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Abstract—Acoustic fingerprinting aims to identify a mobile device based on its internal microphone(s) and speaker(s) which are
unique due to manufacturing imperfection. This paper seeks a thorough understanding of the (in)security of exploring acoustic
fingerprints for achieving distributed mobile authentication. Our contributions are threefold. First, we present a new acoustic
fingerprint-emulation attack and demonstrate that it is a common vulnerability of acoustic mobile authentication systems. Second, we
propose a dynamic challenge-response defense to secure acoustic mobile authentication systems against the acoustic
fingerprint-emulation attack. Finally, we thoroughly investigate existing acoustic fingerprinting schemes and identify the best option for
accurate, secure, and deployable acoustic mobile authentication systems.
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1 INTRODUCTION

A COUSTIC fingerprinting aims to identify a mobile
device based on its internal microphone(s) and

speaker(s). It is promising for two primary reasons. First,
typical smartphones have multiple microphones and at
least one speaker, and the latest smartwatches also have
a built-in speaker-microphone pair to support phone calls.
Second, every microphone or speaker is a multi-stage audio
signal processing system consisting of multiple hardware
elements, so it can be quite unique due to the hardware
imperfection introduced in the manufacturing process.

Different acoustic fingerprints have been explored. The
Frequency Response Curve (FRC), which refers to the nor-
malized output gains of a speaker or microphone over a
given frequency range, was used in [1], [2], [3], [4]. Das et al.
used Mel-Frequency Cepstral Coefficients (MFCCs) of the
output audio to identify a speaker or microphone [5]. Fi-
nally, NAuth [6] distinguishes different speaker-microphone
pairs with a nonlinear feature called Acoustic Nonlinear
Pattern (ANP). The hardware features of a device’s speaker,
microphone, or speaker-microphone pair can be used as
the acoustic fingerprint, and we term the corresponding
fingerprints as S-Print, M-Print, and SM-Print, respectively.

Mobile authentication is one of the most appealing
application scenarios of acoustic fingerprinting. A mobile
authentication system considers a user as legal if (s)he can
prove the possession of a registered mobile device. Fig. 1
shows a generic acoustic mobile authentication system. It
consists of three parties: the prover P (the registered mobile
device of the user), the verifier V , and the server S . Without
ambiguity, we also denote the user owning the prover
device by P . P starts an authentication instance by sending
a request with P ’s ID to S . Then S sends a challenge to
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P via V , and P returns a response corresponding to the
challenge.P is authenticated if S verifies that the response is
associated with one of the registered devices, and vice versa.
The mobile device can act as both P and V in self-proof
scenarios like the online account login on a mobile device, in
which case S directly communicates with the mobile device.
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Fig. 1. A generic mobile authentication system.

Acoustic fingerprinting has been applied to mobile au-
thentication in [3], [4], but there are still two open ques-
tions: 1) which acoustic fingerprint technique is most suit-
able for mobile authentication; 2) the fingerprint of which
acoustic element(s) (the speaker, microphone, or speaker-
microphone pair) should be used. To answer these two ques-
tions, we identify the following three essential requirements
for a sound acoustic mobile authentication system.

• Accurate: the system can accurately identify mobile
devices.

• Deployable: it is low-cost and can extract verifier-
agnostic acoustic fingerprints. In particular, the fin-
gerprint of a mobile device should not be tied to a
specific verifier, which is very important in a large
distributed system with many verifiers such as smart
door locks.
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• Secure: it is highly resilient to possible attacks.

To extract a verifier-agnostic MFCC fingerprint of a
prover, the verifier must be equipped with a high-fidelity
speaker or microphone which usually costs a few hundred
dollars or more. Since MFCC fingerprints do not satisfy
the deployable requirement, we focus on studying FRC and
ANP fingerprints henceforth.

We consider a powerful adversary that launches a
highly risky fingerprint-emulation attack. In this attack,
some acoustic fingerprints of the prover P are exposed
to and can be successfully emulated by the adversary. We
experimentally show that all existing acoustic fingerprinting
techniques are vulnerable to this attack. We also propose a
dynamic acoustic challenge-response scheme as a strong de-
fense based on the motivation that the fingerprint-emulation
attack can be successfully defeated as long as the challenges
corresponding to exposed fingerprints are not reused. The
efficacy of this defense relies on a large number of distinct
acoustic fingerprints. So we quantify the fingerprint space
for each fingerprinting scheme and find that only the ANP
fingerprints of the microphone are highly resilient to the
fingerprint-emulation attack.

We summarize the contribution of this paper as follows.

• We present a new fingerprint-emulation attack that
is overlooked in previous work and demonstrate
that it is a common vulnerability of acoustic mobile
authentication systems.

• We propose a dynamic challenge-response defense
to secure acoustic mobile authentication systems
against the acoustic fingerprint-emulation attack;

• We thoroughly investigate existing acoustic finger-
printing schemes and identify the best option for
accurate, secure, and deployable acoustic mobile au-
thentication systems.

The rest of this paper is organized as follows. Section 2
reviews the background knowledge about acoustic elements
and acoustic fingerprints. Section 3.1 outlines the system
model, the adversary model, and our defense strategy. Sec-
tion 4 shows the vulnerability of FRC fingerprints and also
presents our corresponding defense. Section 5 demonstrates
the vulnerability of ANP fingerprints and details our coun-
termeasure as well. Section 6 discusses the trade-off between
FRC and ANP fingerprinting schemes. Section 7 briefs the
related work. Section 8 concludes this work.

2 BACKGROUND

2.1 Linear and Nonlinear Behaviors of Acoustic Ele-
ments

Microphones and speakers are pervasive on mobile devices.
A typical MEMS microphone converts sound into an elec-
trical signal through a sequence of modules, including a
pressure-sensitive diaphragm, a pre-amplifier, a low-pass
filter, and an analog-to-digital converter (ADC) that pro-
duces a digital audio signal. In contrast, a speaker turns
an electrical signal into sound waves through a reverse
sequence of modules.

Ideal microphones and speakers are expected to be linear
and frequency-independent systems. In particular, let Sin

and Sout denote the input and output signals of a mi-
crophone or speaker, respectively. A linear microphone or
speaker satisfies

Sout = g1Sin, (1)

where g1 denotes the gain factor, i.e., the amplification or
attenuation ratio of the microphone or speaker.

In practice, the gain factor of an acoustic element varies
across different frequencies due to hardware imperfection
[1]. The Frequency Response Curve (FRC), which represents
the magnitudes of the gain factor over a frequency range,
formulates the linear characteristic of an acoustic element.

Moreover, practical microphones and speakers on com-
modity mobile devices are only approximately linear in the
audible range due to cost considerations and exhibit non-
linearity in the non-audible range. In particular, we have

Sout =
∞∑
i=1

giS
i
in, (2)

where gi is called the ith-order non-constant nonlinear
coefficient. According to [7], {gi|i ≥ 1} are sensitive to the
frequencies in Sin, and {gi|i ≥ 2} are also sensitive to the
power of individual frequency components in Sin. Given a
specific Sin, gi is determined by the nonlinear characteristic
of the acoustic element.

2.2 Basics of Acoustic Fingerprints

The FRC of each acoustic element is unique due to manufac-
ture imperfection and can thus be used as the linear acoustic
fingerprint. To improve accuracy and reduce latency, exist-
ing work preselected multiple frequencies and measures the
gain factors at the selected frequencies as FRC [1], [3], [4].

Existing work also proposed to identify a microphone-
speaker pair with nonlinear features [6]. Due to the non-
linear relation between the input and output signals shown
in Eq. 2, the output signal contains new frequency compo-
nents not present in the input signal [12], [13], and those
new frequency components are referred to as distortion
components. Given a specific input signal, the amplitudes
of distortion components in an acoustic element’s output
signal are unique due to manufacture imperfection and can
be used as nonlinear features to identify this element [6].

3 SYSTEM MODEL, ADVERSARY MODEL, AND
OVERVIEW OF DEFENSE

3.1 System Model

A generic acoustic mobile authentication system consists of
the prover P , the verifier V , and the server S , as shown
in Fig. 1. P is the user’s mobile device and is registered
to the system in the initialization stage. The registration can
only be conducted when the communication between P and
S is guaranteed to be secure, i.e., when the attacker can
neither overhear nor tamper with the communication. To
register a mobile device, the user first sends S a registration
request which contains an identification proof such as the
username and password. S verifies the request and returns a
challenge, and the user generates a response corresponding
to the challenge with P and submits the response. S extracts
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P ’s acoustic fingerprint from the response and stores the
fingerprint for future verification.

We make the following assumptions for the acoustic mo-
bile authentication system. First, the verifier V can commu-
nicate with the server S through a secure wireless or wired
channel. Second, the prover P and V can communicate
via a short-range wireless channel (e.g., Bluetooth, WiFi, or
acoustic channels) which is not necessarily secure.

