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Abstract—Face authentication emerges as a powerful method
for preventing unauthorized access to mobile devices. It is, how-
ever, vulnerable to photo-based forgery attacks (PFA) and video-
based forgery attacks (VFA), in which the adversary exploits
a photo or video containing the user’s frontal face. Effective
defenses against PFA and VFA often rely on liveness detection,
which seeks to find a live indicator that the submitted face photo
or video of the legitimate user is indeed captured in real time. In
this paper, we propose FaceHeart, a novel and practical face au-
thentication system for mobile devices. FaceHeart simultaneously
takes a face video with the front camera and a fingertip video
with the rear camera on COTS mobile devices. It then achieves
liveness detection by comparing the two photoplethysmograms
independently extracted from the face and fingertip videos, which
should be highly consistent if the two videos are for the same live
person and taken at the same time. As photoplethysmograms
are closely tied to human cardiac activity and almost impossible
to forge or control, FaceHeart is strongly resilient to PFA and
VFA. Extensive user experiments on Samsung Galaxy S5 have
confirmed the high efficacy and efficiency of FaceHeart.

I. INTRODUCTION

Protecting mobile devices from unauthorized access is
becoming more than indispensable in these days. In particular,
mobile devices such as smartphones and tablets are perva-
sive in personal life and business world. They are storing
increasingly more highly sensitive information such as per-
sonal contacts and multimedia information, usernames and
passwords, emails, browsing histories, business secrets, and
health conditions. At the same time, mobile devices may be
lost, stolen, or hacked. For example, 70 million smartphones
are lost every year, with only 7% recovered, and 4.3% of
company-issued smartphones are lost/stolen every year [1]. In
addition, the malware infection rate on mobile devices rose
to 0.75% in Q2 2015 from 0.68% in December 2014, and
there were as many Android devices infected with malware as
Windows laptops in the second half of 2014 alone [2].

Mobile authentication is widely adopted to protect mobile
devices from unauthorized access and has two forms. First, a
user is authenticated to unlock a device. Second, many mobile
apps such as bank apps and password managers authenticate
the user before s/he can use these apps. Mobile authentication
traditionally follow a password approach based on PINs,
alphanumeric passwords, or pattern locks. As functionali-
ties of mobile devices keep improving, people have recently
developed more secure and/or usable mobile authentication
techniques based on behavioral biometrics such as inputting
habits [3]–[6] and physiological biometrics such as fingerprints
and deauthentication techniques based on proximity [7].

In this paper, we focus on improving the security of face
authentication on mobile devices. As the name suggests, face

authentication verifies or identifies a person by validating
selected facial features from a digital image or a video frame.
The facial features of a person are quite unique and difficult to
forge. So face authentication has been very popular in various
traditional application scenarios, e.g., gate and automated
border control systems. It has also been introduced into mobile
devices as a strong authentication method since Android 4.0,
as well as many apps such as BioID and MobileID. Although
we aim at face authentication on mobile devices, our work can
be generalized to other scenarios involving face authentication
without much modification.

Face authentication is vulnerable to both photo-based
forgery attacks (PFA) and video-based forgery attacks (VFA).
In PFA (or VFA), the adversary uses a photo (or video)
containing the user’s frontal face to bypass the otherwise
highly-secure face authentication system. Both PFA and VFA
are fairly easy to conduct, as the victim’s photo or video
usually can be easily found online, e.g., on popular social
network sites. The adversary may also capture the victim’s
photo or video without being noticed, e.g., in crowded public
places or through a high-definition camcorder from a long
distance.

The prior defenses against PFA and/or VFA aim at liveness
detection, which seeks to find a live indicator that the submitted
face photo or video of the legitimate user is indeed captured
in real time. The user’s eye blink, lip movement, or head
rotation in a video have been proposed as live indicators [8],
[9]. These schemes are effective against PFA but invalid for
VFA. The countermeasures against both PFA and VFA either
use an infrared camera to obtain the thermogram of the user’s
face [10], or utilize texture analysis to detect the existence of
a printed photo [11], or explore motion analysis to detect the
existence of 2D images [12]. Besides very high computation
complexity, these methods [10]–[12] require additional sensors
or advanced cameras unavailable in COTS mobile devices.

The accelerometer in almost all COTS devices has recently
been explored for liveness detection against PFA and VFA.
In [13], Chen et al. proposed to compare the small motions
extracted from the recorded video of the user’s frontal face
and those from the accelerometer to see if the motions are
consistent. Similarly, Li et al. compared two motion vectors
independently extracted from the video and the accelerometer
of the mobile device for liveness detection [14]. Although these
schemes [13], [14] are very effective against PFA and VFA,
they require the legitimate user to move the mobile device in
front of him/herself in some predefined manner, which can
be inconvenient or even socially awkward. In addition, the
randomness of the user-generated device movement may be
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too limited so that the adversary may have a good chance to
successfully imitate the user after careful observations.

