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Abstract—Which apps a mobile user has and how they are
used can disclose significant private information about the user. In
this paper, we present the design and evaluation of POWERFUL,
a new attack which can fingerprint sensitive mobile apps (or infer
sensitive app usage) by analyzing the power consumption profiles
on Android devices. POWERFUL works on the observation that
distinct apps and their different usage patterns all lead to distin-
guishable power consumption profiles. Since the power profiles on
Android devices require no permission to access, POWERFUL is
very difficult to detect and can pose a serious threat against user
privacy. Extensive experiments involving popular and sensitive
apps in Google Play Store show that POWERFUL can identify
the app used at any particular time with accuracy up to 92.9%,
demonstrating the feasibility of POWERFUL.

I. INTRODUCTION

The popularity of mobile devices has driven the fast
development of attractive mobile apps, which in turn further
accelerates the ubiquity of mobile devices. For example, a
recent Nielsen analysis [1] found that U.S. smartphone users
accessed 26.7 apps on average and spent 37 hours and 28
minutes per month in Q4 2014. Mobile app fingerprinting, by
which one can know the apps a user has installed and how s/he
uses these apps, can be used for user profiling and inferring
sensitive information about the user such as hobbies, health
conditions, locations, habits, and life styles. The disclosure of
such sensitive information endangers user privacy.

How could the app usage information be collected? Mobile
app stores such as Google Play Store and Apple App Store
are obviously in the best position to collect such sensitive
information. Such app stores are fortunately operated by trust-
worthy business giants and not a major threat against user
privacy. Mobile malware can play the main role in collecting
sensitive app usage information. According to Alcatel-Lucent’s
Motive Security Labs [2], the malware infection rate on mobile
devices rose to 0.75% in Q2 2015 from 0.68% in December
2014, and there were as many Android devices infected with
malware as Windows laptops in the second half of 2014 alone.
Mobile malware can be embedded into apps purposefully by
malicious app developers or through hacked app development
tools. An instance for the later case is the XcodeGhost malware
found in September 2015 and from a malicious version of
Xcode, Apple’s official tool for developing iOS and OS X
apps. Another instance is the backdoor in Baidu Android SDK
which was found in November 2015 and may have put 100
million Android devices at risk. Besides of malware-infected
apps, an enterprise app may collect its employees’ app usage
information without prior consent.

Significant effort has been made to infer sensitive user
information on mobile devices. For example, internal sensors

on a mobile device have been exploited to infer user inputs
on the touchscreen [3]–[7] and user locations [8], [9]. An-
droid public resources that can be accessed without requiring
user permission have also been used to infer sensitive user
information in [10]–[13]. None of these schemes aims at app
usage information. Existing work on mobile app fingerprinting
mostly relies on traffic analysis [14]–[19], all of which require
the attacker to obtain the entire web traffic from the victim’s
device. As a result, the attacker needs to either be in the vicin-
ity of the victim or even compromise network service providers
to obtain the traffic data, which limits their applicability. In
addition, these traffic-based methods do not work well with
apps which generate only a limited amount of traffic or stay
offline for most of the time.

In this paper, we present the design and evaluation of
POWERFUL, a novel and practical attack framework for
mobile app fingerprinting on Android devices through power
profile analysis. POWERFUL is built upon the observation
that different apps use different components of a device (e.g.,
touchscreen, CPU, Wi-Fi, and Bluetooth) and have different
usage patterns, which result in distinguishable power consump-
tion profiles. POWERFUL exploits the inherent heterogeneity
of app power profiles for app characterization and usage
inference. Since the power profiles on Android devices can
be directly accessed without requiring user permission, POW-
ERFUL is very difficult to detect and thus poses a serious and
realistic threat against user privacy. Compared with existing
traffic-based app fingerprinting techniques, POWERFUL does
not require the adversary to be in the vicinity of the victim
or compromise network service providers. Instead, it exploits
the zero-permission Android public resources to obtain the
power profiles of a device for app fingerprinting. Meanwhile,
POWERFUL works well with apps generating little traffic.

We summarize our contributions in this paper as follows.

• We propose POWERFUL, the first mobile app fin-
gerprinting framework for Android devices based on
power analysis. Combining signal processing and ma-
chine learning techniques, POWERFUL is able to
identify the app being used from a set of candidate
apps with a high accuracy based on the corresponding
power profile. Since Android requires no user permis-
sion to access and collect power profiles, POWERFUL
poses a serious and realistic threat against user privacy.

