Double-Spending Fast Payments in Bitcoin

Ghassan O. Karame
NEC Laboratories Europe
Heidelberg, Germany
ghassan.karame@neclab.eu

Elli Androulaki
Dept. of Computer Science
_ETH Zurich, Switzerland
elli.androulaki@inf.ethz.ch

Srdjan Capkun
Dept. of Computer Science
ETH Zurich, Switzerland
capkuns@inf.ethz.ch

ABSTRACT

Bitcoin is a decentralized payment system that relies on Proof-of-
Work (PoW) to verify payments. Nowadays, Bitcoin is increas-
ingly used in a number of fast payment scenarios, where the time
between the exchange of currency and goods is short (in the order
of few seconds). While the Bitcoin payment verification scheme is
designed to prevent double-spending, our results show that the sys-
tem requires tens of minutes to verify a transaction and is therefore
inappropriate for fast payments. An example of this use of Bitcoin
was recently reported in the media: Bitcoins were used as a form
of fast payment in a local fast-food restaurant.

Until now, the security of fast Bitcoin payments has not been
studied. In this paper, we analyze the security of using Bitcoin
for fast payments. We show that, unless appropriate detection tech-
niques are integrated in the current Bitcoin implementation, double-
spending attacks on fast payments succeed with overwhelming prob-
ability and can be mounted at low cost. We further show that the
measures recommended by Bitcoin developers for the use of Bit-
coin in fast payments are not always effective in detecting double-
spending; we show that if those recommendations are integrated
in future Bitcoin implementations, double-spending attacks on Bit-
coin will still be possible. Finally, we propose and implement a
modification to the existing Bitcoin implementation that ensures
the detection of double-spending attacks against fast payments.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General — Secu-
rity and protection.

General Terms

Security, Measurement, Experimentation.

Keywords

Bitcoin, Double-spending, Fast Payments, Countermeasures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’12, October 16-18, 2012, Raleigh, North Carolina, USA.

Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$10.00.

906

1. INTRODUCTION

First introduced in 2008, Bitcoin [22] is an emerging digital
currency that has, as of September 2011, approximately 60,000
users [1]. Bitcoin is currently integrated across a number of busi-
nesses [2] and has several exchange markets (e.g., [3]). It is also
foreseen that Bitcoin ATMs will be deployed in locations around
the globe [4] in order to bridge the gap between digital currency
and cash.

Bitcoin is a Proof-of-Work (PoW) based currency that allows
users to generate digital coins by performing computations. Users
execute payments by digitally signing their transactions and are
prevented from double-spending their coins (i.e., signing-over the
same coin to two different users) through a distributed time-stamping
service [22]. This service operates on top of the Bitcoin Peer-to-
Peer (P2P) network that ensures that all transactions and their order
of execution are available to all Bitcoin users.

Nowadays, Bitcoin is increasingly used in a number of “fast pay-
ment” scenarios, where the exchange time between the currency
and goods is short. Examples include vending machine payments
and fast-food payments (recently featured in media reports on Bit-
coin [5]), where the payment is followed by fast (< 30 seconds)
delivery of goods. While the Bitcoin PoW-based time-stamping
mechanism is essential for the detection of double-spending attacks
(i.e, in which an adversary attempts to use some of her coins for two
or more payments), it requires tens of minutes to verify a transac-
tion and is therefore inappropriate for fast payments. Since Bitcoin
users are anonymous and users (are encouraged to) hold many ac-
counts, there is only limited value in verifying the payment after
the user has obtained the goods (and e.g., left the store) or ser-
vices (e.g., access to on-line content). The developers of Bitcoin
implicitly acknowledge the problem of verifying fast payments and
inform users that they do not need to wait for the payment to be ver-
ified as long as the transaction has been released in the network [6];
this, however, does not solve this problem but merely limits the
damage as the system still remains vulnerable to double-spending
attacks.

Until now, double-spending attacks on fast payments in Bitcoin
or mechanisms for their immediate detection and/or prevention have
not been studied. In this work, we analyze double-spending attacks
on fast Bitcoin payments in detail and we show that, unless appro-
priate detection techniques are integrated in current Bitcoin clients,
double-spending attacks on fast payments succeed with overwhelm-
ing probability and can be mounted against current Bitcoin clients
at low cost. We further show that the detection measures recom-
mended by Bitcoin developers are not always effective in detecting

Time: 2010-09-16 05:03:47
Difficulty: 712.884864
Transactions: 2

Nonce: 1462756097

Hash: 000000000043a8c0fd1d6f726790caa2a406010d19efd2780db27bdbbd93baf6
Previous block: 00000000001937917bd2caba204bblaa530ec1de9d0f6736e5d85d96da9c8bba
Next block: 00000000000036312a44ab7711afa46f475913fbd9727cf508ed4af3bc933d16

