partial query result, the
cloud server constructs an aggregated partial query result
as follows. Let K[l,r]

j ∈ [l, r] be the subset of keys that have
partial query results for interval j. For each k ∈ K[l,r], let its
partial query result for interval j be

Rk = 〈j, Lkj ,A(Rk|Lkj ), sj〉, (10)

where we omit a part of the subscript to simplify the
notation. We can see that {Lkj }k∈[l,r] is a subset of LKS-MHT
Tj ’s leaf nodes. The cloud server constructs an aggregate
query result for interval j as

R
[l,r]
j = 〈j, {Lkj |k ∈ K

[l,r]
j },A(Rk|{Lkj |k ∈ K

[l,r]
j }), sj〉,

(11)

where A(Rk|{Lkj |k ∈ K
[l,r]
j }) is the union of the subsets of

internal nodes of LKS-MHT Tj needed to compute the root
Rk from Lkj for all k ∈ K[l,r].

Query-Result Verification. The verification of a range
query result is essentially the same as verifying multiple
point query results. In particular, the only difference be-
tween the query processing in the two cases is that the
cloud server eliminates the duplicated information among
multiple point query results, so all the information needed
for verifying the integrity and freshness of individual point
query results are included in the range query result. We omit
the details here due to space limitation.

Theorem 4. KV-Fresh can detect any inauthentic and/or stale
range query result.

The proof is provided in the Appendix C.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of KV-Fresh
via extensive simulation studies using a real dataset.

TABLE 1
Default Simulation Settings

Para. Val. Description.
ε 10 ms The interval size
|K| 10,000 The number of keys
m 1,000 The number of intervals
τ 1024 The maximal number of key blocks
|H(·)| 256 The length of hash
|si| 1024 The length of data owner’s signature

5.1 Dataset

We create a synthetic dataset from a TrueFax real-time
currency conversion dataset [50] that includes tick-by-tick
historical conversion rates for 16 major currency pairs with
fractional pip spreads in millisecond detail. For our purpose,
we take the currency conversion rate from EUR to USD from
12:00 am (GMT), January 2nd, 2019 to 03:46:40 pm (GMT)
January 3rd, 2019. We divide the time period into 10,000
segments of 10 seconds. We treat the segment indexes as
keys and the conversion rates as the updates. Our synthetic
dataset consists 10,000 keys for a period of 10 seconds, and
on average 131.55 keys receive updates for every 10 ms.

5.2 Simulation Settings

We implement a prototype of KV-Fresh in Python and
deploy it on three desktops connected by 100 Mbps links,
which act as the data owner, cloud server, and the user,
respectively. Each desktop has a i7-6700 CPU, 16GB RAM
and 64-bit Win10 operating system. We adopt the SHA-256
for the cryptographic hash function and the RSA for digital
signature. Table 1 summarizes our default settings unless
mentioned otherwise.

For point query, we compare KV-Fresh with the state-of-
art solution INCBM-TREE [20] as well as the Strawman Ap-
proach 1 and Strawman Approach 2 approaches introduced
in Section 4.1 using four performance metrics: (1) update cost
which is number of extra bits per second transmitted from
the data owner to cloud server,i.e., additional communica-
tion cost between the data owner and cloud server, (2) proof
size which is the number of extra bits needed for proving
the integrity and freshness for a query result, i.e., additional
communication cost between the cloud server and user, (3)
throughput which is the number of queries processed by the
cloud server per second, and (4) verification time which is
the time needed for verifying a returned query result by
the user. While the throughput and verification time may
vary across different platforms, our goal is to provide a fair
comparison among the four schemes under the same setting.

5.3 Simulation Results for Point Queries

We now report our simulation results for point queries
where every point in the following figures represents the
average over 10,000 runs each with a distinct random seed.
We refer to the two formulations discussed in Sections 4.5.1
and 4.5.2 as KV-Fresh-1 and KV-Fresh-2, respectively.
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Fig. 5. Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE with interval size varying from 10s to 1ms.
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Fig. 6. Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE with |K| varying from 100 to 50,000.
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Fig. 7. Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE with τ varying from 256 to 10,000.