• We evaluate the efficacy of POWERFUL via extensive
experiments on a set of 22 most popular and privacy-
related apps in Google Play Store. Experiment results
show that POWERFUL can identify the app being
used at any particular time from a set of candidate
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apps with accuracy up to 92.9% and is resilient to the
change in various factors, such as locations (office,
apartments, etc.), user activities (static or walking),
and user variation.

The rest of the paper is structured as follows. Section II
introduces the necessary background of POWERFUL, a feasi-
bility study, and our adversary model. Section III details the
components of POWERFUL. Section IV shows the design and
results of our experiments. Section V summarizes the related
work. Section VI concludes this paper.

II. PRELIMINARIES

A. Background
In this section, we briefly introduce the background of

Andriod’s public resources. Android makes a subset of re-
sources publicly accessible to all apps without requiring them
to explicitly obtain permissions, as sharing these resources is
generally considered harmless and makes them convenient to
access by all apps whenever needed. The public directories
in the Linux layer are an important category of the publicly
accessible resources, most of which reside in two virtual
filesystems: the proc filesystem (/proc) and the sys filesystem
(/sys). In /proc, an app can access the resource usage of a
process such as its usage of memory, CPU, and network, while
in /sys, an app can find information about various kernel
subsystems, hardware devices, and associated device drivers,
etc. We obtain the device’s voltage and current measurements
from the voltage_now and current_now files, respec-
tively, both of which are public resources residing under the
/sys/class/power_supply/battery folder.

B. Feasibility study
In this section, we show the feasibility of inferring app

usage by analyzing their power profiles. As mentioned in
Section I, POWERFUL explores the distinct characteristics in
the power profiles of different apps caused by the heterogeneity
of their resource usage and usage patterns.

Fig. 1(a) shows the power profiles of Bank of America
(BoA) and YouTube apps. We can see from Fig. 1(a) that the
two apps have similar power fluctuations, but YouTube has
larger minimum and maximum powers than BoA. Therefore,
minimum and maximum powers can be used to distinguish
the two apps. Similarly, Fig. 1(b) shows that Netflix and
Skype apps exhibit distinct characteristics of power profiles
in terms of minimum power, maximum power, and power
fluctuations, making them distinguishable by examining these
features. Moreover, Facebook and Medscape apps have the
similar minimum power as shown in Fig. 1(c), but Facebook
tends to have larger power fluctuations.

C. Adversary model
We assume that the attacker runs a malicious app on the

victim’s device. As a standard assumption in Android security
literature, it is backed up by the recent report that one out
of ten Android apps are affected with malware and viruses
[20]. The attacker also needs to know the device model and
OS of the victim’s device because these two factors directly
affect the power consumption of the device. Such information
can be obtained from the System and Build class1 without
requesting any user permission.

1For example, System.getProperty(“os.version”) returns the
OS version of the device.

Categories Apps
Communication Gmail (GM), Messenger (MSG), Skype

(SKY)
Education TED (TED)
Entertainment Netflix (NF), YouTube (YT)
Finance Bank of America (BoA), Chase (CHA)
Games Candy Crush (CCS), Pokémon Go (PM)
Health & Fitness iTriage (iT), MedScape (MED), mySugr Di-

abetes Logbook (SDL)
Music & Audio Spotify (SP)
News & Magazines CNN (CNN)
Shopping Amazon (AM), eBay (eBay), Groupon (GR)
Social Facebook (FB), Twitter (TW), Tinder (TD)
Travel & Local Priceline (PL)

TABLE I: Apps and their abbreviations.

The malicious app tries to be as stealthy as possible by
running in the background to escape visual detection. Accord-
ing to our experiments, our “malicious” app for this research
has a relatively stable power consumption of less than 20 mW,
which has negligible influence on the collected power profiles.
The app collects the power profile of the mobile device either
periodically or following a predefined schedule. The app also
needs to send the collected data to the attacker in a stealthy
manner, which can be easily accomplished based on existing
methods. For example, the malicious app may be inserted into
or collude with another app which is legitimately given the
INTERNET permission, and this approach is adopted by most
existing work such as [3]–[5]. Alternatively, the malicious app
can smuggle out the data across the Internet without requiring
the user permission by using intent URI ACTION_VIEW to
open a browser and sneaking the data to the parameters of an
HTTP GET from the receiver side [21].