Merkle root: 8fb300e3fdb6f30a4c67233b997f99fdd518b968b9a3fd65857bfe78b2600719

Input/Previous Output

Source & Amount

Recipient & Amount

N/A Generation: 50 + O total fees

Generation: 50 + 0 total fees

f5d8ee39a430...:0

1IBSCVF6VM6QjFZyTnbpLjoCJ...: 50

16ro3Jptwo4asSevZnsRX6vf..: 50

Table 1: Example Block of Bitcoin. The block contains 2 transactions, one of which awards the generator peer with 50 BTCs.

double-spending; we argue that even if those recommendations are
followed', double-spending attacks on Bitcoin are still possible.

Given the increasing use of Bitcoin, the reliance on fast Bitcoin
payments is only expected to increase. We therefore argue that
the integration of effective techniques to detect double-spending
attacks against fast payments emerges as a necessity since these
attacks might severely impact the trustworthiness and economic
standing of Bitcoin. Leveraging our findings, we propose and im-
plement a modification to the current Bitcoin implementation that
ensures the detection of double-spending attacks against fast pay-
ments. Our modified client implementation is available for down-
load at [7].

More specifically, our contributions in this paper can be summa-
rized as follows:

- We measure and analyze the time required to confirm transac-
tions in Bitcoin. Our analysis shows that transaction confirmation
in Bitcoin can be modeled with a shifted geometric distribution
with an average transaction confirmation time of 10 minutes and
a standard deviation of approximately 15 minutes. We argue that
this hinders the reliance on transaction confirmation when deal-
ing with fast payment scenarios.

- We thoroughly analyze the conditions for performing successful
double-spending attacks against fast payments in Bitcoin. We
then present the first realization of double-spending attacks on
fast payments in Bitcoin using a handful of hosts located around
the globe?.

- We explore and evaluate empirically a number of solutions for
detecting double-spending attacks against fast payments in Bit-
coin. We show that the recommendations of Bitcoin developers
on how to detect double-spending in fast payment scenarios are
not always effective. Leveraging our results, we propose and im-
plement a modification to the existing Bitcoin implementation to
enable the detection of double-spending attacks.

The remainder of the paper is organized as follows. In Section 2,
we briefly describe Bitcoin. In Section 3, we review how Bitcoin
payments are processed. In Section 4, we analyze and evaluate
the security of fast payments with existing Bitcoin clients. We
then evaluate the security of possible measures to detect double-
spending against fast payments in Bitcoin. In Section 6, we overview
related work and we conclude the paper in Section 7.

!These techniques are still not integrated in the current Bitcoin im-
plementation.

*In our experiments, we solely used Bitcoin wallets and accounts
that we own; other Bitcoin users were not affected by our experi-
ments.

2. BACKGROUND ON BITCOIN

Bitcoin is a decentralized P2P payment system [22] that was in-
troduced in 2008. Electronic payments are performed by generat-
ing transactions that transfer Bitcoin coins (BTCs) among Bitcoin
peers. These peers are referenced in each transaction by means of
virtual pseudonyms—referred to as Bitcoin addresses. Generally,
each peer has hundreds of different Bitcoin addresses that are all
stored and managed by its (digital) wallet. Each address is mapped
through a transformation function to a unique public/private key
pair. These keys are used to transfer the ownership of BTCs among
addresses.

Peers transfer coins to each other by issuing a transaction. A
transaction is formed by digitally signing a hash of the previous
transaction where this coin was last spent along with the public key
of the future owner and incorporating this signature in the coin [22].
Any peer can verify the authenticity of a BTC by checking the chain
of signatures.

Transactions are included in Bitcoin blocks that are broadcasted
in the entire network. To prevent double-spending of the same
BTC, Bitcoin relies on a hash-based PoW scheme. More specif-
ically, to generate a block, Bitcoin peers must find a nonce value
that, when hashed with additional fields (i.e., the Merkle hash of
all valid and received transactions, the hash of the previous block,
and a timestamp), the result is below a given target value. If such
a nonce is found, peers then include it (as well as the additional
fields) in a new block thus allowing any entity to publicly verify
the PoW. Upon successfully generating a block, a peer is typically
granted 50 new BTCs. This provides an incentive for peers to con-
tinuously support Bitcoin. The resulting block is forwarded to all
peers in the network, who can then check its correctness by veri-
fying the hash computation. If the block is deemed to be “valid™?,
then the peers append it to their previously accepted blocks. Since
each block links to the previously generated block, the Bitcoin
block chain grows upon the generation of a new block in the net-
work. As an example, Table 1 depicts the information included
in Bitcoin block number 80,000 as reported in the Bitcoin block
explorer [8].