The system can identify P with the acoustic fingerprint
of its speaker, microphone, or speaker-microphone pair
which is termed as S-Print, M-Print, or SM-Print of P using
different challenges and responses. If S-Print is used, the
challenge specifies the input to P ’s speaker whose output
audio is the response. V records the audio with a built-in mi-
crophone and forwards the response to S . If P is identified
with its M-Print, the challenge is an audio generated by V ’s
speaker. P records the challenge audio with the its micro-
phone and submits the recorded audio as the response to S .
Finally, SM-Print involves P ’s speakers and microphones.
The challenge specifies the input to P ’s speaker, and P
records the output audio with its microphone as response. In
addition, the response in S-Print is an audio, and those in M-
Print and SM-Print are audio files. To clarify the difference,
we term the response in S-Print as an A-response and that
in M-Print or SM-Print as an F-response.

S-Print, M-Print, and SM-Print target different authen-
tication scenarios. S-Print and M-Print are suitable for
proximity-based authentication systems in which a stand-
alone verifier is available to verify the proximity of P to
V . The verifier can be a smart lock in an access control
system or a login terminal such as a laptop with which the
user tries to log into his online account. SM-Print is suitable
for self-proof authentication scenarios in which P directly
communicates with S . For example, a user may log into his
online account on the mobile device which is also used as
his prover. In this case, the challenge audio specified by S is
played by P ’s speaker and recorded by P ’s microphone.

3.2 Adversary Model

We consider an attackerAwho attempts to be authenticated
as P by the system. We have the following assumptions
aboutA: 1)A has no access to P and cannot compromise P ,
S , or V ; 2)A is aware of the used fingerprinting scheme and
has acquired some fingerprint(s) of P ; 3) A can launch the
attack with advanced equipment like high-fidelity speakers
and microphones. Our work focuses on the (in)security of
exploring acoustic fingerprints for mobile authentication,
and other security mechanisms such as encryption and
biometric-based verification are beyond the scope of this
paper. We thus consider the authentication system compro-
mised if A can bypass the acoustic-fingerprint verification.
A may obtain P ’s acoustic fingerprints through three

practical ways. First, A can overhear the communication
between P and V if the channel between them is insecure.
For example, the prover in an S-Print authentication system
transmits the response audio to V through the insecure
acoustic channel, and the audio can be captured by any
nearby microphones. A can thus obtain the response audio
by deploying a microphone around V and then use it to infer
P ’s acoustic fingerprint. In M-Print and SM-Print systems,

P may communicate with V through Wi-Fi or Bluetooth,
which are more secure than the acoustic channel. However,
A still gets a chance to obtain the communication content
by launching some advanced attacks such as the Man-in-
the-Middle attack proposed in [9]. Second, A can deploy a
phishing website or application which also adopts acoustic
authentication and requires the user to reveal P ’s acoustic
fingerprints. Finally, S must store P ’s fingerprint for verifi-
cation which may be exposed to A due to data leakage.

We consider two existing attacks (random impersonation
and replay) proposed by previous work [4] and a new attack
(fingerprint-emulation).
Random Impersonation. A impersonates P with his own
mobile device P̂ . A can obtain the model of P and uses a
device of the same model to launch the attack.
Replay Attack. A manages to obtain P ’s response and
replays it to the system. In particular, A starts an authen-
tication instance with his own device P̂ and sends a request
containing P ’s ID to S . When being asked for a response,
A submits P ’s response to S . An F-response, which is
an audio file, can be directly submitted through the short
range wireless channel between P̂ and V . To submit an A-
response, A plays the response audio to V with P̂ ’s speaker.
The Man-in-the-Middle attack proposed in Proximity-Proof
[4] is essentially a real-time replay attack, so we do not
investigate it individually.
Fingerprint-Emulation Attack.A manages to obtain one
fingerprint of P and then emulates it with his own mobile
device. Specifically, A first starts an authentication instance
with his own mobile device and then submits a forged re-
sponse corresponding to the challenge to S for verification.
If the target authentication system uses M-Print or SM-Print
for verification,A can submit the forged F-response through
the short-range wireless channel between A’s mobile device
and V . If the target authentication system adopts S-Print,
A plays the forged A-response with a high-fidelity speaker
which does not distort the forged A-response. Since P ’s
fingerprints corresponding to the same challenge are highly
consistent with a subtle variance, the classification methods
adopted by acoustic fingerprinting techniques can tolerate
this variance [1], [4], [6]. By perfectly emulating one finger-
print of the prover P , A can be authenticated just as P . We
demonstrate more details of this attack in Section 4.2 and
Section 5.3.

Another relevant attack is the co-located attack men-
tioned in [4], in which P and A are co-located around V .
No acoustic fingerprinting scheme alone can defeat this
attack, but the cross-device ranging method used in [8]
can be easily incorporated used as an effective defense. So
we do not consider this attack in this paper due to space
constraints.

3.3 Defense Strategy

The fingerprint-emulation attack is a common vulnerability
of acoustic mobile authentication systems, so we propose a
dynamic challenge-response mechanism as a defense. A mo-
bile device has multiple acoustic fingerprints corresponding
to different challenges. The attack can thus be thwarted if
the fingerprint used in each authentication session has never
been used before. Specifically, S stores multiple fingerprints
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of P referred to as the fingerprint pool and randomly
selects a fingerprint for each authentication instance. Every
fingerprint can be used only once. The system can update
the fingerprint pool when a secure channel betweenP and S
is available. To eliminate the risk of fingerprint exposure, the
user must update the the fingerprint pool with fingerprints
that are not revealed to any authentication system.

The amount ofP ’s distinct fingerprints (referred to as the
fingerprint space) is the primary concern about the dynamic
challenge-response defense. People may use a mobile device
for years, and thousands of authentication sessions may be
conducted during this period. If the fingerprint space is
not big enough, the dynamic challenge-response mechanism
cannot be adopted. In this paper, we investigate the physical
properties of the microphone and speaker and quantify P ’s
fingerprint space for each fingerprinting scheme. Then we
identify which schemes are more suitable for the dynamic
challenge-response mechanism.

4 FREQUENCY RESPONSE CURVE (FRC)
In this section, we study whether FRC fingerprints are
suitable for acoustic mobile authentication. We first outline
the authentication process in an FRC authentication system.
Then we discuss how to launch the fingerprint-emulation
attack against FRC. Next, we analyze the accuracy, de-
ployability, and security of FRC authentication systems.
Finally, we analyze the feasibility of using dynamic acoustic
challenges and responses to defend the FRC authentication
system against the fingerprint-emulation attack.

4.1 Authentication System

FRC is a hardware feature of a speaker or microphone
associated with its linear properties. The gain factor of a
speaker or microphone is sensitive to frequency, and the
FRC represents the magnitudes of the gain factor over a
frequency range. Due to manufacture imperfection, the FRC
of every acoustic element is unique and can be used to
identify the element.

FRC authentication systems based on S-Print, M-Print,
and SM-Print identify P with the FRC of its speaker, mi-
crophone, and speaker-microphone pair, respectively. For S-
Print and M-Print, the challenge specifies the input signal to
the fingerprinted acoustic element, and the system obtains
the FRC by measuring the amplitude ratio of the output
signal to the input signal at each frequency. For SM-Print,
P generates an audio with its speaker and also records the
audio with its microphone. The joint FRC of the speaker-
microphone pair can be obtained by measuring the ampli-
tude ratio of the microphone’s output signal to the speaker’s
input signal.

To improve accuracy and reduce latency, authentication
systems preselect multiple frequencies and measure the gain
factors at the selected frequencies as FRC. The input and
output signals of the fingerprinted acoustic element(s) are
discrete in the frequency domain and only contain mea-
surements at the selected frequencies. Since manufactures
typically do not care about the mobile acoustic element’s
performance in the inaudible range (>18 kHz), the FRCs of
mobile acoustic elements are quite uneven and drastically

different in the inaudible range. Authentication systems
usually adopt the FRC between 18 kHz and 22 kHz (the
cut off frequencies of most mobile acoustic elements) as the
fingerprint. For example, Proximity-Proof [4] selects 21 fre-
quencies ranging from 18 kHz to 20 kHz with a step length
of 100 Hz and uses the microphone and speaker’s gain
factors at the selected frequencies as the device’s acoustic
fingerprint. An FRC fingerprint can be denoted by a vector
〈α1, α2, ..., αn〉, where each αi denotes the gain factor at the
ith selected frequency.