In this paper, we propose FaceHeart, a novel and practical
liveness detection scheme for securing face authentication on
mobile devices. FaceHeart targets mobile devices with both
front and rear cameras that are available on most recently
shipped mobile devices. The key idea of FaceHeart is to check
the consistency of two concurrent and independently extracted
photoplethysmograms of the user as the live indicator. For
this purpose, FaceHeart records a video of the user’s face
by the front camera and a video of the user’s fingertip by
the rear camera at the same time. Then FaceHeart applies
photoplethysmography (PPG) to extract two underlying pho-
toplethysmograms from the face and fingertip videos. If the
two photoplethysmograms are from the same live person and
measured at the same time, they must be highly consistent
and vice versa. As photoplethysmograms are closely tied to
human cardiac activity and almost impossible for the adversary
to forge or control, the consistency level of two extracted
photoplethysmograms can well indicate the confidence level
in the liveness of a face authentication request.

We design a complete set of tools to check the consistency
of two photoplethysmograms for liveness detection. Specif-
ically, given the face or fingertip video, the corresponding
photoplethysmogram is extracted as a time series according
to the principle of PPG. As a result, two time series can
be obtained by using similar computer vision tools. After
that, a set of features such as estimated heart rates and cross
correlation of the two photoplethysmograms can be calculated
by combining the two time series. Finally, lightweight ma-
chine learning algorithms are used for classifier training and
subsequent testing. In this paper, we adopt and compare three
machine learning algorithms, i.e., Bayesian network (BN),
logistic regression (LR), and multilayer perceptron (MLP), to
demonstrate the feasibility of FaceHeart.

We also conduct extensive experiments to evaluate Face-
Heart. 18 users from diverse background are involved in our
experiments. In typical settings, FaceHeart achieves a true
positive rate (TPR) as high as 97.5%, a false negative rate
(FNR) as low as 5.2%, and an equal error rate (EER) as low
as 5.98%. Furthermore, we study the impact of various factors
on FaceHeart, such as the head pose, background illumination,
and location. Overall, the experimental results confirm that
FaceHeart can effectively and reliably defend against PFA and
VFA and thus secure face authentication on mobile devices.

The rest of the paper is organized as follows. Section II
introduces the background of camera-based PPG. Section III
details the FaceHeart design. Section IV presents the exper-
imental evaluation. Section V discusses the limitations and
security of FaceHeart. Section VI concludes this paper.

II. BACKGROUND OF CAMERA-BASED PPG
In PPG, a photoplethysmogram is an optically obtained

plethysmogram, which is a volumetric measurement of cardio-
vascular shock and sedation [15]. With each cardiac cycle, the
heart pumps blood to the periphery, which generates pressure
pulse that distends arteries and arterioles in the subcutaneous
tissue. The corresponding volume change generated by the
pressure pulse can be detected by measuring the amount of
light either transmitted through or reflected from the skin. The
evolvement of such volume changes across time carries exactly
the user’s heart beat signal.
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Face Detection 
and Tracking
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Fig. 1: A system overview of FaceHeart.

We adopt the model in [16] for camera-based PPG-based
heart rate measurements. When the incident light arrives at
the user’s skin, a major part gets reflected back by the skin
surface and does not interact with the tissue underneath the
skin. The remaining (minor) part of the incident light first
penetrates underneath the skin surface, then is absorbed by
the tissue and the chromophores in blood inside arteries and
capillaries, and finally gets reflected back to the camera. These
two parts are usually referred to as surface reflectance and
subsurface reflectance, respectively. The former dominates the
overall light received by the camera but does not carry any
information of human cardiac activity, while the latter is much
smaller but bears the heart beat signal.

Given a skin region-of-interest (ROI) R in the video, the
average pixel value at time t can be modeled as

y(t) = I(αp(t) + b) + n(t), (1)

in which y(t) is the average pixel value, I is the incident
light intensity in R, α is the strength of blood perfusion, p(t)
is the blood volume change pulse, b is surface reflectance
from the skin in R, and n(t) is the quantization noise of
the camera. αp(t) denotes subsurface reflectance and is much
smaller compared to b (i.e., αp(t) � b). Normally, I can
vary across R and may change significantly across time if the
illumination source or the environment change across time. In
this paper, we assume I to be constant as the duration of the
entire authentication process is usually less than five seconds
and can be considered very short. Meanwhile, the user is asked
to keep as still as possible, and we try to keep the environment,
such as the illumination, as stable as possible. α and b are also
assumed to be constants for the same ROI and the same user.
On the contrary, n(t) is a random variable, and a large variance
of n(t) may mask the small heart beat signal exhibited in p(t).
Equivalently, if noise is not considered, y(t) can be viewed as
the combination of a large DC part and a small AC part. The
latter carries the information of human cardiac activity and can
be extracted through a set of signal processing tools.

III. FACEHEART

FaceHeart can be used as a standalone mobile authentica-
tion module in the mobile OS or integrated in any app desiring
face authentication. In this section, we give an overview of
FaceHeart and then detail its design.

A. Overview
FaceHeart works as follows. First, the user uses his/her

fingertip to cover the rear camera and also flashlight without
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Fig. 2: Camera-based PPG.

applying any pressure. Then FaceHeart uses the front and
rear cameras simultaneously to record the face and fingertip
videos, respectively. The user needs to stay as still as possible
while the recording is ongoing. Next, FaceHeart extracts two
photoplethysmograms from the two videos and compares them
for liveness detection. In the meantime, one frame of the
face video (for instance, any frame after the first second
of recording) is sent to the conventional face authentication
module to decide whether the person in the frame is the legiti-
mate user. Only when liveness detection and conventional face
authentication both succeed is the user considered authentic.