5.3.1 The Impact of Interval Size

Fig. 5(a) compares the update cost under Strawman-
1, Strawman-2, INCBM-TREE, KV-Fresh-1 and KV-Fresh-2
with interval size varying from 10 s to 1 ms, respectively.
As we can see, the update cost per second increases as
the interval sizes decreases under all mechanisms. This is
expected, as the number of intervals is inversely propor-
tional to the interval size. Among the five mechanisms,
Strawman-1 has the highest update cost when the interval
size is smaller than 1 s, as the data owner needs to send the
most recent key-value record for every key in every interval.
Strawman-2 and INCBM-TREE have the lowest update cost,
as the data owner only sends keys with updates under both
mechanisms. The update costs of KV-Fresh-1 and KV-Fresh-
2 fall in the middle and increase much slower than that of
Strawman-1. This is anticipated, as both KV-Fresh-1 and KV-
Fresh-2 require the data owner to send only updated key-
value records and key block information with no update for
every interval. Moreover, when the interval size is 1 ms,
both KV-Fresh-1 and KV-Fresh-2 incur an update cost of
approximately 108 bits per second. In other words, a 100-
Mbps link between the data owner and the cloud server

suffices to support a key space of 10,000 keys, which makes
KV-Fresh very practical.

Fig. 5(b) shows the impact of interval size on the proof
size of Strawman-1, Strawman-2, INCBM-TREE, KV-Fresh-
1, and KV-Fresh-2. The proof size of Strawman-1 is not
affected by the interval size and stays at 4460 bits. The
proof sizes of the other four mechanisms all increase as
the interval size decreases. Among the them, the proof sizes
of Strawman-2 and INCBM-TREE grow the fastest and are
approximately inversely proportional to the interval size.
The reason is that the data owner needs to prove that
there is no update in every interval after the most recent
update under the both mechanisms. While INCBM-TREE
employs a Bloom filter for efficient proof of no update, every
Bloom filter covers only a constant number of intervals. In
contrast, the proof sizes under KV-Fresh-1 and KV-Fresh-2
grow much slower as the interval size decreases, because
both KV-Fresh-1 and KV-Fresh-2 allow the cloud server to
skip potentially many intervals in the freshness proof. We
can also see that the proof size of KV-Fresh-1 is slight lower
than that of KV-Fresh-2, which is anticipated as KV-Fresh-1
aims to minimizing the expected size of freshness proof and
the proof size in Fig. 5(b) is the average over 10,000 runs.
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In addition, we can see that KV-Fresh outperforms INCBM-
TREE by a large margin when the interval size is small.
For example, when the interval size is 1 ms, the proof sizes
under KV-Fresh-1 and KV-Fresh-2 are approximately 90 Kb
and 115 Kb, respectively, which are less than 0.4% and 0.5%
of the 22.9 Mb under INCBM-TREE, respectively.

Fig. 5(c) compares the throughput under Strawman-1,
Strawman-2, INCBM-TREE, KV-Fresh-1, and KV-Fresh-2.
We can see that the throughput under Strawman-1 is the
highest and not affected by the change in interval size.
Among the other four, the throughput of Strawman-2 is
the smallest, followed by INCBM-TREE. The reason is that
the smaller the interval size, the more intervals after the
most recent update on average, the more intervals the cloud
server needs to process under Strawman-2 and INCBM-
TREE, and vice versa. In contrast, the throughput of KV-
Fresh-1 and KV-Fresh-2 initially decline as the interval size
decreases from 10 s to 10 ms and then become stable or
decrease slightly as the interval size decreases from 10 ms
to 1 ms. The reason for the initial decline is that when the
interval size is large, most of the keys have updates in
every interval, and the merging constraint is determined
by |Φ0| instead of τ , which results in excessive merging
operations and more intervals that the cloud server needs
to check. As the interval size further decreases, fewer and
fewer keys have updates in each interval, which result
in fewer merging operations and thus fewer intervals the
cloud server needs to check. Moreover, KV-Fresh-1 outper-
forms KV-Fresh-2 with higher average throughput due to
its merging decision policy, which aims to minimizing the
expected proof size. Generally speaking, in comparison with
Strawman-2 and INCBM-TREE, both KV-Fresh-1 and KV-
Fresh-2 have similar throughput when the interval size is
large while outperform Strawman-2 and INCBM-TREE by
large margins when the interval size is small. For example,
when the interval size is 1 ms, KV-Fresh-1 achieves 9.05
and 41.75 times higher throughput than INCBM-TREE and
Strawman-2, respectively.