The main intuition behind Bitcoin is that for peers to double-
spend a given BTC, they would have to replace the transaction
where the BTC was spent and the corresponding block where it
appeared in, otherwise their misbehavior would be detected im-
mediately. This means that for malicious peers to double-spend a
BTC without being detected, they would not only have to redo all
the work required to compute the block where that BTC was spent,
but also recompute all the subsequent blocks in the chain. This

3That is, the block contains correctly formed transactions that have
not been previously spent, and has a correct PoW.

—A— Fraction of Blocks
- 8- Shifted Geometric Dist. p=0.19

Fraction of Blocks / Probability
0.00 0.05 0.10 0.15 0.20
|

40 50

Block Generation Time (minutes)

Figure 1: Block generation times in Bitcoin. Assuming a (time)
bin size of 2 minutes, the block generation function can be fitted
to a shifted geometric distribution with p = 0.19. Refer to
Appendix A for further details.

ensures that the Bitcoin network can counter such misbehavior as
long as the fraction of honest peers in the network exceeds that of
malicious colluding peers [22].

Further details on Bitcoin can be found in [9, 10, 22]. In what
follows, we provide a summary (adapted from [22]) of the steps
that peers undergo in Bitcoin when a payment occurs.

e New transactions are broadcasted by peers in the network.

e When a new transaction is received by a peer, it checks whether

the transaction is correctly formed, and whether the BTCs
have been previously spent in a block in the block chain. If
the transaction is correct, it is stored locally in the memory
pool of peers until it is included in a valid block. In the paper,
we refer to a transaction that appears in the memory pools of
peers by a zero-confirmation transaction.

Peers work on constructing a new block. If they find a nonce
that solves the PoW, they include all the transactions that ap-
pear in their memory pool within the newly-formed block.
Peers then broadcast the block in the network. Transaction
that are included in well-formed blocks are called “confirmed
transactions”. As the block chain grows, it becomes hard to
modify/double-spend confirmed Bitcoin transactions®.

e When peers receive a new block, they verify that the block
hash is valid and that every transaction included within the
block has not been previously spent. If the block verification
is successful, peers continue working towards constructing a
new block using the hash of the last accepted block in the
“previous block” field (cf. Table 1).

3. PAYMENT VERIFICATION IN BITCOIN

Bitcoin is currently being used in both slow payments (e.g., de-
livery by post) and fast payment scenarios (i.e., where the exchange
between currencies and services happens simultaneously). In this
section, we review and analyze how Bitcoin transactions are pro-
cessed in these two scenarios.

“In current Bitcoin clients, a transaction has to receive 6 confirma-
tions before it is added to the user’s wallet.

908

3.1 Slow Payment Verification—Transaction
Confirmation

As described in Section 2, the most conventional and secure way
for a vendor V to accept a payment made by a customer C is to
wait until the transaction issued from C to)V is confirmed in at least
one block before offering service to C. Note that the Bitcoin client
can inform) whether its transactions have been confirmed or not.
Since confirmed transactions are likely to be accepted by honest
peers in the Bitcoin network, a malicious client A has negligible
advantage in tricking V to accept incorrect or double-spent trans-
actions.

Transaction Confirmation Time.

In what follows, we briefly analyze the time it takes for a given
transaction to be confirmed in Bitcoin.

Bitcoin is designed so that blocks are generated every 10 min-
utes, on average. For that purpose, the difficulty of the work re-
quired to construct a block is adjusted dynamically depending on
the time it took to solve the previous blocks. More specifically,
Bitcoin requires that the hash of the block to be constructed is be-
low a given target value. This target is interpolated from the over-
all time it took to solve the previous 2016 blocks [11]. Since the
fields required to construct the hash of a block also change with
time (e.g., timestamp, previous block hash), the probability to suc-
cessfully construct a valid block in Bitcoin is almost constant with
respect to the number of trials [12].

To measure the generation time of existing Bitcoin blocks, we
created a Python script that parses the block chain of Bitcoin and
extracts the time intervals between the generation of consecutive
blocks. Our findings show that while the average block generation
time is approximately 10 minutes (9 minutes and 54 seconds), the
standard deviation of the measurements is about 881.24 seconds
which corresponds to almost 15 minutes®. Thus, there is a consid-
erable variability among the block generation times. In Figure 1,
we depict the distribution of the generation times of the extracted
blocks. As explained in Appendix A, this distribution can be mod-
eled by a shifted geometric distribution with success probability
0.19. Our results also show that only 64% of the blocks were gen-
erated in less than 10 minutes. The remaining 36% of the blocks
require between 10 and 40 minutes to be generated.