4.2 Fingerprint-Emulation Attack
The process of this attack has been presented in Section 3.2.
So we only explain how to conduct it in FRC authentication
systems.
SM-Print. Being aware of the prover P ’s SM-Print and the
challenge, the attacker A can obtain the FRC of P ’s speaker-
microphone pair and the input signal to the speaker. Then
A multiplies the spectrum of the input signal by the FRC of
P ’s speaker-microphone pair to obtain the spectrum of the
response. Specifically, the input signal consists of multiple
frequency components, and A multiplies the amplitude of
each frequency component by the corresponding gain factor
of P ’s speaker-microphone pair. Finally, A can reproduce
the response by applying Inverse Fast Fourier Transform
(IFFT) to the obtained spectrum.
M-Print. A multiplies the spectrum of the challenge audio
by the FRC of P ’s microphone to obtain the spectrum
of the response. For this purpose, A uses a high-fidelity
microphone with flat FRC to capture the challenge audio
and obtains the spectrum through Fast Fourier Transform
(FFT). The FRC of P ’s microphone can be obtained from
P ’s M-Print. Then A reproduces the response by applying
IFFT to the response’s spectrum.
S-Print. A can obtain the FRC of P ’s speaker from P ’s
S-Print and the spectrum of the speaker’s input from the
challenge. Then A multiples the spectrum of the input
signal by the FRC of P ’s speaker and applies IFFT to the
obtained spectrum to recover the response audio. Finally, A
reproduces the A-response by playing the response audio
with a high-fidelity speaker whose FRC is flat.

4.3 Pros & Cons of FRC Authentication
Accuracy. The Accuracy of FRC fingerprinting schemes has
been thoroughly investigated. The results in [1], [3], [4] show
that mobile devices can be identified with the FRCs of their
speakers, microphones, or speaker-microphone pairs with
accuracy above 98%.
Deployability. The verifier for SM-Print does not af-
fect the response generation, so the system is naturally
verifier-agnostic and deployable. The method proposed in
Proximity-Proof can be used to extract a verifier-agnostic S-
Print and M-Print of the prover P [4]. This method only
requires that P and the verifier V both be equipped with
COTS microphones and speakers that each costs at most a
few dollars. Therefore, S-Print and M-Print system options
are both deployable.
Security. Mobile devices can be accurately distinguished
based on their acoustic fingerprints, so FRC authentication
systems are robust to random impersonation.
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M-Print and SM-Print system options are both vulner-
able to the replay attack, which is nevertheless ineffective
against S-Print. To launch the replay attack against an
M-Print or SM-Print system, the attacker A can directly
submit the acquired F-response of P through the short-
range wireless channel between A’s mobile device P̂ and
V , and P̂ ’s acoustic components are not involved in this
process. Since the response indeed contains P ’s fingerprint,
the system identifies A as P and is thus compromised.
To launch the replay attack against an S-Print system, A
replays the obtained A-response of P with P̂ ’s speaker. The
FRC of P̂ ’s speaker distorts the replayed response audio as
well as the extracted fingerprint. Consequently, A fails to
reproduce a response containing P ’s fingerprint and thus
cannot compromise the S-Print system.

As a more severe threat, the fingerprint-emulation attack
can compromise S-Print, M-Print, and SM-Print. Specifically,
the reproduction of F-response is essentially the inverse
process of fingerprint extraction. Therefore, the fingerprint
extracted from the reproduced F-response is identical to
P ’s fingerprint, and thus A can pass the verification. Re-
producing an A-response is more challenging because A’s
speaker is involved in the response generation. The flat FRC
of the high-fidelity speaker has no impact on the spectrum
of response, and thus the fingerprint extracted from the
reproduced A-response is identical to P ’s S-Print.

We conducted an experiment to show the feasibility of
reproducing an A-response. We used 20 devices as targeted
prover devices in the experiment, and Table 1 lists the device
models. The number in the bracket following each model in-
dicates the quantity of devices of this model. The 20 devices
listed in Table 1 were used for all the remaining experiments
in this paper. We used a laptop as V and adopted the flat
stimulation specified in [4] as the challenge. We reproduced
the response with a Pettersson L400 ultrasound speaker [10].
The Pettersson L400 ultrasound speaker can generate sound
waves from 10 kHz to 110 kHz and has a relatively flat FRC
between 18 kHz and 22 kHz. We adopted the stimulation
specified in [4] as the challenge. The ultrasound speaker was
connected to a laptop, and we used Audacity [11] to specify
the audio generated by the speaker.

In the experiments, the 20 devices were chosen as P one
by one. For a chosen P , we first used P to generate the
benign A-response. Specifically, the input to P ’s speaker
was the flat stimulation which contained multiple tones
at pre-selected frequencies with the same amplitude [4].
P ’s speaker generated the response audio with the maxi-
mum sampling frequency (44.1 kHz for iOS devices and 48
kHz for Android devices) for 20 ms, and V ’s microphone
recorded the audio at a sampling rate of 44.1 kHz. The
fingerprint extracted from the benign A-response was used
as the fingerprint profile stored in S . Then we inferred
the response spectrum and used the ultrasound speaker
to forge the response. Since the flat stimulation contains
multiple tones at pre-selected frequencies with the same
amplitude, the response audio contains tones at the same
frequencies with the stimulation. The amplitude of each
tone can be obtained by multiplying the amplitude of the
stimulation tone by the gain factor of the speaker at the
corresponding frequency, which can be obtained from P ’s

S-Print and is known to A. We used the ultrasound speaker
to reproduce the inferred response spectrum. We generated
100 forged responses for each prover device and obtained
totally 2,000 forged response from which we extracted 2,000
forged fingerprint samples. We calculated the Euclidean dis-
tances between the 2,000 fingerprint samples and the corre-
sponding fingerprint profile. Only two distances were larger
than 0.2, which is the threshold adopted by Proximity-
Proof to distinguish different devices. In other words, only
two forged responses were correctly identified as illegal.
The high-fidelity ultrasound speaker has a flat FRC in the
frequency range used by acoustic fingerprints, and thus it
can reproduce the response spectrum and emulate the FRC
of P ’s speaker with only a subtle distortion. Therefore, the
fingerprint-emulation attack can achieve a success rate as
high as 99.8%.

TABLE 1
Mobile devices in experiments.

Android
devices
(12)

Nexus 5 (2), Nexus 7 (2), Google Pixel 2
(2), Google Pixel 3 (2), Samsung S5 (2),
and Samsung S7 (2)

iOS
devices
(8)

iPhone 5 (1), iPhone 5s (1), iPhone 6 (3),
iPhone XR (1), iPad 2 (2), and iPad 4 (1)

4.4 Dynamic Challenge-Response

A dynamic challenge-response mechanism outlined in Sec-
tion 3.3 can enhance the security of FRC authentication
systems. Both the replay and fingerprint-emulation attacks
can be defeated because the fingerprints that may have been
exposed to the attacker A are never reused.

The primary concern about the dynamic challenge-
response defense is the amount of distinct acoustic finger-
prints of the prover P . Two distinct FRC fingerprints should
not contain any common gain factor to be distinguishable.
In what follows, we first demonstrate how we quantify
distinct S-Prints of P for FRC systems and then provide
the fingerprint spaces of M-Print and SM-Print obtained
through similar processes.

Since each S-Print contains the speaker’s gain factors
at multiple frequencies, we first investigate the minimal
number K of gain factors needed for accurate device identi-
fication through experiments. The results in Proximity-Proof
show that a mobile device can be accurately identified with
its speaker’s gain factors at 21 frequencies ranging from
18 kHz to 20 kHz [4]. In our experiments, we selected
the first m gain factors as the S-Print and calculated the
corresponding accuracy for different values of m. For each
m, we extracted the S-Prints of each device in Table 1 for
20 times and obtained 400 fingerprint samples. We then
used the method proposed in Proximity-Proof [4] to identify
the device associated with each fingerprint sample and
calculated the accuracy. We tested 20 values from 2 to 21 for
m. The accuracy increases withm. Whenm is larger than 10,
mobile devices can be identified with accuracy above 95%,
and the benefit of further increasing m is insignificant when
m exceeds 10. We therefore chose K to be 10.



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3053282, IEEE
Transactions on Mobile Computing

6

Next, we investigate the number of distinct gain factors
of a speaker. We assume that a fingerprint 〈α1, α2, . . . , α10〉
is chosen by the system. Here, αi is the ith gain factor
contained in the fingerprint, and we denote the frequency
corresponding to αi by χi. Under the dynamic challenge-
response mechanism, A cannot obtain any αi. However,
A may have obtained α̂i whose corresponding frequency
χ̂i is close to χi and then use α̂i as αi to launch the
fingerprint-emulation attack. The difference between χ̂i and
χi is denoted by ∆χi. Without loss of generality, we assume
that ∆χ1 = ∆χ2 = · · · = ∆χn = ∆χ.