Fig. 5(d) compares the verification cost of the five mech-
anisms under different interval sizes. As we can see, the
verification cost of Strawman-1 remains at 0.6357ms and is
not affected by the change in interval size. The verification
cost increases as the interval size decreases under all the
other four mechanisms. Among them, KV-Fresh-1 and KV-
Fresh-2 both outperform INCBM-TREE and Strawman-2 by
large margins. The reason is that fewer leaf nodes need be
returned under either KV-Fresh-1 or KV-Fresh-1 than both
INCBM-TREE and Strawman-2. For example, when interval
size is 1 ms, it takes 0.86 ms and 0.96 ms to verify a query
result under KV-Fresh-1 and KV-Fresh-2, respectively, while
Strawman-2 and INCBM-TREE require 11.96 ms and 6.84
ms, respectively. These results demonstrate the significant
advantages of KV-Fresh over other two mechanisms.

5.3.2 The Impact of the Number of Keys

Figs. 6(a) to 6(d) compare the performance of KV-Fresh-
1, KV-Fresh-2, Strawman-1, Strawman-2 and INCBM-TREE
with |K|, i.e., the total number of keys, varying from 100
to 50,000. As we can see from Fig. 6(a), the update costs
of all schemes increase as the number of keys increase,

which is anticipated. Moreover, the update cost of KV-
Fresh-1 and KV-Fresh-2 are lower than that of Strawman-
1 by a larger margin but higher than that of Strawman-2
and INCBM-TREE. More importantly, even when the |K|
is 50,000, the update costs of KV-Fresh-1 and KV-Fresh-2
are both approximately 3.9 × 107 bits per second, which is
very practical for 10-ms interval. From Fig. 6(b), we can see
that the proof sizes under all mechanisms increase as |K|
increases, as a larger |K| leads to a deeper MHT. Moreover,
as |K| increases from 100 to 50,000, the proof sizes under
KV-Fresh-1 and KV-Fresh-2 are always significantly smaller
than those under Strawman-2 and INCBM-TREE. Similarly,
Figs. 6(c) and 6(d) show that both KV-Fresh-1 and KV-Fresh-
2 achieve much higher throughput and lower verification
cost than Strawman-2 and INCBM-TREE because fewer leaf
nodes need be returned under KV-Fresh-1 and KV-Fresh-2
than the other two.

5.3.3 The Impact of τ
Figs. 7(a) to 7(d) show the performance of KV-Fresh-1

and KV-Fresh-2 with τ varying from 256 to 8192, where
the performance of Strawman-1, Strawman-2 and INCBM-
TREE are not affected by τ and only plotted for reference.
Generally speaking, the larger τ , the higher the update
cost, the smaller proof size, the higher throughput, the
smaller verification cost for both KV-Fresh-1 and KV-Fresh-
2, and vice versa. In addition, the update cost, proof size,
throughput, and verification cost under KV-Fresh-1 and KV-
Fresh-2 are almost always between those under Strawman-
1 and those under Strawman-2 and INCBM-TREE, which
is expected. While KV-Fresh-1 and KV-Fresh-2 incur higher
update cost than Strawman-2 and INCBM-TREE, they incur
much lower communication cost between the cloud serv-
er and the user and smaller verification cost at the user.
Moreover, while update only happens between the data
owner and the cloud server, the cloud server needs to serve
potentially many users at the same time.