Fig. 1 depicts the flow chart of FaceHeart. Given a pair of
face and fingertip videos, FaceHeart uses the following mod-
ules to accomplish liveness detection. The Signal Processing
module is first invoked to obtain two photoplethysmograms
independently from the two videos. Then the output is fed
into the Feature Extraction module to generate a feature
vector which characterizes the consistency level of the two
photoplethysmograms. In the next Classifier Training module,
machine learning algorithms are used to train a classifier based
on a library of feature vectors. Finally, the classifier is used
in the Liveness Detection module to determine whether a new
pair of face and fingertip videos can pass liveness detection.

B. Signal processing
As shown in Fig. 1, the Signal Processing module com-

prises four submodules: face detection and tracking, ROI
(region-of-interest) selection, photoplethysmogram extraction,
and filtering. The face video requires all four submodules,
while the fingertip video just needs the last three.

1) Face detection and tracking: In this step, we first detect
the user’s face in the first frame of the face video using the
classical Viola-Jones detection algorithm [20]. This algorithm
can work in real time and is highly accurate.

Next, instead of applying relatively costly face detection to
every frame, we use the Kanade-Lucas-Tomasi (KLT) feature
tracker to track the identified features from frame to frame
[21], [22]. More specifically, the KLT feature tracker identifies
multiple local feature points, commonly known as “good
features to track” [23]. Then it tries to search as many as
possible of the identified feature points in the previous frame.
Given two sets of features points in the current and previous
frame, the KLT feature tracker can estimate the translation,
rotation, and scale between the two consecutive frames and
then compute an affine function for face tracking. Since the
duration of the face video is short, the established feature
tracker is still valid for the last frame.

Finally, we can obtain the coordinates of the user’s face
in each frame. As depicted in Fig. 2(a), we obtain four
coordinates forming a rectangular box in each frame, which
approximates the whole face region. The green cross markers

depict the “good features to track” of the shown frame.
2) ROI selection: Different types of ROIs have been used

in the literature. Fig. 2(b), Fig. 2(c), and Fig. 2(d) illustrate
three most frequently used ROIs, denoted by R1 [17], R2

[18], and R3 [19], respectively. Some schemes use random
selection while some others assign weights to every segmented
unit of the face. Intuitively, the amount of photoplethysmogram
information extracted from a specific ROI is closely related to
where the ROI is. The reason is that the extracted photoplethys-
mogram is proportional to p(t) in Eq. (1), i.e., the amount
of blood volume change underneath the ROI. Meanwhile, the
distribution of blood carrying capillaries differs from region
to region, further resulting in different amount of extractable
photoplethysmogram information. The size of the selected ROI
may also have influence on the extracted photoplethysmogram.
On the one hand, a smaller size requires a highly accurate
face tracker to avoid too much noise in the extracted photo-
plethysmogram. On the other hand, a larger size averages the
contribution across the entire region and therefore may shrink
the strength of the photoplethysmogram.

In this paper, we choose R3 as the ROI for extracting
photoplethysmogram, which is the central part of the whole
face and encompasses 60% of the width and the full height of
the detected face region. In contrast to R1 and R2 that require
a resource-demanding feature detector [24], R3 only requires
the basic computationally efficient Viola-Jones detector. In
addition, our experimental evaluations in Section IV-D show
that R1 and R2 do not show much performance improvement
over R3 mainly because the required face tracker has limited
accuracy in constrained mobile environments. It is possible
to have a weighted combination of multiple ROIs as in [16],
which nevertheless requires multiple iterations and thus incurs
larger computation overhead. How to use multiple ROIs more
efficiently in FaceHeart is part of our future work.

3) Photoplethysmogram extraction: We extract the photo-
plethysmogram from an ROI by averaging all pixel values
therein. A recorded video has three channels: red, green, and
blue. In the literature [16], [18], [19], [25], [26], it is widely
accepted that the three channels carry different amount of
photoplethysmogram information. The green channel carries
the strongest photoplethysmogram, as the green light is easier
to absorb by hemoglobin in the blood and thus penetrates
deeper into the skin [16]. It is tempting to use all three channels
to enhance the SNR of the extracted photoplethysmogram, but
the recent studies [16], [18], [25] show that this approach
is not necessarily beneficial because the three channels do
not yield statistically mutually independent information. So
we follow the suggestion in [16], [18], [25] to obtain the
photoplethysmogram only from the green channel.