3.2 Fast Payment Verification—Transaction
Reception

Our analysis in Section 3.1 shows that the time required to con-
firm transactions impedes the operation of many businesses that
are characterized by a fast-service time (i.e., when the exchange of
currency and goods is shorter than a minute). As such, it is clear
that vendors, such as supermarkets, vending machines, take-away
stores [13], Bitcoin Point of Sale terminals [14], etc., cannot rely
on transaction confirmation when accepting Bitcoin payments.

Given that a considerable number of businesses require fast pro-
cessing of payments, Bitcoin developers encourage vendors to ac-
cept fast Bitcoin payments with zero-confirmations as soon as the
vendor receives a transaction from the network transferring the cor-
rect amount of BTCs to one of its addresses [6, 13]. We point out
that this is the only available option for vendors to currently “ver-
ify” fast payments. Note that the vendor can search in his wallet for
the client’s transaction to verify its reception. The main intuition
here is that this constitutes sufficient proof that the transaction was
indeed broadcasted in the network. We emphasize that it typically

>The maximum time of block generation was 25 hours and 8 min-
utes.

InputA ——»

Inpgt B —/ TRA

——» OutputH
—— Output P

InputA ——»

Inpgt B > TRV Output O

— > Output F

Figure 2: Example construction of TR 4 and TRy. Here, we
show two different transactions with the same inputs and dif-
ferent outputs. TR 4 and TRy can share a subset of their
inputs—in which case .4 only tries to double-spend a subset of
the BTCs that she pays with.

takes few seconds (< 3 seconds) for a transaction to propagate be-
tween two Bitcoin peers.

4. SECURITY ANALYSIS OF FAST
BITCOIN PAYMENTS

In what follows, we analyze the security of fast payments in Bit-
coin. Namely, we focus on the analysis and implementation of
double-spending attacks on fast Bitcoin payments.

4.1 Attacker Model

Our system consists of a malicious client .4, and a vendor V,
connected through a Bitcoin network. We assume that A is moti-
vated to acquire a service from) without having to spend its BTCs.
More specifically, A could try to double-spend the coin she already
transferred to V. By double-spending, we refer to the case where A
can redeem and use the same coins with which she payed V so as
to acquire a different service elsewhere; where appropriate, we also
discuss the impact of the n-time spending of the same coin, where
n > 2, to acquire multiple services.

We assume that A knows the Bitcoin and IP addresses of 1°. We
further assume that A can only control few peers in the network
(that she can deploy since Bitcoin does not restrict membership)
and does not have access to V’s keys or machine. The remaining
peers in the network are assumed to be honest and to correctly fol-
low the Bitcoin protocol. We point out here that the computing
power harnessed by A and its helpers does not exceed the aggre-
gated computer power of all the honest peers in the network. This
prevents A from inserting/confirming incorrect blocks in the Bit-
coin block chain. In this paper, we consider the (worst-case) sce-
nario where A does not participate in the block generation process.
This also suggests that when a transaction is confirmed in a block,
this transaction cannot be modified by A.

Conforming with the operation of Bitcoin, we assume that .4
generates a new Bitcoin address whenever it communicates with 1.
We also assume that the set of addresses used by A are insufficient
to identify .A. This suggests that the identity of A is unlikely to be
revealed even if her misbehavior may be detected some time after
she has acquired the service.

4.2 Necessary Conditions for Successful Double-

Spending
To perform a successful double-spending attack, the attacker A
needs to trick the vendor V into accepting a transaction TRy that
V will not be able to redeem subsequently.

®When issuing a transaction, a Bitcoin client could either specify a
recipient Bitcoin address or an IP address.

Transaction to
Vendor

Transaction to
colluding
address

Transaction to
colluding
address

Bitcoin Mining Pools

Figure 3: Sketch of a double-spending attack against fast pay-
ments in Bitcoin. Here, the attacker A dispatches two trans-
actions that use the same BTCs in the Bitcoin network. The
double-spending attack is deemed successful if the BTCs that
A used to pay for)V cannot be redeemed (i.e., when the second
transaction is included in the upcoming Bitcoin block).

In this case, A creates another transaction TR 4 that has the same
inputs as TRy (i.e., TR 4 and TRy use the same BTCs) but re-
places the recipient address of TRy—the address of V— with a
recipient address that is under the control of A.’

An example construction of TR 4 and TRy is depicted in Fig-
ure 2. If both transactions are sent adjacently in time, they are likely
to have similar chances of getting confirmed in an upcoming block.
This is the case since Bitcoin peers will not accept multiple transac-
tions that share common inputs; they will only accept the version of
the transaction that reaches them first which they will consider for
inclusion in their generated blocks and they will ignore all remain-
ing versions. Given this, a double-spending attack can succeed if V
receives TRy, and the majority of the peers in the network receive
TR.4 so that TR 4 is more likely to be included in a subsequent
block. This process is sketched in Figure 3.