D. Targeted sensitive apps
Similar to [13], [14], [18], [19], we assume that the attacker

is interested in fingerprinting a small set of selected apps that
are popular, highly sensitive, or contain significant private user
information. This is a common assumption as it is impractical
for the attacker to build a classifier for all the existing mobile
apps due to the large quantity. In addition, mobile apps are
constantly evolving from time to time, and the cost to build
and maintain a comprehensive database would be prohibitive.
Moreover, many apps contain little private information about
the user, which the attacker may lack incentives to fingerprint.

Table I lists the 22 apps which we study in this paper and
are selected based on the following criteria.

1. A selected app is popular and has been downloaded
for more than 500,000 times in Google Play Store.

2. A selected app is usually closely related to user pri-
vacy in some way, or its usage can be exploited by the
attacker for more advanced attacks [13]. For example,
communication, finance, health/fitness, shopping, and
social apps can directly reveal important private infor-
mation about the user, such as her/his accounts, health
conditions, and online history, while location-based
apps like Pokémon Go and Priceline can disclose user
location traces.

3. The selected apps cover as diverse categories as
possible in Google Play Store.

III. DESIGN OF POWERFUL
In this section, we detail the design of POWERFUL.
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(a) Bank of America and YouTube.
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(b) Netflix and Skype.
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(c) Facebook and Medscape.

Fig. 1: Power profiles of several exemplary apps.
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Fig. 2: Flow chart of POWERFUL.

A. Overview
As shown in Fig. 2, POWERFUL consists of the following

five steps.

1. Power profile collection. In this step, we implement
an Android app to collect the instantaneous current
and voltage measurements of a Google Nexus 7 tablet
when the user is using a target app. According to our
experiments, our data collection app has a relatively
stable power consumption of less than 20 mW and
therefore has little influence on the collected power
profiles.

2. Data processing. In this step, we process the collected
power profiles by compensating the difference of
power consumption due to different brightness levels
and then extracting the minimums and maximums
of the power profile to facilitate subsequent feature
extraction.

3. Feature extraction. In this step, we extract a feature
vector comprising features in both time and frequency
domains.

4. Classifier training. In this step, we first obtain the
power profiles of the targeted sensitive apps in Table I
and use lightweight machine learning algorithms to
train classifiers for subsequent testing.

5. App inference. In this step, given an instance of the
power profile of the user’s device, we use the trained
classifiers to determine the app(s) being used.

B. Power profile collection
On the victim side, the malicious app collects

instantaneous current and voltage measurements of
the device by reading /sys/class/power_supply
/battery/current_now and /sys/class/power
_supply/battery/voltage_now, respectively, either
periodically or following a predefined schedule. In our

experiments, we set the sampling frequency to 2 Hz to
strike a good balance between profile accuracy and the
amount of data that need be stealthily transmitted to the
attacker through the Internet. After collecting voltage and
current measurements for a sufficiently long period, the app
constructs the power profile that comprises a sequence of
instantaneous power measurements computed as the products
of the corresponding current and voltage measurements. The
app also obtains the current brightness level of the device
in the public system setting android.provider.Se
ttings.System.SCREEN_BRIGHTNESS, which requires
no user permission to access. The app finally sends the power
profile and the brightness level of the victim’s device to the
attacker.

The attacker also builds a power profile for each target
app. In particular, the attacker employs multiple users to use
every target app on a device with the same model and OS
and builds a power profile for each target app for subsequent
classifier training and app inference.

C. Data processing
In this step, we process the raw power profiles to facilitate

subsequent feature extraction. Without loss of generality, we
consider a power profile P = (p1, . . . , pn), where pi is the ith
power measurement for all i ∈ [1, n] and n is the total number
of power measurements.

We first apply a sliding window of length W and offset
factor r on P to generate a sequence of power profile samples
S1, . . . , Sk of equal length, where

Si = (p(i−1)rW+1, . . . , p(i−1)rW+W ),

for all i = 1, . . . , k, and k = �n−W
rW �. In this paper, we

empirically set r to 0.1 and choose W such that rW ∈ Z.
For each sample Si, we proceed with the following two

steps: power adjustment and min-max search.
1) Power adjustment: In this step, we compensate the dif-

ference in power consumption caused by different brightness
levels. Such adjustment is necessary because the touchscreen
is a major energy-consuming component in modern mobile
devices, and different brightness levels result in different power
consumption rates of the touchscreen and therefore different
power profiles for the same device.

Power adjustment requires a power model to characterize
the relationship between touchscreen power consumption and
brightness level. While several models have been proposed in
the literature [22], [23], they are either device-specific due
to the technology and hardware difference or require user
permission to acquire the status of different components. In
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(a) Original power profiles.
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(b) Power profiles after removing peaks.
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(c) Our linear power model.