4) Filtering: This step applies two filters to the extracted
photoplethysmogram. First, we use a Normalized Least Mean
Square (NLMS) adaptive filter to alleviate the illumination
interference [27]. The motivation is that small environment
changes—such as a person passing by or small camera
movements—may induce overall illumination shifting in the
video. This undesirable effect can be mitigated by estimating
the amount of interference and then subtracting it from the
overall measurement. In Section II, we use y(t) to denote
the photoplethysmogram of a selective ROI R. Given the
illumination interference, y(t) can be divided into two parts:

y(t) = yc(t) + ni(t), (2)
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Fig. 3: Illustration of extracted photoplethysmograms.

where yc(t) is due to human cardiac activity, and ni(t) is
due to illumination interference. ni(t) can be assumed to be
proportional to the average pixel value of the background
regions other than the face region. We thus have

ni(t) = hybg(t), (3)

where ybg(t) is the average pixel value of a selective back-
ground region, and h is a linear coefficient. In our implemen-
tation, we simply select a pixel block of 20 × 20 in the top-
right corner in each frame as the background region. h can be
estimated by the NLMS adaptive filter as

h(j + 1) = h(j) + μ
yc(j)

ybg(j)
, j = 0, 1, 2, . . . , N − 1. (4)

Here μ is the step size equal to 1, and N is the length of
y(t) (or yc(t), equivalently). We also set h(0) = 0 in the
implementation. After the final h = h(N) is obtained, ni(t)
can be subtracted from y(t) according to Eq. (2) to finally
reveal yc(t).

Next, we use a bandpass FIR filter (second-order But-
terworth filter) with a passband of [0.7, 4] Hz to reduce the
interference of out-of-band noise. The signal after filtering is
the final photoplethysmogram for liveness detection.

5) Processing fingertip video: Extracting the photoplethys-
mogram from a fingertip video is much easier. Specifically,
no face detection or tracking is needed, and the entire frame
is used as the ROI. Meanwhile, since the rear camera is
fully covered by the user’s fingertip, there is no illumination
interference so that the NLMS adaptive filter is not needed.

C. Feature extraction
In this module, we use the two extracted photoplethysmo-

grams to calculate a feature vector for classifier training and
liveness detection. Denote the photoplethysmograms from the
face and fingertip videos by Pface and Pftip, respectively. Pface

and Pftip are two time series of the same length N , from which
the following features are calculated.

• Heart rate difference. The heart rate difference is the
absolute difference between the heart rates from the
face and the fingertip. We denote them by hface and

hftip, respectively. To obtain hface, we first multiply
Pface with an N -point Hanning window such that the
two endpoints of Pface can meet rather than having
a sharp transition between them. Then we apply fast
fourier transform (FFT) on windowed Pface, select the
highest peak within [0.7, 4] Hz, multiply it by 60, and
obtain hface. We can also obtain hftip in the same way.
Then heart rate difference is calculated as

Δh = |hface − hftip| (5)

• Maximum cross correlation. We obtain the max-
imum cross correlation between Pface and Pftip

by searching the optimal alignment between them.
Specifically, we first obtain the optimal alignment k̂
by the following equation.

k̂ = argmin
N−k+1∑

i=1

Pface(i)Pftip

N − k
,

subject to 0 ≤ k < Nftip.

(6)

Here Nftip is the approximate length of a period of
Pftip and equals � 60Fs

hftip
�, where Fs is the frame rate

of the fingertip video (and equivalently that of the face
video). After k̂ is found, we truncate Pface and Pftip

into two shorter vectors of the same length as

P̃face = Pface(1 : N − k̂), P̃ftip = Pftip(k̂ + 1 : N).
(7)

Then the maximum ratio is calculated as

ρmax =

Ñ∑

i=1

P̃face(i)P̃ftip(i)

Ñ
, (8)

where Ñ = N − k̂.
• Mean, min, max, and standard deviation of ampli-

tude ratio. Given the aligned P̃face and P̃ftip, we first

calculate amplitude ratio as R(i) = P̃face(i)

P̃ftip(i)
, i = 1, 2,

. . . , Ñ . Then we further calculate the mean, min, max,
and standard deviation of R as features, denoted by
Rmean, Rmin, Rmax, and RSD, respectively.

D. Classifier training
Our training set contains two classes of instances. Each

instance consists of a feature vector in the form of v = [Δh,
ρmax, Rmean, Rmin, Rmax, RSD]. The feature vectors of the
instances in Class I (labelled as l = 1) are computed from
a pair of simultaneously recorded face and fingertip videos.
On the contrary, those of the instances in Class II (labelled as
l = 0) are computed from a pair of face and fingertip videos
recorded separately. Ideally, the classifier should be able to
label the instances in both classes as accurately as possible. As
in [14], we use and compare three supervised machine learning
techniques in the Weka toolkit [28] for classifier training and
testing: Bayesian network (BN), logistic regression (LR), and
multilayer perceptron (MLP). In particular, BN is based on
constructing a probabilistic graphic model representing a set
of random variables and their conditional dependencies via
a directly acyclic graph [29]. The constructed probabilistic
model is used to infer the label of unlabeled instances. LR
uses the sigmoid function as the hypothesis to estimate the
relationship between the features and corresponding labels
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[30]. MLP is a feedforward artifical neural network model that
maps the sets of input data onto a set of appropriate output
[31]. One important advantage of MLP is that it can be used
to distinguish data that are not linearly separable.

The classifier training is neither user-specific nor device-
specific. It is exclusively done by the FaceHeart developer who
can easily maintain and update a large number of instances for
Classes I and II. The trained classifier is preloaded into the
mobile device when FaceHeart is installed.