Let ¢} and ¢;* denote the times at which node i receives TRy
and TR 4, respectively. As such, £} and t{} denote the respective
times at which V receives TRy and TR 4.

Given this, we outline the necessary conditions for .A’s success
in mounting a double-spending attack.

Requirement 1 — TRy is added to the wallet of V.

If TRy is not added to the memory pool of V), then V cannot
check that TRy was indeed broadcasted in the network. Note that
for TRy to be included in V’s wallet, then t\‘ﬁ < tﬁ; otherwise, V
will first add TR 4 to its memory pool and will reject TRy as it
arrives later. After waiting for few seconds without having TRy in
its wallet, V can ask A to re-issue a new payment.

Requirement 2 — TR 4 is confirmed in the block chain.
If TRy is confirmed first in the block chain, TR 4 can never
appear in subsequent blocks. That is,) will not have its BTCs

"Note that our analysis is not restricted to the case where the re-
cipient address is controlled by A and applies to other scenarios,
where the recipient is another vendor.

140
» 120 F
=}
2
5100 -
5}
E
15 80
Q
B
=} 60
-
2
[= 40 -
z
20 -
North America >+<
Europe
0 ‘ ‘ ‘ P
Day 01 Day 02 Day 03 Day 04 Day 05 Day 06
Time

Figure 4: Number of connections that two Bitcoin nodes (in
North America and in Europe, respectively) witnessed over the
period of 6 consecutive days. Since the connectivity of peers in
Bitcoin varies with time, .4 has considerable opportunities to
establish at least one direct connection with).

back. In this case,)V will receive its BTCs, and can redeem them
at its convenience. Recall that the goal of A is to acquire a service
offered by V without having to spend her BTCs.

Requirement 3 — V’s service time is smaller than the
time it takes V to detect misbehavior.

Since Bitcoin users are anonymous and users hold many ac-
counts, there is only limited value in V detecting misbehavior after
the user has obtained the service (and e.g., left the store). This is
the case since the Bitcoin address of A is insufficient to identify
her. As such, for V to successfully detect any misbehavior by A,
the detection time must be smaller than the service time.

4.3 Mounting Double-Spending Attacks in Bit-
coin
In this section, we discuss how A can satisfy Requirements (1),
(2), and (3).

Satisfying Requirement 1.

A connects directly to V in the Bitcoin P2P network®. Given the
Bitcoin protocol specification, }V will always accept the connection
requests by other peers as long as the maximum number of its cur-
rent inbound connections has not been reached. By default, this
number is set to 125.° As shown in Figure 4, the connectivity of
Bitcoin peers is heavily dependent on the churn of the Bitcoin net-
work (i.e., peers departing/joining); this gives a considerable num-
ber of opportunities for A to establish a direct connection with V
(e.g., A could try to connect with V over the weekend or in the
evening, when the number of connections of V' drops below the
maximum).

In the sequel, we assume that A has access to one or more helpers,
denoted by H. A and ‘H do not necessarily have to be on physi-
cally disjoint machines (e.g., H could run as a thread/process on
the same machine as A). We further assume that (i) A and H
communicate using a low-latency confidential channel (e.g., by ex-
changing encrypted messages using a direct TCP connection) and
that (ii) H never connects directly to V in the Bitcoin P2P network.

A sends TRy to V at time 7y and TR 4 to H at time 7.4, such

8Recall that the IP address of V is public.
“Note that the maximum number of connections can be modified
using the “~-maxconnections” command [15].

910

that 74 = 7y + At. V and H relay the transactions that they
received from A in the network. Let §¢13;, refer to the time it takes
TR.4 to propagate in the Bitcoin P2P network from V to H and

8ty denote the time it takes TRy to reach V. In this case, 5y — t3,
can be estimated as follows:

15 —) & Ta 4 6t5y — (v + t4y) (1

~ At + 6ty — 6ty 2)

Note that since H is never a neighbor of V), there is at least
one hop on the path between H and V. Since A is an immedi-
ate neighbor of V' and assuming no congestion at network paths,
then 615y, > 8t4y. In this case, Y < t53 for reasonably chosen
At (e.g., At > 0), thus satisfying Requirement (1).

Satisfying Requirement 2.

Since ‘H and V are highly likely to have different neighbors, the
broadcasted transactions are likely to spread in the network till the
point where either (i) all Bitcoin peers accept in their memory pools
TRy or TR 4 or (ii) either TRy or TR 4 gets confirmed in a block.