Fig. 3: Power adjustment for different touchscreen brightness levels.

this paper, we adopt a simple linear relationship between the
power consumption and the brightness level built from fitting
empirical data.

Specifically, we collect the power measurements at differ-
ent brightness levels using a modified version of our app. No
third-party app is installed on the device to minimize potential
impact on accuracy. The app automatically sets the brightness
coefficient from 0 to 1 with an interval of 0.1 (corresponding
to level 0 to level 10) and records the voltage and current
measurements at a frequency of 2 Hz for 10 minutes before
changing to the next brightness level. Fig. 3(a) shows the power
measurements at different brightness levels. We can see that
the curves exhibit multiple peaks while they are expected to be
generally stable. We conjecture that the peaks are most likely
due to pre-installed system apps (e.g., Google Play services)
running in the background and thus should be excluded during
parameter fitting. Our measurement results are similar to those
collected using the tools in [22].

We remove these peaks in two steps. First, we calculate the
cumulative distribution function (CDF) of the power measure-
ments. Second, we remove the measurements above a certain
percentile of the CDF, where we empirically choose 80% as the
threshold. We plot the power measurements after removing the
peaks in Fig. 3(b), where we can see that the resulting power
profiles are generally stable.

We then calculate the average of the (approximate) 10-
minute measurements as the device’s power consumption rate
at the corresponding brightness level. Given a set of brightness
levels and corresponding power consumption rates, we further
calculate the slope s and intercept b of the linear model through
least-squares fitting. We plot the measurements and the fitted
model in Fig. 3(c) and show the fitted parameters in Table II.

We finally adjust the power measurements using the power
model obtained above. Specifically, given the device’s current
brightness level L, we calculate the power consumption rate
difference between level L and level 0 as sL, where s is the
slope of the linear power model. Then for every power profile
sample Si = (p(i−1)rW+1, . . . , p((i−1)r+1)W ), we compute
a new sample S′

i = (p′(i−1)rW+1, . . . , p
′
((i−1)r+1)W ), where

p′j = pj − sL for all j = (i−1)rW +1, . . . , (i−1)rW +W .

Parameter Value Standard Error
Intercept, b 1.10 0.057

Slope, s 0.132 9.65× 10−3

TABLE II: Fitted parameters of our linear power model.

2) Min-max search: Next, we extract the “skeleton” of
each power profile sample by finding the local minimums and

maximums of its power measurements.
Without loss of generality, we consider a power profile

sample S′ = (p′1, . . . , p
′
W ) and use the example in Fig. 4 to

illustrate how local minimums and maximums are determined.
First, we apply a five-point simple moving average (SMA)
filter to smooth the power profile sample to reduce the impact
of small fluctuations. Fig. 4(a) shows the original and filtered
power traces in our example. Denote the power trace after
filtering by p̃1, . . . , p̃W . Then for each p̃j , j = 1, . . . ,W , we
select p̃j as a local minimum (maximum) if the following two
conditions are satisfied.

• Condition 1: Its value is no larger (smaller) its two
neighboring values, i.e., p̃j ≤ p̃j−1 and p̃j ≤ p̃j+1

(p̃j ≥ p̃j−1 and p̃j ≥ p̃j+1).
• Condition 2: Its value is at least δt smaller (larger)

than the previous closest local maximum (minimum).

Here δt is an important parameter that need be chosen
carefully. On the one hand, if δt is too small, too many mini-
mums or maximums will be selected due to small fluctuations
in the power profile caused by spontaneous noise, which do
not contribute to the characterization of the app. On the other
hand, an overly large δt makes the second condition difficult to
satisfy, resulting in some meaningful minimums or maximums
being omitted and thus poor characterization of the app.
Moreover, since different apps exhibit distinct characteristics,
the choice of δt should not be universal but app-specific. We
observe that a proper δt should be positively correlated with
the standard deviation σ of the power measurements for a given
app. Therefore, we choose δt = cσ and empirically set c = 1 in
this work. Fig. 4(b) and 4(c) show the labeled local minimums
and maximums of the given power trace in Fig. 4(a). The
figures shows that they capture the overall shape of the power
trace, indicating the capability of extracting the “skeleton”.

After finding all the local minimums and maximums from
the power profile sample, we generate a vector of pair V =(
(m1, t1), . . . , (me, te)

)
, where mj and tj are the jth local

maximum or minimum and the corresponding time stamp,
respectively, and e is the total number of local maximums and
minimums. Moreover, we generate a label vector L = (l1, . . . ,
le), where lj = −1 if mj is a local minimum and 1 otherwise.
It follows that lj lj+1 = −1 if mj and mj+1 are a pair of
adjacent minimum and maximum.