The gain-factor variance of an acoustic component
within a small frequency range is insignificant even in the
high frequency domain [14]. If ∆χ is not sufficiently large,
the two fingerprints 〈α1, α2, . . . , α10〉 and 〈α̂1, α̂2, . . . , α̂10〉
are very likely to be indistinguishable, and thus A is iden-
tified as P and authenticated. We conducted an experiment
to obtain the minimal ∆χ to defeat the attack. We tested
10 values ranging from 10 Hz to 100 Hz with a step length
of 10 Hz and measured the success rate of the attack for
each value of ∆χ. More specifically, the 20 devices were
chosen as P one by one. For a chosen P , we randomly
selected 10 frequencies (χ1, ..., χ10) from the 21 frequencies
used in Proximity-Proof. The gain factors of P ’s speaker on
the selected frequencies were extracted as the S-Print F . We
then extracted the speaker’s fingerprint F̂ on frequencies
〈χ1 + ∆χ, ..., χ10 + ∆χ〉. The experiment was repeated 10
times for each device, and we calculated the ratio that F̂
is not distinguishable from F (i.e., the success rate of the
attack) for each ∆χ. Fig. 2 shows our experiment results.
The success rate of the attack decreases with the increase
of ∆χ, and the fingerprint-emulation attack can be defeated
(i.e., the success rate below 5%) when ∆χ is larger than
60 Hz. We meet the requirement for ∆χ by choosing the
fingerprint frequencies from a set of predetermined values
with sufficient gaps. In particular, 66 frequencies ranging
from 18 kHz to 21.96 kHz with a step length of 60 Hz are
chosen as the candidate frequencies. For each authentication
attempt, the system randomly selected 10 frequencies from
the candidate frequencies. Since each candidate frequency
can be chosen only once, the speaker has b66/10c = 6
distinct FRC fingerprints. This fingerprint space is obviously
too small for mobile authentication.
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Fig. 2. Success rates of the fingerprint-emulation attack.

We conducted similar experiments and derived the fin-
gerprint space of M-Print and SM-Print as 5 and 6, respec-
tively. Therefore, FRC authentication systems based on M-

Print, S-Print, and SM-Print are all still vulnerable to the
fingerprint-emulation attack due to the very small finger-
print space.

4.5 Summary of FRC System Performance
We summarize the pros and cons of FRC authentication
systems in Table 2. The accuracy is evaluated based on the
ratio of acoustic fingerprints whose corresponding devices
are correctly identified. The deployability is evaluated based
on the hardware with which V must be equipped. The se-
curity is evaluated based on whether the system is resilient
to specific attacks (indexed as ’yes’ or ’no’) and whether the
dynamic challenge-response (shortened as dynamic C-R in
the table) is adoptable.

TABLE 2
Pros & cons of FRC authentication systems.

Fingerprint scheme S-Print M-Print SM-Print
Accuracy 99.5% [4] 99.5% [4] 98% [3]

Deployability COTS microphones
and speakers [4]

none [3]

Security

Impersonation yes
Replay attack yes no no
Fingerprint-
emulation

no

Dynamic C-R not adoptable

5 ACOUSTIC NONLINEAR PATTERN (ANP)
ANP is a hardware feature of an acoustic element related
to its nonlinear properties. Due to the nonlinear relation be-
tween the input and output signals shown in Eq. 2, the out-
put signal contains new frequency components not present
in the input signal [12], [13], and those new frequency
components are referred to as distortion components. Our
subsequent discussion refers to ANP as the amplitudes of
distortion components produced by the nonlinearity of the
speaker, microphone, or both. Different speakers or micro-
phones have distinct ANPs for the same input signals.

In the device-to-device authentication system NAuth [6],
ANP is used to distinguish different speaker-microphone
pairs. NAuth is quite effective in the targeted application
scenarios but is not verifier-agnostic. Here we extend NAuth
[6] by introducing two ANP authentication systems, M-ANP
and SM-ANP, which identify P using the ANP fingerprints
of its microphone and speaker-microphone pair, respec-
tively. We do not consider identifying P with its speaker’s
ANP fingerprint because it is difficult to extract verifier-
agnostic ANP fingerprints of a speaker. In particular, in
order to extract a speaker’s fingerprint, a microphone must
be used to capture the speaker’s output audio. Most micro-
phones, including high-quality ones, exhibit significant non-
linearity in the high frequency domain. The high-frequency
audio that can invoke the speaker’s nonlinear distortion
can also cause distortion at the microphone. Therefore the
distortion components in the recorded audio is affected
by the microphone and cannot be used to fingerprint the
speaker alone.

In this section, we first illustrate M-ANP and SM-ANP
and then present a tailored fingerprint-emulation attack.
After evaluating M-ANP and SM-ANP, we study whether
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the dynamic challenge-response defense can be adopted by
those two systems.

5.1 M-ANP

M-ANP is an M-Print authentication system, and the system
model has been demonstrated in Section 3. Here, we only
discuss how to extract P ’s ANP fingerprint.

5.1.1 Challenge audio

M-ANP uses a high-frequency audio with two tones as
the challenge audio played by verifier V to prover P . In
particular, the challenge audio Sin is generated as

Sin = A1 cos(2πf1t) +A2 cos(2πf2) . (3)

The nonlinearity of the microphone in COTS smart-
phones and smartwatches is more significant in the high
frequency range above 18 kHz [13]. So we require f2 >
f1 ≥ 18 kHz. Since the nonlinear coefficient gi in Eq. (2)
of a common microphone is negligible for i ≥ 3 [12],
the nonlinear output of A’s microphone before low-pass
filtering can be approximated by

Sout ≈ g1Sin + g2S
2
in

=
g2

2
(A2

1 +A2
2) + g1A1 cos(2πf1t) + g1A2 cos(2πf2)

+
g2A

2
1

2
cos(4πf1t) +

g2A
2
2

2
cos(4πf2t)

+ g2A1A2

(
cos(2π(f2 + f1)t) + cos(2π(f2 − f1)t)

)
.

(4)
Since a typical microphone’s cutoff frequency is 22 kHz, the
frequency components at 2f1, 2f2, and f2 +f1 in Sout cannot
be recorded. We additionally require f2 − f1 < 18 kHz
so that the distortion component g2A1A2 cos(2π(f2 − f1)t)
can not only be recorded but also be differentiated from
the two tones at f1 and f2, respectively. As we will see
shortly, this distortion component is used to construct the
ANP fingerprint of P .

5.1.2 Challenge audio generation

Verifier V cannot use an ordinary speaker to generate Sin. In
particular, different COTS speakers exhibit distinct and sig-
nificant nonlinearity in the high-frequency range above 18
kHz. So Sin would invoke the speaker’s nonlinear distortion
that would further result in many low-frequency distortion
components in its output. Such unwanted distortion compo-
nents can be recorded and mixed with those induced by P ’s
microphone. The fingerprint extracted from the recorded
audio would thus be tied to both P ’s microphone and V ’s
speaker, which violates the verifier-agnostic requirement.

We propose a cost-effective solution based on COTS
ultrasound transducers which each costs at most several US
dollars. In particular, we let each verifier use two ultrasound
transducers with each generating a unique tone in Sin. Al-
though ultrasound transducers also exhibit nonlinearity, the
resulting distortion components are in the high-frequency
range above 22 kHz and thus cannot be recorded by P ’s
microphone. To see this more clearly, consider an arbitrary

transducer i ∈ [1, 2]. The input to transducer i is an elec-
trical signal A′i cos(2πfit), and the corresponding nonlinear
output can be modeled as

Ti ≈ g1,iA
′
i cos(2πfit) + g2,i(A

′
i cos(2πfit))

2

= g1,iA
′
i cos(2πfit) +

g2,iA
′2
i

2
(1 + cos(4πfit)) ,

(5)

where g1,i and g2,i denote the first-order and second-order
coefficients of transducer i, respectively. Since we require
that fi ≥ 18 kHz, the distortion component at 2fi cannot be
recorded by P ’s microphone. In addition, the DC compo-
nent can be easily filtered from the audio recording.

We further use a simple calibration to extract transducer-
agnostic and thus verifier-agnostic fingerprints. In particu-
lar, each g1,i corresponds to the gain of transducer i which
is a standard parameter in the technical specification of the
transducer. Since different transducers may have distinct
gain factors, we set A′i = Ai/g1,i. Therefore, the effective
output from transducer i with regard to A’s microphone
is g1,iA

′
i cos(2πfit) = Ai cos(2πfit), which is exactly the

challenge tone Ti we need in Eq. (3).