E. Liveness detection
Given a new pair of face and fingertip videos for authen-

tication, FaceHeart computes the corresponding feature vector
and then inputs into the classifier. If the output label is 1, the
new pair passes liveness detection and fails otherwise. In the
former case, if the face image additionally passes conventional
face authentication, the user is deemed legitimate.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of FaceHeart.

A. Adversary model
We consider a typical adversary model in this paper. The

adversary possesses the victim’s mobile device and seeks to
pass the face authentication employed by the device itself
or some sensitive apps. Since VFA can be considered an
advanced version of PFA, we focus on evaluating the resilience
of FaceHeart to VFA. The adversary can surreptitiously obtain
the videos containing the legitimate user’s frontal face, e.g., by
online searches or realtime capturing through a high-definition
camcorder from a long distance. In contrast, fingertip videos
are very rare online or almost impossible to capture in real
time, so the adversary can only use the fingertip video of
himself or a random user. In addition, the adversary is fully
aware of FaceHeart. We consider two types of VFA as follows.
Type-I VFA. This attack does not involve any realtime video
recording and serves as a “stress test” for FaceHeart. In
particular the adversary directly feeds his fingertip video and
the victim’s face video into FaceHeart. Each participant in our
experiments is assumed as the adversary once, in which case
the other participants are used as the victims.
Type-II VFA. This attack resembles the practical attack
scenario. The adversary first replays the victim’s face video
on the screen of his/her own device such as an iPad. The
distance between the victim device and the adversary’s device
screen is properly adjusted such that the victim device’s front
camera can well capture the victim’s face in the replayed video.
While the face video is replayed and recorded, the adversary
let the victim device’s rear camera take his/her fingertip video
simultaneously. Two random participants are chosen as the
adversary for the Type-II VFA. When either is chosen, each
other participant serves as a victim.

B. Experiment setup
We used a Samsung Galaxy S5 in the experiments. In

particular, we utilized the dual-camera mode of the Camera
app on Galaxy S5, which can record a video with both the
front and rear cameras simultaneously. The frame size of the
recorded video is 720 × 1280, which can be equally divided
into the upper and lower parts, corresponding to the face and
fingertip videos, respectively. After the useless black region on
left and right sides is removed, the frame size of both face and
fingertip videos becomes 480× 640. Since almost all recently

shipped mobile devices have both front and rear cameras, it
is rather straightforward to obtain the simultaneously-recorded
face and fingertip videos on other device models.

We recruited 18 participants in the experiments, including
two females and 16 males. The participants are graduate stu-
dents in Arizona State University, whose ages range between
20 and 35. All the participants were given the following
instructions. First, each participant tries to sit as still as
possible. The distance between the user and the front camera
varies between 30 to 45 cm, which has been proved to be a
convenient distance for the users and that the captured user face
is reliably detected. Then s/he activates the dual-camera mode
of the Camera app on Galaxy S5 and ensures that the front
camera properly captures her/his frontal face. Subsequently,
s/he rests any of her/his fingertip on the rear camera without
applying any pressure. Finally, s/he proceeds to record a video
of approximately ten seconds by tapping the video recorder
icon.

As cardiac activity highly depends on current user con-
ditions, the videos were recorded when the participant was
under different conditions to fully evaluate the performance of
FaceHeart. In particular, we investigated three user conditions.
Under the rest condition, each participant was asked to sit
quietly without her/his legs crossed for five minutes. After
that, s/he recorded videos for 15 times. Under the reading
condition, each participant was asked to read recent news on a
smartphone for five minutes. After that, s/he recorded videos
for 15 times. Under the gaming condition, each participant was
asked to play the video game “No Limits” or “Strikers 1945-
3” on a smartphone for five minutes. After that, s/he recorded
videos for 15 times. For the same participant, cardiac activities
are expected to be different under these three conditions [32].
Particularly, the heart rate of the same user in the gaming
condition is usually higher than those in the rest and reading
conditions, which was also confirmed in the experiments.

The following default settings were used unless stated
otherwise. Participants were asked to maintain the front head
pose during video recording. Videos were recorded under
normal illumination in a typical research lab (e.g., 500 lux).
During the recording process, other persons may leave/enter
the lab.

Our main dataset, denoted by S , consists of Sp for positive
(Class I) instances and Sn for negative (Class II) instances. The
instances in Sp come from legitimate users, while those in Sn

are from Type-I adversary. Given 18 participants with each
recording 15 videos under each of the three user conditions,
there are 18×3×15 = 810 instances in Sp. To generate Sn, we
first randomly selected two pairs of face and fingertip videos
for each participant. Each participant acted as the adversary
once, in which case each other participant acted as the victim.
So Sn contains 2 × 2 × 17 = 68 instances per participant
and 68 × 18 = 1224 instances in total. For the following
evaluations, we repeated the generation process of Sn for 40
times and obtained the average results.