In what follows, we estimate the probability that TR 4 is con-
firmed in a block first. In our analysis, we denote by to the time
at which both transactions TR 4 and TRy first coexist in the net-
work!?, and we assume that no block containing either one of them
has been generated till that time. We argue that this is a realistic
assumption given that TR 4 and TRy need to be typically broad-
casted back to back given a small delay (in the order of few sec-
onds); it is therefore unlikely that one of them is confirmed within
the first few seconds in a new block. In the experiments in Sec-
tion 4.4, we relax this assumption and we evaluate the general case
where either TR 4 and TRy can be confirmed immediately when
they are broadcasted in the network.

We divide time into equal intervals of size d¢, such that, the prob-
ability of successful block generation in each ¢ can be modeled as
a Bernoulli trial with success probability 7 - p, where 7 is the num-
ber of peers that work towards block generation and p the success
probability of a peer in generating a block within d¢ (for the rea-
soning why, refer to Appendix A).

Lett, = k-0t +to and n¥ and n% denote the number of Bitcoin
peers that have received TRy and TR 4 respectively until time ¢j.
Each Bitcoin node will only add to its memory pool the transaction
it receives first among TRy and TR 4. Since only the transactions
that appear in the memory pool of peers are eligible to be confirmed
in subsequent blocks, the probability that TRy is included in a
block within time interval Jtx, t41] is: Prf, = % - p. Similarly,
for TR 4, the corresponding probability is Pr¥ = 7% - p. Thus, the
probability p,,(k) that a block containing TRy is generated within
the time interval]¢x, tx41] is given by:

k—1 k—1
pu(k) =Prf - [T =Pr}) =nfp- [T —mip).
i=0 i=0

Similarly, the probability that a block containing TR 4 is gener-
ated at the same time interval is given by:

k—1 k—1
pa(k) =Prl - [T(1 =Pri) = nfip- [[(1 —niap)-
1=0 1=0

Ifattime ts = s- 0t + to every node in the network has received

9This does not necessarily mean that TR 4 and TRy are broad-
casted at the same time.

1
=
50.8’ 2 1
T >
© 0.67 L F 1
& /’_.
goa 6
g /—" ---p=10"
5 0.2r Lz _5
7] - —p=10
0 1 1 1 1 1 I
0 1 2 3 4 5 6

Number of Bitcoin Nodes that received 4
- x 10
the double—spent transaction

Figure 5: Ps® with respect to various values of ¥ and 7%.
Here, p = 1075, §t = 10 seconds, to = 0, t, = ot and the
number of peers in the network is 60000.

at least one of the transactions TRy or TR 4, the following holds:

k+1

<0’y and nfy < itk < s

i =0 = 0% and nY =yt

This suggests that Vi > s, 0%, + 0%y = 7% + 1°%.

To compute the probability of success of the double-spending at-
tack, we make the assumption that, V&, n¥ and 0% do not exchange
their newly constructed blocks; in this way, the time t,,, required
by peers that are mining in favor of TRy to generate a new block
is independent of that required by the peers that are mining in favor
of TR, ty,. Given this, the probability that Requirement (2) is
satisfied, Ps®, is computed as follows:

= 1y, otherwise.

1
Ps® = Prob(ty, < tg,)+ iProb(tgA =tgy,)- (3)

That is, Ps® is composed of two components; one corresponds to
the event that the block containing TR 4 is first generated and the
second to the event where the blocks containing TR 4 and TRy are
generated at the same time, i.e., t,, = t,4,,. In the latter case, the
probability that the block containing TR 4 is eventually adopted by
the Bitcoin peers is 0.5. Here, Prob(ty, < tg4,,) and Prob(ty, =
t4,,) are computed as follows.

Prob(ty, <tg,) =3 g —oPa(ga) - pv(gy > galga)
= nap(1 — mp)+
-1 .)
Yoo 1%t - (1= ndp) - TI9 (1 = mp) (1 — nyp).-

Prob(ty, =tg,) =

o gAa—1
S pniAndt - T A= wp) (1 = nlp).
ga=1 7=0

In Figure 4.3, we depict Ps(® for various values of 7%, nk and
p when 6t = 10 seconds, ts = &t and the number of peers in the
network is 60000.

Our analysis therefore shows that .4 can maximize Pg® by in-
creasing the number of peers that receive TR 4, 7%, Vtx. A can
achieve this: (i) by sending TR 4 before TRy and therefore giv-
ing TR 4 a better advantage in spreading in the network and/or (ii)
by relying on multiple helpers to spread TR 4 faster in the net-
work. In the former case, A can delay the transmission of TRy by
a maximum of At = §t{3;, — 6t%y (cf. Equation 1) after sending
TR 4 while ensuring that V first receives TRy. In this way, both
Requirements (1) and (2) can be satisfied.