5.1.3 Fingerprint extraction and matching

The absolute amplitude of the distortion component at fre-
quency f2−f1 cannot be directly used as P ’s fingerprint due
to the Automatic Gain Control (AGC) system in common
microphones. Specifically, the system automatically adjusts
the microphone gain according to the perceived sound vol-
ume. So the measured amplitude at frequency f2 − f1 may
vary considerably for different verifiers and/or verifier-A
distances instead of equaling the ideal constant g2A1A2.

Since the AGC system affects all the frequency compo-
nents almost equally [15], we propose to use the relative
amplitude as P ’s fingerprint. For this purpose, we add a
reference tone A0 cos(2πf0t) to Sin, which is played by an
additional transducer at the verifier. Here, A0 and f0 are
both system constants. We require f0 much below 18 kHz
and also any possible f2 − f1 so that A0 cos(2πf0t) incurs
negligible nonlinear distortion at the microphone. Then we
define the fingerprint element as the absolute amplitude of
frequency f2 − f1 divided by that of frequency f0.

M-Print uses κ ≥ 1 different challenge audios that differ
in frequencies and/or amplitudes in each authentication
session, leading to κ fingerprint elements. P ’s fingerprint
is extracted as ΘM = 〈θ1, ..., θκ〉, where θi denotes the fin-
gerprint element corresponding to the ith challenge audio.
The larger κ, the longer the authentication time, the higher
distinguishable ΘM, the more reliable the authentication
result, and vice versa.

We also need to mitigate the impact of ambient noise
to extract ΘM. For this purpose, we let the verifier play
each challenge audio for a duration of ω and then keep
silent for ω. Meanwhile, P ’s microphone kept recording
with a sampling frequency of 44.1 kHz. The ambient noise
can be considered constant during this short duration (e.g.,
ω = 50 ms in our experiment). After applying fast Fourier
transform to the audio captured by P ’s microphone, we
subtracted the noise spectrum in the silent period from
the audio spectrum in the non-silent period. The resulting
differential spectrum was used to extract the “noise-free”
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fingerprint for this challenge audio. This process was re-
peated multiple times, and the average result was used as
ΘM for final verification by the authentication server.

We use the scaled Euclidean distance to compare two fin-
gerprints to avoid the dominance of large-valued elements.
In particular, assume that the authentication server stores
an authentic fingerprint Θ′M for the κ challenge audios. It
compares Θ′M with the extracted ΘM by computing

diff(ΘM,Θ
′
M) =

√√√√ κ∑
l=1

(
θl − θ′l
θl + θ′l

)2

. (6)

If diff(ΘM,Θ
′
M) is no larger than a system threshold τM, the

authentication server considers the responses from P and
authenticate the request. κ and τM are obtained through
experiments. We tested 20 candidate values ranging from
1 to 20 for κ. For each value, we obtained the corresponding
τM and calculated the identification accuracy.

We use the F1 score to obtain τM corresponding to a
specific κ. Two Prowave 250ST160 transducers [16] were
used to generate the challenge, and two Agilent 33220A
signal generators [17] were used to power the transducers.
We chose 10 challenges that each contains κ challenge au-
dios. The frequencies of the challenge tones were randomly
selected, and the output voltages of the signal generators
were fixed as 10 V. For each of the 20 devices, we extracted
its fingerprints corresponding to each of those 10 challenges
for 20 times and totally got 4,000 testing fingerprint sam-
ples. The distance between transducers and the device’s
microphone, denoted by d, may also has impacts on the
amplitudes of distortion components and thus affects the
ANP fingerprint. We randomly chose a value between 10
cm and 25 cm as d in each experiment so that the obtained
κ and τM are robust to slight changes of d. Then the 20
devices were chosen as P one by one. When a devices was
chosen as P , the rest 19 devices were considered unauthen-
ticated, and we extracted P ’s fingerprints corresponding to
the 10 selected challenges one more time as the reference
fingerprints for later classification. Then we tried 20 values
ranging from 0.05 to 1 with a step of 0.05 as τM to identify
whether each testing sample comes from the prover. Based
on the classification result, we calculated the F1 scores
corresponding to each τM as follows:

F1 score =
2

1
Recall + 1

Precision

Precision = TP
TP+FP

Recall = TP
TP+FN .

(7)

Here, TP denotes the number of fingerprint samples cor-
rectly recognized as being the fingerprints of P ; FP and
FN denote the number of fingerprint samples incorrectly
recognized as being and not being the fingerprints of P ,
respectively. The F1 score is an important metric to evaluate
the accuracy of the binary classification method. A high Pre-
cision value guarantees that malicious devices are detected
with a high possibility, and a high Recall value guarantees
that the legal device is misidentified as illegal with a low
possibility. A high F1 score ensures that both Precision and
Recall are high. For one evaluated value of τM, we obtained
20 F1 scores with different devices chosen as P . We chose
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(b) F1 score corresponding to different threshold (κ =
12).

Fig. 3. F1 score corresponding to different κ and threshold.

the evaluated value with the highest average F1 score as τM.
The maximum average F1 scores corresponding to dif-

ferent κ are shown in Fig. 3(a). With the increase of κ,
the maximum average F1 score increases. The system can
achieve an average F1 score of 0.96 with an average Pre-
cision of 97.6% and an average Recall of 95.2% when κ
is 12. However, the benefit of increasing κ is insignificant
when κ is larger than 12. In particular, the system achieve
average F1 scores of 0.964 and 0.965 with κ equaling 13 and
14, respectively. Compared with the performance adopting
κ = 12, the average F1 score increases by less than 0.5%,
while the challenge audio length increases by more than 8%.
To avoid unnecessary time consumption, M-ANP adopts
κ = 12. Fig. 3(b) shows the average F1 scores corresponding
to different thresholds when κ is 12. A threshold of 0.2
achieves the highest average F1 score, so we adopt 0.2 as
τM. With κ = 12 and τM = 0.2, we can identify the devices
associated with the 4,000 fingerprint samples with accuracy
of 96.4%.

5.1.4 Overall performances of M-ANP
We further evaluated M-ANP in three common scenarios
with different noise volumes: the office, the store, and the
restaurant. Due to hardware constraints, we can only con-
duct the experiment in the lab. So we recorded the ambient
noise in those scenarios and played the recording when we
conducted the experiments to emulate those scenarios.
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TABLE 3
The overall performance of M-ANP.

M-Print office store restaurant
Precision 97.2% 94.7% 94.1%

Recall 95.1% 93.7% 92.5 %
F1 score 0.96 0.94 0.93

We used the 20 mobile devices listed in 1 to evaluate the
performance of M-ANP. We randomly selected 10 challenges
and extracted every device’s fingerprints corresponding to
each challenges for 80 times (20 times in each scenario). For
each scenario, we had obtained a testing set that contained
400 fingerprint samples. The 20 mobile devices were se-
lected as the prover one by one, and the rest 19 devices were
considered unauthentic. We extracted the chosen devices
fingerprints corresponding to those 10 challenges without
playing the recorded noise and used the extracted finger-
prints as the references. Then we distinguished whether the
fingerprints in the testing sets are associated to the prover
or not and calculated the Precision and Recall. After all the
20 devices had been chosen as the prover, we calculated
the averaged Precision and Recall for each scenario, and the
results are shown in Table 3. M-ANP performs best in the
office scenario. The performances in noisy scenarios, such as
the store and restaurant scenarios, are comparable to that in
the office.

5.2 SM-ANP
5.2.1 Challenge audio
SM-ANP adopts the AM modulated signal used in NAuth
[6] as the input to P ’s speaker. The challenge signal is
obtained by modulating a baseband signal of frequency fb
upon a carrier signal of frequency fc and is represented by

Sin = Afc sin(2πfct)(1 +Afb sin(2πfbt)) . (8)

The challenge in SM-ANP specifies fc, fb, Afc , and Afb .
We invoke the speaker on P through a standard API which
takes a discrete sequence of amplitude values sampled from
an sound wave as input and outputs the corresponding au-
dio. For this purpose, we sample Sin at a common speaker’s
maximum sample rate fs = 48 kHz to obtain the following
sequence as the input to the speaker API:

Ŝin[i] = Afc sin(2πfci/fs)(1 +Afb sin(2πfbi/fs)) , (9)

where Ŝin[i] denotes the ith element for all i = 1, 2, . . . . Sin
can invoke significant nonlinear distortion of the speaker-
microphone pair on P , which results in many distortion
components in the output of P ’s microphone with a cutoff
frequency of 22 kHz. According to Eq. (2) and trigonomet-
ric expansion, these distortion components are at frequen-
cies nfc, mfb, and nfc ± mfb, where k,m, n ∈ N and
nfc,mfb, nfc ±mfb < 22 kHz [6].