5.4 Comparison between KV-Fresh-1 and KV-Fresh-2

Fig. 8(a) and Fig. 8(c) compare the performance of KV-
Fresh-1 and KV-Fresh-2 with interval size varying from 10
s to 1 ms, where KV-Fresh-1 (Avg.) and KV-Fresh-2 (Avg.)
represent the average results of 10,000 runs and KV-Fresh-
1 (Worst) and KV-Fresh-2 (Worst) represent the worst case
among the 10,000 runs under KV-Fresh-1 and KV-Fresh-2,
respectively. As we can see from Fig. 8(a), as the interval
size decreases, both the average and the largest proof sizes
increase under both KV-Fresh-1 and KV-Fresh-2, which is
expected. More importantly, KV-Fresh-1 achieves smaller
average proof size but larger proof size under the worst
case. The reason is that KV-Fresh-1 and KV-Fresh-2 are
designed to minimize the expected and maximum proof
sizes, respectively. Fig. 8(b) shows that as the interval size
increases, both the average and maximum proof sizes ini-
tially decrease followed by stable or decrease slightly due to
the same reason in Fig. 5(c). We also observe that KV-Fresh-
1 achieves higher average throughout but lower worst-case
throughput than KV-Fresh-2. From Fig. 8(c), we can see that
KV-Fresh-2 incurs a slightly higher average verification cost
than KV-Fresh-1 for the same reason. More importantly, the
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Fig. 8. Comparison of KV-Fresh-1 and KV-Fresh-2 with interval size varying from 10s to 1ms.
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Fig. 9. Comparison of KV-Fresh-1 and KV-Fresh-2 with |K| varying from 100 to 50,000.
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Fig. 10. Comparison of KV-Fresh-1 and KV-Fresh-2 with the size of query range varying from 1 to 100.

worst-case verification cost under KV-Fresh-2 is significantly
lower than that of KV-Fresh-1. Moreover, we can see that
the gap between the average and worst-case verification
costs grows as the interval size decreases. The reason is that
when the interval size is large, many keys receive updates
in each interval on average and the terminal condition
for merging is mainly determined by τ , so there are very
few merging opportunities to demonstrate the difference
between KV-Fresh-1 and KV-Fresh-2. As the interval size
decreases, the terminal condition is gradually determined
by τ , and different merging decision have large impact on
the average and worst-case verification costs, which leads to
the increased gap between the two mechanisms.

Fig. 9(a) and Fig. 9(c) compare the average and worst-
case performance of KV-Fresh-1 and KV-Fresh-2 with |K|
varying from 100 to 50,000. Generally speaking, the larger
|K|, the larger proof size, the lower throughout and the
higher verification cost for both the average and worst-case
under the two mechanisms. Moreover, KV-Fresh-1 outper-
forms KV-Fresh-2 in terms of average proof size, throughout

and verification cost, while KV-Fresh-2 has better worst-case
performance. In addition, we can see from Fig. 9(c) that the
gap between the average and the worst-case performance
increases as |K| increase from 100 to 50,000. For example,
the difference between KV-Fresh-1 (Avg.) and KV-Fresh-1
(Worst) grows from 0.84 ms to 5.1 ms when the |K| increases
from 5,000 to 50,000.

5.5 Simulation Results for Range Queries
Since INCBM-TREE [20] is not directly applicable to

range queries, we compare KV-Fresh with a baseline so-
lution, referred to as KV-Fresh-baseline, which processes a
range query as multiple independent point as in KV-Fresh.
For the performance evaluation, we still use the metrics
proof size, throughput, and verification time but omit the
metric update cost as they share the same update prepro-
cessing procedure.