We further compute a power difference vector ΔV , a
time difference vector ΔT , and a slope vector R from V
and L using Algorithm 1, which capture the power and time
differences of pairs of adjacent minimum and maximum and
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(a) Effect of SMA filtering.
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(b) Local maximums and minimums found by
our approach.
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Fig. 4: Illustration of min-max search.

Algorithm 1: Computing ΔV,ΔT , and R

input : V, L
output: ΔV,ΔT,R

1 Initialize ΔV,ΔT , and R as empty vectors;
2 for j = 1, . . . , e− 1 do
3 if lj lj+1 = −1 then
4 Expand ΔV by adding a dimension and new

element |mj+1 −mj |;
5 Expand ΔT by adding a new element tj+1 − tj ;

6 Expand R by adding a new element
ΔV (i)
ΔT (i) ;

7 return ΔV,ΔT , and R;

the sharpness of the corresponding rising or falling slopes,
respectively.

D. Feature extraction
In this step, we extract features from both time and

frequency domains to represent a given power profile sample.
For each power profile sample, the extracted features form a
vector, which is referred to as an instance hereafter.

1) Features in time domain: For a given power profile
sample S′ = (p′1, . . . , p

′
W ), we extract the following statistic

measures as the features in time domain.

• The average, the 20th, 50th, and 80th percentile,
the standard deviation (SD), the maximum, and the
minimum of (p′1, . . . , p

′
W ), denoted by pavg, p20pctl,

p50pctl, p80pctl, pSD, pmax, and pmin, respectively.
• The average, the 20th, 50th, and 80th percentile, SD

of ΔV,ΔT , and R, respectively. We denote them as
ΔVavg,ΔV20pctl,ΔV50pctl,ΔV80pctl,ΔVSD,ΔTavg,
ΔT20pctl,ΔT50pctl,ΔT80pctl,ΔTSD, Ravg, R20pctl,
R50pctl, R80pctl, and RSD, respectively.

2) Features in frequency domain: Given a power profile
sample S′ = (p′1, . . . , p

′
W ), we first calculate its Fourier

Transform as Q = (q1, . . . , qW ) using Fast Fourier Transform
(FFT). We then extract the following features from Q.

• Root-mean-square (RMS) energy. The RMS energy is
an approximation of the average signal strength and
calculated as the square root of the arithmetic mean
of the squares of Q.

RMS =

√√√√ 1

W

W∑
k=1

q2k.

• Spectral centroid. The spectral centroid represents
the “center” of Q and is the weighted mean of the
frequencies of Q with qk as the weights.

μ =

∑W
k=1 qkfk∑W
k=1 qk

,

where fk = kfs
2 , and fs is the sampling frequency.

• Spectral entropy. The spectral entropy captures the
locations of the peaks of Q and is computed as

H =
W∑
k=1

ωk log2 ωk,

where ωk = qk∑W
k=1 qk

is the normalized frequency.

• Spectral irregularity. The spectral irregularity captures
the jitter or noise in Q and is given by

irregularity =

∑np

l=1(φ(x)− φ(x+ 1))2∑np

x=1 φ(x)
2

,

where φ(x), x = 1, 2, . . . , np are the peaks in Q and
φ(np + 1) = 0.

• Spectral spread. The spectral spread is to capture
the dispersion of Q with respect to its centroid and
calculated as the standard deviation of the spectral
distribution.

ρ =

√√√√ W∑
k=1

[ωk(fk − μ)2].

• Spectral skewness. The spectral skewness captures the
symmetry of Q and is computed as

skewness =

∑W
k=1 ωk(fk − μ)3

ρ3
.

• Spectral kurtosis. The spectral kurtosis captures the
flatness of Q compared with Gaussian distribution and
is given by

kurtosis =

∑W
k=1 ωk(fk − μ)4

ρ4
.

• Spectral flatness. The spectral flatness captures how
energy is spread across Q and is given by

flatness =
(
∏W

k=1 qk)
1
W

1
W

∑W
k=1 qk

.
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E. Classifier training
In this step, we train a classifier from a training set with

known labels. POWERFUL can work with many existing
machine learning techniques. In this paper, we consider three
lightweight supervised machine learning techniques, i.e., C4.5,
random forest (RF), and support vector machine (SVM) for
classifier training and testing. In particular, C4.5 generates
a decision tree according to C4.5 algorithm and uses the
decision tree to map an instance to a finite set of values, which
are the class labels [24]. RF builds a forest of uncorrelated
decision tress for classification [25]. The unique feature of
RF is that it keeps selecting a random subset of features to
control the variance of classification result during the process
of generating the forest. SVM maps the instances of different
classes in space such that they are divided by a clear gap
which is as wide as possible [26], [27]. In Weka [28], the
corresponding implementations of the three techniques are
J48, RandomForest, and LibSVM class, respectively.