We carefully select fc and fb to enhance the nonlin-
ear distortion components in the microphone’s output. In
particular, we find that many distortion frequencies are
actually the same for different combinations of k,m, and
n. For example, if fc = 20 kHz and fb = 5 kHz, we have
2fb = fc− 2fb = 10 kHz. Based on this observation, we can

stack up the distortion components so that their combined
effect is more profound. For this purpose, we set fc = nfb
(n ∈ N+), resulting in b22 kHz/fbc distortion components
at frequencies {kfb|1 ≤ k ≤ b22 kHz/fbc}).

The next issue is to decide the feasible values for fb
and fc. Assume that Afc and Afb are fixed for the time
being. The microphone can record b22 kHz/fbc distortion
components, each corresponding to one fingerprint element
of prover P . If fb is set too large, very few fingerprint
elements can be obtained and thus may be insufficient to
distinguish a large number of devices. On the other hand,
if fb is set too small, there may be too many distortion
components whose amplitudes may be too small given the
fixed total power of the recorded audio, and such weak
distortion components may be indistinguishable from noise
and thus would dramatically decrease the identification
accuracy. So we select fb from a range [fb,min, fb,max). In
addition, the nonlinearity of speakers and microphones is
more significant in the inaudible domain, and the cutoff
frequency of the speaker in common mobile devices is
24 kHz. So we set 18 kHz ≤ fc < 24 kHz with fc being
a multiple of fb.

In SM-ANP, prover P generates the audio with the
highest possible volume to maximize the nonlinear distor-
tion. In particular, the strength of nonlinear distortions is
significantly affected by the modulation depth defined as
ζ = Afb/Afc [6], [13], which should neither be too large nor
too small. SM-ANP selects ζ from a predetermined range
[ζmin, ζmax), which can be empirically determined as well.
Once ζ is chosen, we maximize Afc and Afb under the
constraint that the maximum value of sample Ŝin[i] does
not exceed the default peak value defined by the operating
system (e.g., 32767 in Android).

5.2.2 Fingerprint extraction and matching

Let θ′i denote the amplitude of the ith distortion component
at frequency ifb for all 1 ≤ i ≤ β. We define the fingerprint
of P for specific fb, fc, and ζ as ΘSM = 〈θ1, . . . , θβ〉, where

θi =
θ′i√∑β
j=1 θ

′
j
2
. (10)

We use the normalized amplitudes instead of absolute val-
ues to counteract the impact of the AGC system. We also
adopt the method demonstrated in Section 5.1.3 to mitigate
the impact of ambient noise.

SM-ANP also uses the scaled Euclidean distance as in
Eq. (6) to measure the fingerprint similarity. If the calculated
distance does not exceed a system threshold τSM, the authen-
tication server considers prover P and thus authentic, and
vice versa.

5.2.3 Parameters for SM-ANP

We now explain how to obtain the pre-determined parame-
ters of SM-ANP.
fmin
b , fmax

b , and τSM. The 12 android devices listed in
Table 1 were used in the experiment. We fixed ζ as 100%
and tried 30 frequencies ranging from 100 Hz to 3 kHz with
a step length of 100 Hz as fb. For each frequency fb, we set
fc = d 18 kHz

fb
efb. We obtained totally 30 challenges and used
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TABLE 4
The overall performance of SM-ANP.

SM-Print office store restaurant
Precision 96.3% 92.6% 93.1%

Recall 95.2% 92.1% 91.7 %
F1 score 0.96 0.92 0.92

the F1 mesurement as in M-ANP to obtain the correspond-
ing τSM and average F1 score. The average F1 score is above
0.95 when fb is between 700 Hz and 2 kHz and dramatically
lower when fb is out of this range. We therefore chose 700
Hz and 2 kHz as fmin

b and fmax
b , respectively. Among the 16

frequencies within [fmin
b , fmax

b ], we found that 0.15 is the
optimal threshold for 10 of them, and the average F1 score
under this threshold is above 0.95 for the rest 6 frequencies
as well. Based on this finding, we chose τSM = 0.15. With
τSM = 0.15, we can identify the devices associated with the
collected fingerprint with an accuracy of 95.3%.
ζmin and ζmax. The same 12 android devices were used in
this experiment. The impact of ζ is more significant when
the amplitudes of the distortion components are small. So
we fixed fb and fc as 700 Hz and 18.2 kHz, respectively.
We increased ζ from 50% to 150 % with a step length of
5% and obtained the corresponding averaged F1 score for
each value. We found that the averaged F1 score is above
0.95 whenMd is between 75% and 110% and therefore chose
ζmin = 75% and ζmax = 110%.

5.2.4 Overall performances of SM-ANP

We further evaluated SM-ANP in office, store, and restau-
rant scenarios with the 12 android devices. We randomly
selected 10 challenges and used the same way as we did
with M-ANP to obtain the Precision and Recall of SM-
ANP in three scenarios. To avoid redundancy, we omit the
description of the experiment details and only show the
results in Table 4. Similarly to M-ANP, SM-ANP performs
best in the office and comparably well in the store and
restaurant. Since the speaker’s power is weaker compared
with the transducer’s, the dynamic noise’s impact to SM-
ANP is more significant.

5.3 Fingerprint-Emulation Attack

In S-ANP and SM-ANP, prover P ’s fingerprint partially re-
veals the spectrum of the response. In S-ANP, the fingerprint
reveals the amplitude ratio θ of the distortion component
to the reference tone. Attacker A can forge a response
by setting the amplitude of the distortion component as
θ multiplied by the reference tone’s amplitude. In SM-
ANP, the fingerprint reveals the normalized amplitudes of
distortion components. Attacker A can forge the response
by using each fingerprint element as the amplitude of the
corresponding distortion component. S-ANP and SM-ANP
both use F-response, so A can directly submit the forged
response to the system through the short range wireless
channel between A and V .

The generation of the forged response is essentially the
inverse process of fingerprint extraction, so the fingerprint

extracted from the forged response is identical to P ’s fin-
gerprint. The system identifies A as P and is thus compro-
mised.

5.4 Pros and Cons of ANP Authentication
Accuracy. Our above experimental results show that the
device can be identified using its ANP M-Print and ANP
SM-Print with accuracy of 96.4% and 95.3%, respectively.
Therefore, ANP fingerprint schemes are sufficiently accurate
for mobile authentication.
Deployability. SM-ANP is naturally verifier-agnostic be-
cause V ’s acoustic elements have no impact on the response.
M-ANP can also be verifier-agnostic by adopting the simple
calibration as we demonstrated previously.
Security. M-ANP and SM-ANP are both resilient to random
impersonation due to the high accuracy of ANP finger-
prints. Since both M-ANP and SM-ANP adopt F-responses
(i.e., audio files as responses), they are vulnerable to replay
and fingerprint-emulation attacks.

5.5 Dynamic Challenge-Response for M-ANP
A straightforward defense against both replay and
fingerprint-emulation attacks is to let the authentication
server issue unique challenge audios for different authen-
tication sessions to prevent possibly exposed fingerprints
from being used for launching fingerprint-emulation attack.
Specifically, the authentication server randomly selects κ
tone pairs as the challenge for each authentication session
and never reuses the same set of κ tone pairs in the future.
However, even a subset of reused tone pairs can be used
to launch the fingerprint-emulation attack. In what follows,
we first quantify the amount of distinct tone pairs and then
analyze the resilience of the dynamic challenge-response M-
ANP.

5.5.1 ANP M-Print space
To estimate the fingerprint space of M-Print, we first
examine the impact of tone frequencies and amplitudes
on the distortion components (or equivalently finger-
print elements). Consider two arbitrary challenge tones
A1 cos(2πf1t) and A2 cos(2πf2t). Ideally, this tone pair
would result in a distortion component at frequency f2− f1

with amplitude ai,j = g2A1A2. However, we observe from
experiments that g2 is not a constant but depends onA1,A2,
f1, and f2. Due to ambient noise and measurement errors,
this distortion component may appear at a slightly different
frequency and with a slightly different amplitude. Even
worse, it may be very similar to the distortion component
induced by a different tone pair, say A′1 cos(2πf ′1t) and
A′2 cos(2πf ′2t).

To guarantee sufficient distinguishably among differ-
ent distortion components, it is necessary to ensure that
no two tone pairs are very similar in both frequencies
and amplitudes. We thus have the following criteria: (1)
max{|f1 − f ′1|, |f2 − f ′2|} ≥ hf ; (2) max{|A1 − A′1|, |A2 −
A′2|} ≥ ha. As long as at least one criterion is satisfied, the
two resulting distortion components can be distinguished
with overwhelming probability.