C. Performance metrics
We use the following performance metrics.

Receiver operating characteristic (ROC) curve. An ROC
curve can be used to illustrate the performance of a binary
classifier as its discrimination threshold changes. According to
the definition in [33], we can obtain an ROC curve by plotting
TPR (true-positive rate) with respect to FPR (false-positive
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Fig. 4: Impact of video length on Δh and EER.

rate) in various threshold settings.
Acceptance rate. We define the acceptance rate as the ratio
between the number of correctly-classified positive (legitimate)
instances and that of all positive instances in a testing dataset.
A higher acceptance rate means that the system is more likely
to admit legitimate users.
Detection rate. We define the detection rate as the ratio
between the number of correctly-classified negative (adversar-
ial) instances and that of all negative instances in a testing
dataset. A higher detection rate means that the system can
more effectively detect VFA.
Computation time. We define the computation time as the
time FaceHeart takes to determine whether a given pair of face
and fingertip videos can pass liveness detection. Intuitively, the
computation time should be as short as possible.

D. Experimental results
1) Video length: Here we show the impact of video length

on FaceHeart.
Fig. 4(a) shows the mean and standard deviation (SD) of

Δh in Sp, which is the absolute difference between hface and
hftip in the same authentication session. Since the SNR of the
photoplethysmogram from the fingertip video is usually high,
hftip can be treated as the reference heart rate. As we can see,
the mean and SD of Δh decrease from around 12 and 17 bpm
to around 5 and 7 bpm when the video length increases from
two to four seconds. This means that the accuracy of hface

increases along with the video length. When the video length
is larger than four seconds, the mean and SD of Δh do not
change much.

Fig. 4(b) shows the EER (equal error rate) of FaceHeart
under the Type-I attack using S . We can see that FaceHeart
exhibits similar EER performance with BN, LR, and MLP.
Therefore, we believe that FaceHeart works well along with
mainstream machine learning algorithms. Meanwhile, the EER
decreases quickly when the video length increases from two
to four seconds and then stays relatively the same as the video
length further increases. Such results are consistent with those
in Fig. 4(a) because a smaller Δh indicates that the two cor-
responding photoplethysmograms in the same authentication
session are more consistent. Consequently, this makes it easier
for the classifier to distinguish between positive and negative
instances, leading to a lower EER.

As a shorter video length means that the legitimate user
can record a shorter video for authentication, the required
minimum video length of FaceHeart is preferably as short as
possible. Based on the above results, the default video length
is set to four seconds hereafter unless specified otherwise.

2) ROI: Now we demonstrate the impact of ROI on Face-
Heart using S .
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Fig. 5: Impact of ROI on Δh and EER.
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Fig. 6: ROC and EER performance of FaceHeart under Type-I
attacks.

Fig. 2(b), Fig. 2(c), and Fig. 2(d) illustrate the three ROIs
to study. Fig. 5(a) shows the mean and SD of Δh in Sp. As
we can see, the means of Δh using R1, R2, and R3 are 4.84,
4.56, and 5.32 bpm, respectively, and the SDs are 10.55, 6.73,
and 7.19 bpm, respectively. Fig. 5(b) shows the corresponding
EERs when R1, R2, and R3 are used as the selected ROI,
respectively. The EERs with R1 using BN, LR, and MLP are
8.2%, 5.9%, and 6.3%, respectively, those with R2 are 7.9%,
6.2%, and 6.1%, respectively, and those with R3 are 6.0%,
6.0%, and 6.2%, respectively.

The results above show that the three ROIs lead to similar
EER performance while the EERs with R3 are slightly better
than those with R1 or R2. More importantly, the computation
time of FaceHeart using R3 as the selected ROI is much shorter
than that using R1 or R2, as shown soon in Section IV-D6.
Therefore, we select R3 as the ROI for photoplethysmogram
extraction by default.

3) Type-I attack: Here we show the resilience of FaceHeart
to the Type-I attack.

Fig. 6(a) and Fig. 6(b) show the ROC curve and EER of
FaceHeart, respectively. The TPRs using BN, LR, and MLP
are 90.2%, 97.5%, and 94.6%, respectively, the FPRs are 3.8%,
5.2%, and 4.6%, respectively, and the EERs are 6.03%, 5.98%,
and 6.21%, respectively. The results show that the performance
of FaceHeart is similar to those of the state-of-the-art systems,
such as FaceLive in [14]. To sum up, FaceHeart can achieve
very high TPR and very low FPR at the same time, meaning
that it can correctly distinguish between legitimate requests
and VPAs with high probability.

Fig. 6(b) shows the EERs of FaceHeart in different user
conditions. The EERs using BN, LR, and MLP under the
rest condition are 7.70%, 5.57%, and 5.40%, respectively,
those under the reading condition are 8.77%, 5.53%, 5.73%,
respectively, and those under the gaming condition are 8.27%,
8.54%, and 5.65%, respectively. Overall, the EERs in the three
user conditions are low, so FaceHeart can be used even when
the user’s cardiac activity changes. In addition, the EERs in
the gaming condition are slightly higher than those under the
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Fig. 8: EER performance of FaceHeart under Type-II attacks.

other conditions. This is anticipated because the heart rate in
the gaming condition is usually higher than others so that the
SNR of the extracted photoplethysmogram usually decreases
due to the increased noise level in the higher frequency range.
Therefore, the consistency between the two photoplethysmo-
grams from a pair of face and fingertip videos in the same
authentication session drops, leading to a higher EER. Based
on S , we obtain the corresponding classifiers with BN, LR,
and MLP, respectively, by using 10-fold cross validation for
training. Then we use the trained classifier models for testing
in the following.