Fig. 10(a) shows the impact of the size of query range
on the proof size under KV-Fresh-1, KV-Fresh-2, KV-Fresh-
1-baseline, and KV-Fresh-2-baseline. We can see that the
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proof size increases as the number of queried keys increases
under all four mechanisms, which is expected. Moreover,
both KV-Fresh-1 and KV-Fresh-2 incur a much smaller size
of proof than corresponding KV-Fresh-1-baseline and KV-
Fresh-2-baseline. For example, when the number of queried
keys is 10, KV-Fresh-1 and KV-Fresh-2 reduce the proof
size of KV-Fresh-1-baseline and KV-Fresh-2-baseline by 72%
and 74.9%, respectively. As another example, when the
number of queried keys is 100, KV-Fresh-1 and KV-Fresh-2
reduce the proof size of KV-Fresh-1-baseline and KV-Fresh-
2-baseline by 84% and 88% times, respectively. The reason
is that the two baseline solutions treat a range query as
multiple independent point queries for which the query
results have large overlap. In contrast, both KV-Fresh-1 and
KV-Fresh-2 eliminate such redundancy in the query result,
resulting in significant reduction in the freshness proof size
and thus higher communication and computation efficiency.

Fig. 10(b) compares the throughput of KV-Fresh-1, KV-
Fresh-2, KV-Fresh-1-baseline, and KV-Fresh-2-baseline with
the number of queried keys varying from 1 to 100. We
can see that the throughput under all four mechanisms
decreases as the number of queried keys increase, which
is expected as it takes longer time to process a range query
with a larger query range size. Moreover, both KV-Fresh-
1 and KV-Fresh-2 outperform corresponding KV-Fresh-1-
baseline and KV-Fresh-2-baseline, especially when the size
of query range is large, as they both treat a range query
as a whole instead of multiple independent point queries.
For example, when the size of query range is 100, KV-Fresh-
1 can process 522 range queries in one second, while KV-
Fresh-1-baseline can only process 149 range queries.

Fig. 10(c) shows the verification cost of KV-Fresh-1, KV-
Fresh-2, KV-Fresh-1-baseline, and KV-Fresh-2-baseline with
different sizes of query range. We can see that the verifi-
cation cost of the all mechanisms sharply increase as the
number of queried keys increases. Similar to Fig. 10(a) and
Fig. 10(b), both KV-Fresh-1 and KV-Fresh-2 outperform cor-
responding KV-Fresh-1-baseline and KV-Fresh-2-baseline in
terms of verification cost, which is expected. These results
further confirm the high efficiency of KV-Fresh in processing
range queries.

6 CONCLUSION

In this paper, we have presented the design and evalu-
ation of KV-Fresh, a novel freshness authentication scheme
for outsourced multi-version key-value stores. Specifically,
KV-Fresh is built upon LKS-MHT, a novel data structure that
allows efficient proof of no update over a potentially large
number of intervals. We also propose two merging decision
to fulfill the LKS-MHT construction. KV-Fresh supports
both point query and range query. Extensive simulation
studies confirm that KV-Fresh can always simultaneously
achieve strong real-time guarantee and high communication
efficiency.

REFERENCES

[1] P. Felber, M. Pasin, . Rivire, V. Schiavoni, P. Sutra, F. Coelho,
R. Oliveira, M. Matos, and R. Vilaa, “On the support of versioning
in distributed key-value stores,” in IEEE SRDS, Nara, Japan, Oct
2014, pp. 95–104.

[2] S. Bhattacherjee and A. Deshpande, “Rstore: A distributed multi-
version document store,” in IEEE ICDE, Paris, France, April 2018,
pp. 389–400.

[3] “Nosql market is expected to reach 4.2 billion, globally, by 2020,”
https://www.alliedmarketresearch.com/press-release/NoSQL-
market-is-expected-to-reach-4-2-billion-globally-by-2020-allied-
market-research.html.

[4] “Baidu workers arrested for ’deleting posts for money’,” https:
//www.bbc.com/news/technology-19149185.

[5] M. Narasimha and G. Tsudik, “Authentication of outsourced
databases using signature aggregation and chaining,” in DAS-
FAA’06, Singapore, Apr. 2006, pp. 420–436.

[6] H. Pang and K.-L. Tan, “Verifying completeness of relational query
answers from online servers,” ACM Trans. Inf. Syst. Secur., vol. 11,
no. 2, pp. 1–50, 2008.

[7] H. Pang, J. Zhang, and K. Mouratidis, “Scalable verification for
outsourced dynamic databases,” Proc. VLDB Endow., vol. 2, no. 1,
pp. 802–813, 2009.