F. App inference
In this step, we infer the app being used from the given

power profile. Specifically, the power profile first goes through
Data Processing and Feature Extraction steps and becomes a
series of instances. Then given a specific instance, we use the
classifier trained in Section III-E to calculate the class label.
The app corresponding to the output class label is considered
as the app being used at the particular time.

IV. PERFORMANCE EVALUATION

In this section, we first describe the experimental setup,
then introduce the performance metric adopted, and finally
report the evaluation results in details.

A. Experiment setup
1) Data collection: We used a Google Nexus 7 tablet with

Android 4.4.4 and a Google Nexus 6 smartphone with Android
5.1.1 with our app installed to collect power profiles. We
recruited 24 users to participant in the experiments, including
two females and twenty-two males. Each participant was
assigned ten apps and then delivered the following instructions.
First, each participant adjusted the screen brightness level
according to her/his need, connected the device to a reliable
Wi-Fi AP, and turned off the Bluetooth connection. Then, s/he
activated the data collection app and started to use one of the
assigned apps. Each participant was required to stay where
s/he was, such as in the office or at her/his apartment, when
s/he was using an app. Each participant was also asked to use
only one assigned app at any given time. For each assigned
app, the participant was asked to use it for at least half an
hour. To complete the data collection of one assigned app, the
participant was allowed to use it either continuously or from
time to time, as long as the total usage time of each assigned
app exceeded half an hour. We also required the participant
not to change the brightness setting during the experiments.

2) Evaluation protocol: Our main dataset, denoted by S ,
consists of the instances of all 22 sensitive mobile apps. In
total, 24 participants are involved in the experiments, who
are graduate students in Arizona State University and age
between 20 and 35. Each participant was assigned ten apps
to use. Considering the total number of participants in the
experiments, only two apps (BoA and CHA) are used by ten
participants while all the other apps are each used by eleven
participants.

For each run of evaluation, we randomly divided S into
one training set Strain and one testing set Stest. Based on our
adversary model, Strain is built by the attacker while Stest is
obtained from the malicious app on the victim’s device. For
each app we studied, we randomly selected one participant
as the victim and allocated her/his instances to Stest while
allocating the remaining instances of the same app to Strain.
By doing so, we ensured that the instances of Strain were from
the attacker and those of Stest were from the victim. Finally,
we ran the evaluation for 40 times and reported the average
results.

B. Performance metric
In this paper, we use identification rate as the performance

metric to evaluate the attack capability of POWERFUL. In
specific, for each app we study, we define the identification
rate as the ratio between the number of correctly-classified
instances and that of all instances of the app in a testing set. A
higher identification rate means that given a power profile, the
attacker (POWERFUL) is able to identify the corresponding
app used by the victim more accurately, thus posing a more
serious threat on user privacy.

C. Experimental results
1) Impact of window length: Fig. 5(a) shows the average

identification rate of all the apps when window length W
increases from 15 to 180. As we can see, the average identi-
fication rate increases as W increases for all three machine
learning techniques. This is expected because a larger W
means that the power profile with more measurements is used
for identification, and it is thus more likely to extract app-
specific features to increase the identification rate. On the other
hand, a smaller W means that the attacker only needs to collect
a power profile for a shorter period, making the attack more
practical. We set W to 120 for the rest of our experiments,
corresponding to a duration of 60 seconds.

2) Impact of sampling frequency: Fig. 5(b) shows the
average identification rate across all the 22 apps with sampling
frequency fs varying from 0.00625 Hz to 5 Hz. We can see
that the average identification rate increases as fs increases
for all three machine learning techniques. The reason is that
the higher fs, the finer-grained characteristics of the collected
power profiles. We can also observe that the identification rate
tends to be stable when fs is higher than 2 Hz. This is mainly
because that the extracted features do not change much when
further increasing fs. Since a higher fs leads to more power
profiles that need be stealthily transmitted over the Internet,
making our attack easier to detect, fs is set as 2 Hz in our
experiments to strike a balance.