911

| Location Number of Hosts |
Europe 4
North America 3
Asia Pacific 2
South America 1

Table 2: Geographic location of the Bitcoin nodes that we used
in our measurements. We made use of 10 Bitcoin nodes located
around the globe. All the hosts were running Ubuntu 11.10 with
at least 613 MB of RAM.

Satisfying Requirement 3.

With the exception of the verification of transaction reception
(Requirement (1)), current Bitcoin clients do not employ any tech-
nique to detect double-spending attacks against fast payments. Re-
call that since the service time is much smaller than the time to
confirm a transaction, the vendor cannot verify that TRy has been
included in a recent Bitcoin block before giving away it service.

Moreover, even if Vs client receives both TR 4 and TR, before
it offers its service to A, no message/warning is propagated to V
in the current Bitcoin implementation. We point that the Bitcoin
daemon locally generates an error if it receives a transaction whose
inputs have already been spent. However, this error is not displayed
to the Bitcoin user. Therefore, Requirement (3) is always satisfied
in current Bitcoin clients (up to version 0.5.2) if Requirement (1)
has already been satisfied.

It is interesting to note that a Bitcoin node located at http:
//blockchain.info/ keeps track of all transactions sent by
Bitcoin peers in an attempt to identify malicious addresses (e.g.,
that perform double-spending attacks). Note that this information
is not propagated to peers in the network. Since A always uses
newly generated addresses (that cannot be linked to each other by
default), then she is unlikely to bear any consequences even if some
of her addresses were labelled “malicious”.

4.4 Experimental Evaluation

We now present the experimental results of double-spending ex-
periments in the Bitcoin network. Our experiments aim at inves-
tigating the satisfiability of the aforementioned Requirements (1),
(2) and (3). Recall that, in current Bitcoin clients, Requirement (3)
is satisfied provided that Requirement (1) was satisfied. We denote
by Ps, the probability that the attack succeeds. In Section 5, we ex-
tend our analysis and experiments and we evaluate the effectiveness
of possible detection techniques to alleviate double-spending.

Experimental Setup.

We adopt the setup described in Section 4.3 in which the attacker
A is equipped with one or more helper nodes H that help her relay
the double-spent transaction. In our experiments, we made use of
10 Bitcoin nodes located around the globe (Table 2); this serves to
better assess the different views seen from multiple points in the
Bitcoin overlay network and to abstract away the peculiarities that
might originate from specific network topologies. Appendix ??
includes the Bitcoin addresses that we used while performing our
experiments.

To perform the attack, we modified the C++ implementation of
Bitcoin client version 0.5.2. Conforming with our analysis in Sec-
tion 4.3, our new client ensures that:

e The attacker only connects to the vendor’s machine. This
connection is accepted by V if it has fewer than 125 connec-
tions. If the connection is refused, A can wait until a neigh-
bor of V disconnects before attempting to connect again.

> o
= C === -
5] v
o 1 S 4
<l e
a 3 RS
a —— 1 Helper - Loc. 1 o
& “|—=— 1 Helper - Loc. 2
S S 4-% 2Helpers - Loc. 3
n
|-® 2Helpers - Loc. 4

T T T T T T T
-10 -05 00 0.5 1.0

Time Delay

Figure 6: Ps versus At when) has 8 connections.

> o
= O 1 $==-—-—c==Pzs~-~=—-=----
3 - -
. T-e
<
T 3
a _|—*— 1 Helper - Loc. 1 v
3 —&— 1 Helper - Loc. 2
S S 4-% 2Helpers - Loc. 3
n

|-® 2Helpers - Loc. 4

T T T T T T T
-10 -05 0.0 0.5 1.0

Time Delay

Figure 8: Ps versus At when) has 125 connections.

e The attacker creates transactions TRy and TR 4 constructed
using the same coins. She sends TRy using the Bitcoin net-
work to the neighboring vendor and TR 4 via a direct TCP
connection to one or more helper nodes with an initial delay
At of -1, 0, 1, and 2 seconds. Here, At refers to the time
delay between the transmission of TRy and TR 4 by A.

e Upon reception of TR 4, each helper node broadcasts it in
the Bitcoin network.

With this setup, we performed double-spending attempts when
the vendors are located in 4 different network locations (2 vendors
were in North America and the remaining 2 were in Asia Pacific).
In our experiments, A was located in Europe. However, since A
does not contribute in spreading in the Bitcoin network any trans-
action herself, her location does not affect the outcome of the at-
tack. That is, the sole role of A is to send TRy to)V using a direct
connection in the Bitcoin network and TR 4 to the helper nodes
using a direct TCP connection.