We meet the above requirements by choosing the fre-
quency and amplitude of each challenge tone from a set
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of predetermined candidate tones with sufficient gaps. In
particular, let fmax and fmin denote the highest and lowest
acoustic frequencies that can induce significant nonlinear
distortion of the microphone, respectively. For example, we
can set fmin = 18 kHz and fmax = 50 kHz according
to [12]. The number of possible tone frequencies is then
Nf = d(fmax − fmin)/hfe. In addition, let Amax and Amin

denote the highest and lowest possible tone amplitudes,
respectively, leading to Na = d(Amax − Amin)/hae possible
amplitudes for each tone. Amax depends on the maximum
working voltage of the transducer, and Amin must be suf-
ficiently large to induce nontrivial nonlinear distortion and
can be obtained through experiments.

Given that f2 − f1 must be smaller than 18 kHz, we
estimate the size of the fingerprint space as follows. For
simplicity, assume that 18 kHz can be divided by hf such
that λ = 18kHz

hf
. When f1 is smaller than fmax − 18 kHz,

all the λ frequencies within the range [f1, f1 + 18 kHz] can
be used as f2. When f1 is larger than fmax − 18 kHz, there
are fmax−f1

hf
frequencies that can be used as f2. Therefore,

there are total λNf − λ(λ + 1)/2 tone-frequency pairs.
Since each tone has Na possible amplitudes, there are
ψM = (λNf−λ(λ+1)/2)N2

a distinct tone pairs, each leading
to a unique distortion component (or fingerprint element).
Prover P may have Nmic ≥ 1 microphones. For example,
iPhone models starting from 6s and 6s+ all have four micro-
phones. So we can have NM = NmicψM unique fingerprint
elements of P , leading to

(NM
κ

)
distinct fingerprints in total

for a challenge with κ audio.

5.5.2 System parameters

Now we discuss how we obtained Amin, hf , and ha through
experiments involving the same set of 20 devices shown in
Table 1. Two Prowave 250ST160 transducers were used to
generate the challenge audio, and two Agilent 33220A signal
generators were used as the power supply.

We obtained the transducer’s minimum input voltage
Vmin instead of Amin. We tried 17 voltages ranging from 2
V to 10 V with a step length of 0.5 V as the transducer’s
input voltage Vin. For each Vin value, we generated 10
challenges. The tone frequencies of each challenge were
randomly chosen, and the amplitudes of all the challenges
tones were fixed to g1Vin, where g1 denotes the gain factor
of the transducer. We extracted the 20 devices’ fingerprints
corresponding to each of those challenges 20 times and
obtained 4,000 testing samples. Then the 20 devices were
chosen as P one by one. Given a chosen P , we extracted
its fingerprints corresponding to those 10 challenges one
more time as the fingerprint profile stored in S which were
used to classify the 4,000 testing samples. Based on the
classification results, we calculated the F1 score. We totally
obtained 20 F1 scores for each Vin value and calculated the
average F1 score. The results show that the average F1 score
increases as Vin increases and exceeds 0.95 when Vin is larger
than 6 V. When Vin is lower than 5.5 V, the average F1

score is below 0.78. Therefore, we chose Vmin =6 V and
Amin = g1Vmin.

The choice of hf and ha should guarantee that a micro-
phone’s fingerprints with respect to different challenges are
distinguishable, i.e., the distance between two fingerprints

is larger than the threshold τM. Since the transducer is pow-
ered by the signal generator, the amplitude of the challenge
tone is determined by the voltage of the signal generator.
We denote the voltage corresponding to amplitude Ai by
Vi. Since the second requirement for the amplitudes of chal-
lenge tones is equivalent to max{|V1− V ′1 |, |V2− V ′2 |} ≥ hv ,
we obtained hv instead of ha. In M-ANP, the two most
similar fingerprints, denoted by Θ and Θ′, differ in only one
element. Without loss of generality, we assume they differ
in the first element and model the distance between the two
fingerprints as

diff(Θ,Θ′) =
θ1 − θ′1
θ1 + θ′1

. (11)

Therefore, two fingerprint elements should be distinguish-
able if the scaled distance between them is larger than τM.
We seek to find the minimum values for ∆f and ∆V so that
the two elements corresponding to 〈f1, A1, f2, A2〉 and
〈f1, A1, f2 + ∆f, A2〉 or the two elements corresponding
to 〈f1, A1, f2, A2〉 and 〈f1, A1, f2, A2 + g1∆V 〉 are
distinguishable.

We conducted an experiments with 20 mobile devices.
We selected a base tone pair by randomly selecting a tone
frequency pair and fixing the amplitudes of each tone to
Amin. The base tone pair is denoted by 〈f1, Amin, f2, Amin〉.
We extracted the fingerprint elements of the 20 mobile
devices corresponding to the base tone pair as the reference
elements. Then we increased ∆f from 200 Hz to 1 kHz
with a step length of 50 Hz and increased ∆V from 0.5
V to 4 V with a step length of 0.5 V. For each ∆f and
∆V , we extracted the fingerprint elements corresponding to
〈f1, Amin, f2+∆f, Amin〉 and 〈f1, Amin, f2, Amin+g1∆V 〉
of each device for 20 times, where g1 is the gain factor of
the transducer. Totally 400 testing element samples for each
individual tone pair were obtained. We repeated the whole
process 10 times with different base tone pairs and calcu-
lated the scaled distances between each extracted element
and the corresponding reference element. If the distance
is larger than τM, the extracted element is considered dis-
tinguishable, and vice versa. Fig. 4(a) and Fig. 4(b) show
the ratios of distinguishable elements corresponding to each
∆f and ∆V , respectively. We can see that more than 96.3%
of fingerprint elements are distinguishable when ∆f is
no less than 800 Hz, and more than 95.5% of fingerprint
elements are distinguishable when ∆V is 4 V. So we adopt
hf = 800 Hz and hv = 4 V.
Fingerprint space. Based on our experiment results, we
estimate the fingerprint space as follows. There are total
Nf = d(50 kHz − 18 kHz)/800 Hze = 40 feasible tone fre-
quencies. Since the maximum working voltage of the trans-
ducer is 20 V, there are total Na = d(20 V − 4 V)/5 Ve = 4
feasible tone amplitudes. Therefore, a mobile device with
two microphones, like Samsung S7, has about NM =20,000
distinct fingerprint elements and around 8 × 1042 distinct
fingerprints.

5.5.3 Security analysis

Now we analyze the resilience of dynamic challenge-
response M-ANP to the fingerprint-emulation attack. As-
sume that A has acquired ε fingerprints of P through the
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Fig. 4. The ratios of distinguishable elements.

three methods illustrated in Section 3.2.A tries to imperson-
ate P and starts an authentication instance at V . S randomly
selects a fingerprintFs from the fingerprint pool, returns the
corresponding challenge, and asks for the response. Since P
fingerprints may contain common fingerprint elements, an
element of Fs is known to A if another fingerprint contain-
ing the element has been exposed to A. The probability Pe
that a specific fingerprint element in Fs has been exposed
can be estimated as

Pe = 1− (1− κ

NM
)ε . (12)

As shown in Section 5.5.1, A can successfully emulate Fs
only if all the κ elements in Fs are exposed. So the probabil-
ity for this to occur is given by

Psuccess = Pκe = (1− (1− κ

NM
)ε)κ. (13)

To achieve an attack success rate of 0.5, the attacker
need obtain more than 5,000 fingerprints, which would
take quite a long time and may not be feasible in practice.
Therefore, the dynamic challenge-response scheme for M-
ANP is resilient to the fingerprint-emulation attack.

5.6 Dynamic Challenge-Response for SM-ANP
Similar to M-ANP, SM-ANP can adopt the random
challenge-response method to withstand the fingerprint-
emulation attack. For this purpose, S maintains a set of

fingerprints, referred to as a fingerprint pool, for each prover
P . For each authentication request concerning P , the server
randomly chooses one fingerprint from the pool and issues
the corresponding challenge to P .

5.6.1 ANP SM-Print space.
Now we discuss the ANP SM-Print space, i.e., the number
of possible fingerprints for a single prover P in SM-ANP.
Obviously, the scaled Euclidean distance between any two
fingerprints should be larger than the threshold τSM. Since
each challenge corresponds to a unique fingerprint, we
can just estimate how many distinct challenges in Eq. (8)
there can be. We first consider the impact of fb. Although
ideally all the distortion frequencies should be multiples of
fb ∈ [fb,min, fb,max) below 22 kHz, they may vary slightly
due to noise and measurement errors. We thus require a
minimum gap hfb between different fbs to ensure that their
corresponding distortion frequencies can be distinguished.
This means that fb can take lfb = d f

max
b −fmin

b

hfb

e values.
Moreover, the carrier frequency fc, Afb , and Afc all affect
the amplitudes of distortion components. For each given
fb, we require fc to be a multiple of fb in [18, 24) kHz,
so fc can take lfc = d 6 kHz

fb
e possible values. Afb and Afc

are determined once the modulation depth ζ = Afb/Afc is
chosen from [ζmin, ζmax). We thus introduce a minimum gap
hζ between different modulation depths so that the corre-
sponding distortion components at the same frequencies can
have sufficiently different amplitudes. This means that ζ can
take d f

max
b −fmin

b

hfb

e values. Finally, we estimate the number of
distinct SM-Print fingerprints for each speaker-microphone
pair on P as

ψSM = df
max
b − fmin

b

hfb
e ×

lfb∑
i=1

d 6 kHz
fb,min + ihfb

e . (14)

As in latest smartphones or smartwatches, prover P may
have m ≥ 1 speaker-microphone pairs, leading to NSM =
mψSM distinct fingerprints in total.