3) Impact of number of training instances: Fig. 5(c) shows
the average identification rate across all the 22 apps with
the number of training instances N0 varying from 15 to
135. We can see that the average identification rate increases
as N0 increases for all three machine learning techniques.
This is expected because the classifiers get better trained
with more training instances and consequently achieve higher
identification rate. As a result, the attacker always uses all the
available training instances in practice.

4) Feature importance: We have also studied the impor-
tance of different features used in POWERFUL, characterized
by information gain [29], [30]. Specifically, information gain
measures the amount of information about class prediction,
given that the only information available is the presence of
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Fig. 5: Impact of different factors on POWERFUL.
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Fig. 7: Identification accuracy of POWERFUL on Nexus 7.

a feature and the corresponding class distribution. The higher
information gain, the more important a feature is, and vice
versa. In Weka, we obtain the information gain of different
features using its InfoGainAttributeEval class. Fig. 6
shows the information gain of all the features of POWERFUL
in descending order. We can see that two most important
features are pmax and pmin while the least important is
irregularity.

The less important features (i.e., with small information
gain) still affect the overall classification results. For example,
if we remove the features with information gain less than one,
the average identification rate decreases from 92.9% to 86.1%.
We therefore use all the extracted features for classifier training
and testing to achieve higher identification rate.

5) Attack on Nexus 7: Fig. 7 shows the identification rate
of POWERFUL on a Google Nexus 7 with Android 4.4.4. As
we can see, POWERFUL can correctly identify the 22 apps
with high probabilities, and the identification rates using RF
and SVM are similar and higher than that of using C4.5. In
addition, the identification rates of most apps are higher than
80% for RF and SVM. The average identification rates of all
the apps using C4.5, RF, and SVM are 83.7%, 92.9%, and
91.3%, respectively. In [19], the authors reported an overall
inference accuracy of 93.96% on a smaller set of 13 apps. We
believe that the performance of POWERFUL is similar to that
of state-of-the-art solution.
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Fig. 8: Identification accuracy of POWERFUL on Nexus 6.

6) Attack on Nexus 6: Fig. 8 shows the identification rate
of POWERFUL on a Google Nexus 6 with Android 5.1.1. We
can see that the results are similar to those on a Google Nexus
7 with Android 4.4.4. The average identification rates of all
the apps using C4.5, RF, and SVM are 84.45%, 91.3%, and
91.23%, respectively. These results confirm that POWERFUL
can work with devices of different models.

7) Robustness: We also conducted a separate set of exper-
iments to evaluate the robustness of POWERFUL to locations,
user activities, and user variation.
Location. To evaluate the impact of locations, we let two
participants to use the apps in Table I in four different
locations, including our office, their apartments (APTs), the
university library (LIB), and a Starbucks (SBUX) store, where
Wi-Fi access is available. Each participant used each targeted
app for five minutes in the same location with a Google Nexus
7. We then applied the trained classifiers to the collected power
profiles and obtained the average identification rate. Fig. 9(a)
shows the average identification rate of POWERFUL with
different locations. As we can see, the average identification
rate is relatively stable across different locations. These results
indicate that POWERFUL is robust to the change in location
and thus can effectively fingerprint sensitive mobile apps even
if the victim is at different locations. The main reason is that
location has very limited impact on the power profiles and thus
little impact on the classification results.
User Activity. We tested the performance of POWERFUL
when users are conducting different activities. Specifically , we
let two participants to use the apps in Table I while they were
sitting statically in our office and walking slowly along the cor-
ridor in our office building. Under each scenario, a participant
used each targeted app for five minutes with a Google Nexus
7. We then applied the trained classifiers to the collected power
profiles and obtained the average identification rate. Fig. 9(b)
shows the average identification rate of POWERFUL under the
two user activities. As expected, we can see that the average
identification rates in the two scenarios are similar to each
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Fig. 9: Performance of POWERFUL under different scenarios.

other. The reason is that slow user movement does not cause
much change in the power profiles and thus has little impact
on the classification results. Therefore, POWERFUL is robust
to slow user movement.
User Variation. We let four participants each to use each app
in Table I for five minutes in our office with a Google Nexus
7 and applied the trained classifiers to the collected dataset
to obtain the average identification rate. Fig. 9(c) shows the
average identification rate of POWERFUL on four users. As
shown in the figure, the average identification rate of U2 is
lower than those of the other three users regardless of which
machine learning algorithm is used. We conjecture that the
variation is caused by different users having different usage
patterns for the same app. For example, some users use Skype
mostly for voice call and instant messaging while other users
use it mostly for video call. In practice, the attacker can
alleviate the impact of user variation by collecting more diverse
dataset for classifier training. Nevertheless, POWERFUL can
still achieve an average identification rate of 85% on U2 using
RF.