[8] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios, “Au-
thenticated indexing for outsourced spatial databases,” The VLDB
Journal, vol. 18, no. 3, pp. 631–648, Jun. 2009.

[9] H. Hu, J. Xu, Q. Chen, and Z. Yang, “Authenticating location-
based services without compromising location privacy,” in ACM
SIGMOD’12, Scottsdale, AZ, May 2012, pp. 301–312.

[10] X. Lin, J. Xu, and H. Hu, “Authentication of location-based skyline
queries,” in CIKM, New York, NY, Oct. 2011, pp. 1583–1588.

[11] X. Lin, J. Xu, and J. Gu, “Continuous skyline queries with integrity
assurance in outsourced spatial databases,” in WAIM’12, Harbin,
China, Aug. 2012, pp. 114–126.

[12] X. Lin, J. Xu, H. Hu, and W.-C. Lee, “Authenticating location-
based skyline queries in arbitrary subspaces,” IEEE Transactions
on Knowledge and Data Engineering, vol. 26, no. 6, pp. 1479–1493,
June 2014.

[13] Q. Chen, H. Hu, and J. Xu, “Authenticating top-k queries in
location-based services with confidentiality,” Proceedings of the
VLDB Endowment, vol. 7, no. 1, pp. 49–60, Sep. 2013.

[14] R. Zhang, Y. Zhang, and C. Zhang, “Secure top-k query processing
via untrusted location-based service providers,” in IEEE INFO-
COM, Orlando, FL, Mar. 2012.

[15] R. Zhang, J. Sun, Y. Zhang, and C. Zhang, “Secure spatial top-k
query processing via untrusted location-based service providers,”
IEEE Transactions on Dependable and Secure Computing, vol. 12, no. 1,
pp. 111–124, Jan 2015.

[16] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic
authenticated index structures for outsourced databases,” in ACM
SIGMOD’06, Chicago, IL, 2006, pp. 121–132.

[17] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios, “Proof-infused
streams: Enabling authentication of sliding window queries on
streams,” in VLDB, Vienna, Austria, Sep. 2007, pp. 147–158.

[18] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A scalable
cloud file system with efficient integrity checks,” in ACSAC,
Orlando, FL, December 2012, pp. 229–238.

[19] H.-J. Yang, V. Costan, N. Zeldovich, and S. Devadas, “Authen-
ticated storage using small trusted hardware,” in CCSW, Berlin,
Germany, 2013, pp. 35–46.

[20] Y. Tang, T. Wang, L. Liu, X. Hu, and J. Jang, “Lightweight authen-
tication of freshness in outsourced key-value stores,” in ACSAC,
New Orleans, LA, 2014, pp. 176–185.

[21] S. Papadopoulos, Y. Yang, and D. Papadias, “Cads: Continuous
authentication on data streams,” in VLDB, Vienna, Austria, Sep.
2007, pp. 135–146.

[22] M. T. Goodrich, C. Papamanthou, R. Tamassia, and N. Trian-
dopoulos, “Athos: Efficient authentication of outsourced file sys-
tems,” in Information Security Conference, Taipei, Taiwan, 2008, pp.
80–96.

[23] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten,
“Sporc: Group collaboration using untrusted cloud resources,” in
OSDI, Vancouver, BC, Canada, Oct. 2010, pp. 337–350.

[24] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrish-
nan, “Cryptdb: Protecting confidentiality with encrypted query
processing,” in SOSP, Cascais, Portugal, Oct. 2011, pp. 85–100.

[25] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish, “Depot: Cloud storage with minimal trust,” ACM
Trans. Comput. Syst., vol. 29, no. 4, pp. 12:1–12:38, Dec. 2011.