4) Type-II attack: Now we show the detection rate of Face-
Heart under the Type-II attack. We first obtained the negative
(adversarial) instances for the Type-II attack as follows. Two of
the 18 participants acted as the adversaries. For each adversary,
the other 17 participants were regarded as her/his victims. For
each victim, we randomly selected 10 face videos from her/his
recordings. Then the two adversaries launched the Type-II
attack, resulting in 2×10×17 = 340 negative instances. After
that, we applied the trained classifiers in Section IV-D3 to the
collected negative instances and obtained the detection rate. As
shown in Fig. 8, the detection rates using BN, LR, and MLP
are 94.71%, 97.94%, and 98.24%, respectively, indicating that
FaceHeart can detect VFA with overwhelming probability.

5) Robustness of FaceHeart: In the following, we study
the robustness of FaceHeart against different factors including
head pose, illumination, and location.
Head pose. We first study the impact of head pose on the
acceptance rate of FaceHeart. As illustrated in Fig. 9 [34], the
relative rotation of a user’s head to the front head pose can be
described by rotation angles in three independent axes, which
are yaw, pitch, and roll, respectively. Hereafter we also refer to
the rotation angles in yaw, pitch, and roll axes as yaw, pitch,
and roll, respectively. For the front head pose, yaw, pitch, and
roll are equal to zero. Roll is easier to adjust by the user, and
a zero roll also benefits face detection. So participants were
asked to adjust their head poses such that the rolls are as near
to zero as possible. As a result, we only focus on the other
two types of head rotation angles, i.e., yaw and pitch.

Data collection worked as follows. First, we asked two
participants to record videos for authentication with different
yaws or pitches. Specifically, they recorded videos when the

Fig. 9: Illustration of head pose in yaw, pitch, and roll axes.

0 5 10 15 20
0

20
40
60
80

100

Ac
ce

pt
an

ce
 R

at
e 

(%
)

Yaw (degree)

 BN  LR  MLP

(a) Rotate in yaw axis

-20 -10 0 10 20
0

20
40
60
80

100

Ac
ce

pt
an

ce
 R

at
e 

(%
)

Pitch (degree)

 BN  LR  MLP

(b) Rotate in pitch axis

Fig. 10: Impact of head pose on acceptance rate.

yaws changed and the pitches remained near to zero and
continued when the pitches changed and the yaws remained
near to zero. After that, we applied the trained classifiers
in Section IV-D3 to the collected dataset and obtained the
acceptance rate. Each participant recorded 50 videos for the
same yaw or pitch, resulting in 1,000 videos in total.

Fig. 10(a) and Fig. 10(b) show the acceptance rates of
FaceHeart with different yaws and pitches, respectively. The
acceptance rate is almost always higher than 90% and changes
only slightly when the yaw of user head pose changes from
zero to 20 degrees, or the pitch changes from -20 to 20 degrees.
The results are as expected because FaceHeart is based on
comparing two photoplethysmograms extracted from a pair of
face and fingertip videos, and a small yaw or pitch (less than
±20 degrees) does not affect photoplethysmogram extraction
much. Assuming that users tend to record videos with small
yaws or pitches (less than ±10 degrees) in practice, we believe
that FaceHeart is robust to head pose changes.
Illumination. Here we study the impact of illumination on
the acceptance rate of FaceHeart. For this experiment, we
asked two participants to record videos for authentication
under two different illuminations, i.e., normal (in the range of
hundreds lux) and low illuminations (less than 20 lux). Fig. 11
illustrates the clear influence of normal and low illuminations
on video recording. The illumination was adjusted by turning
off part of the lights in our office. After that, we applied the
trained classifiers in Section IV-D3 to the collected dataset
and obtained the acceptance rate. Each participant recorded
50 videos for the same illumination, resulting in 200 videos
in total for this experiment.

Fig. 12(a) and Fig. 12(b) show the mean and SD of Δh
and acceptance rate of FaceHeart, respectively. The mean and
SD of Δh increase from 4.88 and 6.14 bpm to 9.07 and 14.34
bpm, respectively, when the illumination switches from normal
to low. Correspondingly, the acceptance rates using BN, LR,
and MLP drop from 90%, 92%, and 98% to 70%, 79%,
and 85%, respectively. The results indicate that FaceHeart is
greatly affected by illumination in the environment, which
can be explained as follows. FaceHeart relies on comparing
the photoplethysmograms extracted from a pair of face and
fingertip videos, and low illumination leads to a low SNR
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Fig. 11: Captured images under different illuminations.
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Fig. 12: Impact of illumination on Δh and acceptance rate.

of the extracted photoplethysmogram. Hence, the consistency
between the face and fingertip photoplethysmograms reduces
(partially illustrated by the increased Δh), leading to the
decreased acceptance rate.
Location. We also study the impact of locations on the
acceptance rate of FaceHeart. First, we asked two participants
to record videos for authentication in four different locations,
i.e., our office, the apartments (APTs) of the participants, the
university library (LIB), and an outdoor bench on our campus.
After that, we applied the trained classifiers in Section IV-D3
to the collected dataset and obtained the acceptance rate. Each
participant recorded 50 videos for the same location, resulting
in a dataset of 400 videos in total.