V. RELATED WORK

This section briefs some work closely related to POWER-
FUL.

A. Sensitive information inference in Android
Inferring sensitive information on Android mobile devices

has received much attention in recent years. Previous work
[3]–[7], [31] has shown that user input on the touchscreen,
such as PIN, pattern password, user name, or even sentences,
can be inferred from various onboard sensors such as ac-
celerometer, gyroscope, microphone, or camera. In [8], [9],
researchers show that accelerometer, microphone, camera, and
light sensor can be used to infer target user’s driving routes or
locations. Some of these attacks [9] require user permissions
such as android.permission.CAMERA, while our attack
does not. Although access to sensors such as accelerometer
does not require user permissions, accessing such informa-
tion can be easily detected by analyzing API calls (e.g.,
SensorManager.getDefaultSensor(int)) using ex-
isting app analysis tools like [32].

Inferring sensitive information from Android’s public re-
sources has also been studied. In [10], Jana et al. show that the
websites the user has visited and other finer-grained browsing
behavior can be inferred from the memory footprint of the
web browser. Zhang et al. show that keystroke events can be
identified from the ESP data in a multi-core system [11].

In [12], Zhou et al. demonstrate that user’s location, real

identity, health conditions, and driving route can be inferred
from the network usage statistics of an app and the status of
public Android APIs. In addition, Chen et al. find that the
UI state of Android device can be inferred from the memory
usage of an app [13].

Compared with the above work, we work on a new attack
on user privacy and make use of the power profile of Android
devices, which is considered to be harmless.

B. App fingerprinting
Our work is also related to the line of research in app

fingerprinting, which aims at identifying apps through traffic
analysis. In [14], Stöber et al. show that a group of apps can
be identified as a whole by analyzing 3G/UMTS data traffic.
In [15], Xu et al. design a learning system to automatically
fingerprint an app using the key-value pairs in HTTP headers,
while in [16], Miskovic et al. tackle a similar problem by
exploring the scarcity of key app-identification sources. In [17],
Dai et al. show that an app can be identified by analyzing
different HTTP requests. In [18], Verde et al. propose a user-
fingerprinting framework using NetFlow records only, rather
than the entire traffic. Recently, Wang et al. show that the
app being used can be inferred by analyzing the overheard
encrypted data using machine learning techniques [19]. Com-
pared with this line of work, our attacker does not need to
in the vicinity of the adversary or compromise large network
service providers. Also, our attack is valid for apps generated
very limited traffic.

C. Power analysis
There has also been some effort [22], [23], [33]–[35] in

power analysis on mobile devices, which mainly focuses on
understanding how power is consumed. In [22], Zhang et al.
propose to first generate power models for device components
such as CPU, LCD, and Wi-Fi and then use a function of these
models to determine system-level power consumption. Similar
approach is also adopted in [33], either to estimate the power
consumption of an individual app or to fully understand the
impact of different operating systems and hardware models.
In [23], [34], Pathak et al. propose to use system call tracing
rather than the power states of hardware components to model
power usage, which improves both accuracy and granularity.
In [35], Brouwers et al. present NEAT, a novel energy analysis
toolkit for smartphones, which combines both the accuracy of
a customized power measurement board and detailed system
traces of hardware and software together.

In [36], Michalevsky et al. introduce a novel attack that
reveals user locations via power analysis of the user’s smart-
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phone. Assuming that the distance between the smartphone and
the base station greatly impacts the total power consumption,
they are able to infer the user’s driving routes by applying
machine learning techniques.

In contrast to the above work, we study a new attack using
power analysis, which poses a serious and realistic threat on
user privacy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the design and evaluation of
POWERFUL, a novel attack framework on Android mobile
device which combines power analysis and machine learning
for mobile app usage inference. POWERFUL exploits the app-
specific characteristics of the power profiles without requiring
user permission. Our extensive experiments demonstrated that
POWERFUL is able to infer the app being used at a specific
time with high accuracy, thus posing a realistic and serious
threat to user privacy.

As our future work, we first seek to improve the iden-
tification rate of POWERFUL by exploring additional zero-
permission information in Android, such as the CPU and mem-
ory usage. We also plan to fully investigate the performance
of POWERFUL under large user mobility (e.g., when the user
is travelling on a bus). Finally, we aim to extend POWERFUL
to iOS mobile devices such as iPhone and iPad.
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