[26] M. Narasimha and G. Tsudik, “Dsac: Integrity for outsourced
databases with signature aggregation and chaining,” ser. ACM
CIKM’05, Otc. 2005, p. 235236.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 24,2022 at 02:31:25 UTC from IEEE Xplore.  Restrictions apply. 

https://www.alliedmarketresearch.com/press-release/NoSQL-market-is-expected-to-reach-4-2-billion-globally-by-2020-allied-market-research.html
https://www.alliedmarketresearch.com/press-release/NoSQL-market-is-expected-to-reach-4-2-billion-globally-by-2020-allied-market-research.html
https://www.alliedmarketresearch.com/press-release/NoSQL-market-is-expected-to-reach-4-2-billion-globally-by-2020-allied-market-research.html
https://www.bbc.com/news/technology-19149185
https://www.bbc.com/news/technology-19149185


1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3172380, IEEE
Transactions on Dependable and Secure Computing

14

[27] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and
integrity in outsourced databases,” ACM Transactions on Storage,
vol. 2, no. 2, pp. 107–138, May 2006.

[28] A. A. Yavuz, “Immutable authentication and integrity schemes for
outsourced databases,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 1, pp. 69–82, 2018.

[29] B. Zhang, B. Dong, and W. H. Wang, “Integrity authentication for
sql query evaluation on outsourced databases: A survey,” IEEE
Transactions on Knowledge and Data Engineering, vol. 33, no. 4, pp.
1601–1618, 2021.

[30] J. Shi, R. Zhang, and Y. Zhang, “Secure range queries in tiered
sensor networks,” in IEEE INFOCOM, Rio de Janeiro, Brazil, Apr.
2009.

[31] R. Zhang, J. Shi, Y. Liu, and Y. Zhang, “Verifiable fine-grained top-
k queries in tiered sensor networks,” in INFOCOM’10, San Diego,
CA, Mar. 2010.

[32] D. Wu, B. Choi, J. Xu, and C. S. Jensen, “Authentication of moving
top-k spatial keyword queries,” IEEE Transactions on Knowledge and
Data Engineering, vol. 27, no. 4, pp. 922–935, 2015.

[33] W. Chen, M. Liu, R. Zhang, Y. Zhang, and S. Liu, “Secure out-
sourced skyline query processing via untrusted cloud service
providers,” in IEEE INFOCOM, April 2016, pp. 1–9.

[34] M. L. Yiu, E. Lo, and D. Yung, “Authentication of moving knn
queries,” in IEEE ICDE, Hannover, Germany, Apr. 2011, pp. 565–
576.

[35] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi, “Spatial query
integrity with voronoi neighbors,” IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 4, pp. 863–876, Apr. 2013.

[36] Y. Jing, L. Hu, W.-S. Ku, and C. Shahabi, “Authentication of k
nearest neighbor query on road networks,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 6, pp. 1494–1506, 2014.

[37] M. L. Yiu, Y. Lin, and K. Mouratidis, “Efficient verification of
shortest path search via authenticated hints,” in IEEE ICDE, Long
Beach, CA, Mar. 2010, pp. 237–248.

[38] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” ser. Advances in Cryptology –
CRYPTO 2011, 2011, pp. 111–131.

[39] D. Catalano and D. Fiore, “Vector commitments and their applica-
tions,” ser. Public-Key Cryptography – PKC 2013, 2013, pp. 55–72.

[40] X. Chen, H. Li, J. Li, Q. Wang, X. Huang, W. Susilo, and Y. Xiang,
“Publicly verifiable databases with all efficient updating opera-
tions,” IEEE Transactions on Knowledge and Data Engineering, pp.
1–1, 2020.

[41] M. Miao, J. Ma, X. Huang, and Q. Wang, “Efficient verifiable
databases with insertion/deletion operations from delegating
polynomial functions,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 2, pp. 511–520, 2018.

[42] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, “New publicly
verifiable databases with efficient updates,” IEEE Transactions on
Dependable and Secure Computing, vol. 12, no. 5, pp. 546–556, 2015.

[43] X. Chen, J. Li, J. Weng, J. Ma, and W. Lou, “Verifiable computation
over large database with incremental updates,” IEEE Transactions
on Computers, vol. 65, no. 10, pp. 3184–3195, 2016.

[44] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable data possession at untrusted stores,”
ser. CCS ’07, 2007, p. 598609.
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