Fig. 13 shows the acceptance rate of FaceHeart with
different locations. The acceptance rates are always higher than
90% and do not change much when the location changes. The
results indicate that FaceHeart is robust to location changes
and thus can be used in different locations. The reason is that
locations have little impact on photoplethysmogram extraction
and consequently little impact on the classification results.

6) Computation time: Here we study the computation time
of FaceHeart for different ROIs. For this experiment, we
randomly select 100 pairs of face and fingertip videos from
our collected data. Each pair of videos were both chopped to
a length of four seconds. Then we run FaceHeart with the
given video pairs and obtained the average computation time.
To use R1 or R2, we first used the face tracker in [24] to
track the facial landmarks in each frame and then calculated
the coordinates of R1 or R2. Fig. 14(a) depicts the tracked 49
landmarks on the user face which are used for the calculation
of R1 and R2.

Fig. 14(b) shows the computation time using R1 or R2

or R3 as the selected ROI. The average computation time
using R1, R2, and R3 are 18.05, 18.19, and 0.96 seconds,
respectively. Therefore, selecting R3 as the ROI for photo-
plethysmogram extraction is much faster than selecting R1 or
R2. Such results are as expected because R1 and R2 require
much more computationally-expensive face trackers than that
used by R3.

The computation time of FaceHeart is comparable to the
state of art. In particular, Li et al. reported an average time
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Fig. 13: Impact of location on acceptance rate.
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Fig. 14: Impact of ROI on computation time.

of 3.3 seconds for device movement (equivalent to the video
length in FaceHeart) in [14] and did not explicitly evaluate
the computation time for liveness detection. In [13], the
authors mentioned that the average authentication time for
video recording and also liveness detection is 2.8 seconds when
successful and failed authentications are combined and 4.9
seconds when only successful authentications are considered.
Given the video length of four seconds used in our evaluations,
we believe that the computation time of FaceHeart is similar
to the state-of-the-art, but FaceHeart is more secure and user-
friendly.

V. DISCUSSION

As the first system exploring photoplethysmogram for se-
cure face authentication on mobile devices, FaceHeart certainly
has limitations. In this section, we outline the possible ways
to further improve FaceHeart.

A. Camera-based PPG
As the camera-based PPG method in [19] is adopted to

extract photoplethysmograms, FaceHeart naturally inherits its
limitations related to user movement and the environment
illumination. More specifically, the user is required to keep
her/his head as still as possible in order to extract more
accurate photoplethysmograms. Meanwhile, as shown in Sec-
tion IV-D5, the performance of FaceHeart depends greatly
on the illumination in the environment. Hence, there should
be sufficient and stable illumination in the environment to
guarantee the high performance of FaceHeart.

Advanced schemes have been explored to alleviate the
requirements on user movement and the environment illumi-
nation. For example, researchers have proposed schemes to
improve the estimation accuracy of the heart rate under adverse
situations, such as when the user spontaneously moves his
head a little bit [16] or the illumination in the environment
is below normal [35]. Although such schemes are not directly
applicable to FaceHeart, they indicate a promising direction
worth exploring. Other minor issues inherited from camera-
based PPG methods include the impact of facial occlusion,
facial expression, and user skin tone, which we plan to fully
investigate in our future work.
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B. Authentication time
In FaceHeart, the authentication time for liveness detection

can be broken into two parts, i.e., video length and compu-
tation time. Given the video length of four seconds and the
computation time of 0.96 seconds with R3 as the ROI, the
total authentication time of FaceHeart is around 4.96 seconds.
In [13], the authors reported that the authentication time of
their liveness detection scheme is around 4.9 seconds, which
is comparable to 4.3 seconds of credential-based authentication
schemes. In this regard, the authentication time of FaceHeart
is acceptable and also comparable to the state-of-the-art.

Similar to [13], [14], the authentication time of Face-
Heart is dominated by the required video length, which is
four seconds in this paper. A shorter video length may be
adopted, however, at the cost of higher EERs. One possible
way to shorten the required video length is to extract new
features from extracted photoplethysmograms. For example,
heart rate variability and the absolute delay between the
two photoplethysmograms from face and fingertip videos are
very promising candidates. These two features can be useful
only when the SNRs of the two photoplethysmograms are
sufficiently high, which we plan to explore in the future.

VI. CONCLUSION

In this paper, we presented the design and evaluation of
FaceHeart, a novel and practical scheme for liveness detection
to secure face authentication on COTS mobile devices. Face-
Heart relies on the non-forgeability of the photoplethysmo-
grams extracted from two videos simultaneously taken through
the front and rear cameras on a mobile device. Extensive user
experiments confirmed that FaceHeart can effectively thwart
photo-based and video-based forgery attacks on mobile face
authentication systems.
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