5.6.2 System parameters
We conducted experiments to obtain ζmin, ζmax, hfb , and
hζ . 12 Android devices shown in Table 1 were used in
experiments.
ζmin and ζmax. Since the impact of ζ on the distortion com-
ponent’s amplitude is more significant when the distortion
components’ amplitudes are small, we chose fb and fc to
be 700 Hz and 18.2 kHz, respectively. We increased ζ from
50% to 150 % with a step length of 5% and obtained the
corresponding F1 score for each ζ value. The F1 score is
above 0.95 when Md is between 75% and 110%. As a result,
we chose ζmin = 75% and ζmax = 110%.
hfb and hζ. We obtained the minimum values of ∆fb
and ∆ζ so that the a device’s fingerprints corresponding
to 〈fb + ∆fb, ζ〉 and 〈fb, ζ + ∆ζ〉 are distinguishable
from the fingerprint corresponding to 〈fb, ζ〉. Since fb is
within [700 Hz, 2 kHz], the length of the fingerprint, i.e.,
the number of distortion components, is between 11 and
31. We did not consider the length of 11 because 2 kHz is
the only available fb for this length. We first selected 20
challenges whose corresponding fingerprints are of different
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length. The fb for the ith challenge is b 22kHz
11+i c and denoted

by f ib , and the corresponding f ic is d 18 kHz
fb
efb. The length

of the fingerprint corresponding to the ith challenge is
11 + i. The modulation depths of all the challenges are
fixed as ζmin. We iteratively chose one of the 12 devices
as prover P and extracted its fingerprints corresponding
to those challenges as the reference fingerprints. We then
extracted P ’s fingerprints corresponding to 〈f ib +∆f, ζmin〉.
We tested 20 values of ∆f ranging from 20 Hz to 400 Hz
with a step length of 20 Hz. For each challenge, we extracted
the P ’s fingerprints 20 times. If the extracted fingerprint
has a different length from the reference fingerprint or the
distance between the extracted fingerprint and the reference
fingerprint is larger than τSM, the extracted fingerprint is
considered distinguishable from the reference fingerprint.
Next, we extracted the P ’s fingerprints corresponding to
〈f ib , ζmin +∆ζ〉 20 times. We tested 20 values of ∆ζ ranging
from 1% to 20% with a step length of 1%. The results show
that 97% fingerprints are distinguishable when ∆f is larger
than 120 Hz, and 95% fingerprints are distinguishable when
∆ζ is larger than 6%. Therefore, we choose hfb = 120 Hz
and hζ = 6%.
Fingerprint space. Based on the obtained parameters, we
estimate that a speaker-microphone pair has approximately
580 distinguishable fingerprints. A mobile device with two
speakers and two microphones has approximately 2,320
fingerprints. The fingerprint space is much smaller than
that of ANP M-Print and may not be sufficiently large
for long-term mobile authentication. The main reason is
that the mobile device’s speaker has limited power and
frequency ranges, leading to a relatively small number of
distinguishable challenges.

5.7 Summary of ANP System Performance

We summarize the pros and cons of ANP authentication
systems in Table 5.

TABLE 5
Pros & Cons of ANP authentication systems.

Authentication system M-ANP SM-ANP
Accuracy 96.4% 95.3%

Deployability ultrasound
transduc-
ers

none

Security

Impersonation yes
Replay attack no
Fingerprint-
emulation

no

Dynamic C-R adoptable not adoptable

6 DISCUSSION

S-Print and SM-Print authentication systems should adopt
FRC fingerprints to identify the prover. Since the nonlin-
earity of a microphone can hardly be eliminated, it is hard
to extract a verifier-agnostic ANP fingerprint of a speaker,
leaving FRC as the only choice for S-Print authentication

systems. Due to the limited fingerprint space, SM-ANP can-
not adopt the dynamic challenge-response countermeasure,
so it is vulnerable to fingerprint-emulation attacks. SM-
ANP thus has no advantage over FRC in terms of security.
The distortion components in SM-ANP may be within the
audible frequency range, while the responses and challenges
of FRC are all within the inaudible frequency range. So SM-
ANP is more disturbing to the user and less resilient to the
ambient noise which is also in the audible frequency range.

M-ANP systems are more secure than FRC-based M-
Print systems, but the latter are more deployable in some
application scenarios. Particularly, the verifier in an FRC-
based M-Print system must has a speaker and a microphone.
In some application scenarios, speakers and microphones
are already installed in the device which can act as the
verifier. For example, many commercial smart lockers have
speakers and microphones for the communication purpose.
In this case, acoustic authentication can be integrated to
the existing authentication system without any hardware
modification. In contrast, M-ANP requires several ultra-
sound transducers to be installed on the verifier. Ultrasound
transducers are less common compared with commercial
speakers and microphone. Hardware modification is almost
unavoidable to integrate M-ANP to an existing authenti-
cation system. Besides, M-ANP is more disturbing and less
resilient to noise compared with FRC-based M-Print systems
since it also involves audible distortion components.

7 RELATED WORK

Fingerprinting a mobile device with the unique features
of its hardware components has been a hot topic in re-
cent years. The features of motion sensors are used to
identify the mobile device in [18], [19], [20]. Researcher
leveraged the imperfection of the WiFi chipset to identify
the mobile device in [22], [23], [24]. Ba et al. proposed to
use the Photo-Response Non-Uniformity of the camera as
the mobile device’s fingerprint [21]. Acoustic elements are
more prevalent than the aforementioned components, and
it is thus promising to identify a mobile device with its
microphone or speaker. There have been many studies on
fingerprinting the acoustic elements. Zhou et al., Chen et al.,
and Han et al. all proposed to used the frequency response
as the fingerprint of the acoustic element [1], [3], [4]. Das et
al. proposed to use the mel-frequency cepstral coefficients to
identify an acoustic element [5]. In this paper, we investigate
identifying the mobile device with the nonlinear feature of
its acoustic elements and study the security of our and all
the existing acoustic fingerprinting schemes in the context
of mobile authentication. All the existing acoustic finger-
printing schemes are vulnerable to the powerful fingerprint-
emulation attack, but our scheme can defeat this attack by
adopting the dynamic challenge-response mechanism.

The nonlinearity of the acoustic element has been used
for different purposes in previous studies. Roy et al. studied
the feasibility of leveraging the nonlinear distortion of the
microphone to record ultrasonic sounds [12]. Zhang et al.
and Roy et al. utilized the nonlinearity of microphones to
issue inaudible commands to the voice control system [13],
[25]. Lin et al. proposed an ultrasonic positioning system
for mobile devices using the nonlinearity of the microphone
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[26]. The most related work to this paper is NAuth [6].
Zhou et al. proposed using ANP to verify the consistency
of the audio source in the device-to-device authentication
context. NAuth is quite efficient in the targeted context, but
it does not fulfill the verifier-agnostic requirement of the
distributed authentication system.

8 CONCLUSION

In this paper, we investigated the suitability of existing
acoustic fingerprinting schemes for mobile authentication
in terms of accuracy, deployability, and security. While we
found that all the schemes achieve sufficiently high identi-
fication accuracy for mobile authentication, MFCC acoustic
fingerprint schemes incur a prohibitive deployment cost due
to the need for expensive acoustic elements. In contrast,
FRC and ANP authentication systems are both low-cost and
verifier-agnostic but are both vulnerable to the fingerprint-
emulation attack. To address these limitations, we proposed
a dynamic challenge-response mechanism as a strong de-
fense. The proposed system can thwart the fingerprint-
emulation attack by not reusing acoustic fingerprints across
different authentication sessions. To evaluate whether the
proposed mechanism can be integrated into FRC and ANP
authentication systems, we quantify the space of FRC and
ANP fingerprints of the speaker, microphone, and speaker-
microphone pair on the prover device. Our experiment
results show that ANP M-Print is the only scheme with
a sufficiently large fingerprint space to support dynamic
challenge-response to withstand the fingerprint-emulation
attack. In the overall consideration of accuracy, deploya-
bility, and security, ANP M-Print is the best choice for the
acoustic mobile authentication system.
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