We conducted our experiments with a varying number of con-
nections of the vendor (8, 40 and 125 connections) and by varying
the number of helper nodes (1 and 2) chosen randomly from the
nodes in Table 2. The helper nodes were connected to at least 125
other Bitcoin peers. Each data point in our measurements corre-
sponds to 10 different measurements, totaling approximately 500
double-spending attempts with a total of 20 BTCs. We point out
that since all the hosts in our measurements were using wallets that
were under our control, other Bitcoin users were not affected by
our measurements. We also created a Python script that, for each
conducted measurement, parses the generated logs along with the
Bitcoin block explorer [16] to check whether Requirement (2) is
satisfied.

Success Probability

o
o s T T T VY--_
~— -~ - - _v_ _______ O
o _| s ~
w ~
—— 1 Helper - Loc. 1 N
“|-=— 1 Helper - Loc. 2
S 1-¢ 2Helpers - Loc. 3
|~® 2Helpers - Loc. 4
T T T T T T T
-1.0 -05 0.0 0.5 1.0 1.5 2.0
Time Delay

Figure 7: Ps versus At when) has 40 connections.

Location # Helpers | At (sec) Ps

Asia Pacific 1, 125 connections 2 0 100%
Asia Pacific 2, 125 connections 2 0 100%
North America 1, 8 connections 1 0 100%
North America 2, 40 connections 1 0 90%
Asia Pacific 1, 8 connections 2 1 100%
Asia Pacific 2, 125 connections 2 1 100%
North America 1, 40 connections 1 -1 100%

Figure 9: Summary of Results. Here, “Location” denotes
the location of V), “connections’ denote the number of V’s
connections.

912

Results.

To assess the feasibility of double-spending in fast Bitcoin pay-
ments, we evaluate empirically the success probability, Pg, with
respect to the number of helper nodes, the number of connections
of the vendor and At.

Our experimental results, depicted in Figures 6, 7, 8, and 9 show
that, irrespective of a specific network topology, the probability that
A succeeds in mounting double-spending attacks is significant.

Confirming our previous analysis, Pg decreases as At increases.
As explained in Section 4.3, this is due to the fact that the higher
is At, the larger is the number of peers that receive TRy ; in turn,
the probability that TR 4 is confirmed before TRy decreases. As
shown in Figures 6, 7, and 8, this can be remedied if the num-
ber of helper nodes that spread TR 4 increases. Our results show
that even for a large At of 2 seconds, relying on 2 helper nodes
still guarantees that double-spending succeeds with a considerable
probability; when At = 1 seconds, the attack is guaranteed to suc-
ceed (Pgs approaches 1) using 2 helpers. This is summarized in
Figure 9. Generalizing these results, it is clear that A succeeds,
with high probability, in spending the same coin to n > 1 different
recipients as long as the number of helpers that assist .4 in spread-
ing TR 4 is greater or equal to n. As we show in Section 5, the
larger is n, the higher is the probability that A’s misbehavior is
detected.

The number of V’s connections considerably affects Ps espe-
cially when A controls only one helper; in the case where V has
a similar number of connections when compared to the number of
connections of the helper, Pg approaches 0.5. This corresponds
to the case where both TR 4 and TRy are spread equally in the
network (Figure 8). On the other hand, as the connectivity of V
decreases, TR 4 spreads faster in the network. This is depicted in

Figures 6 and 7. We thoroughly investigate the impact of the con-
nectivity of V in Section 5.1.

Our experiments show that double-spending attacks against fast
payments succeed with overwhelming probability in the current
Bitcoin versions and do not incur significant cost on the attacker.
Since Bitcoin users are anonymous (i.e., only the Bitcoin addresses
are revealed to vendors), clients do not risk being detected after
performing double-spending attempts; this gives Bitcoin users con-
siderable incentives to mount double-spending attacks against fast
payments (given the absence of detection techniques). It is interest-
ing to note that we have performed thousands of double-spending
attempts using fixed Bitcoin addresses without having to bear any
penalty.

Given that the economic standing of Bitcoin is still in its infancy,
this vulnerability in the use of Bitcoin might severely hinder its
growth and trustworthiness. We therefore argue that, unless effec-
tive detection techniques are integrated in current Bitcoin clients,
vendors should not accept fast Bitcoin payments.

5. DETECTING DOUBLE-SPENDING IN
FAST BITCOIN PAYMENTS

In this section, we evaluate a number of techniques that can be
used to detect double-spending in fast payments. We start by an-
alyzing two detection strategies originally recommended by Bit-
coin developers, namely: using a listening period and inserting ob-
servers. We evaluate the prospects of both strategies and we show
that these techniques are not always effective in detecting double-
spending. We then propose an efficient detection technique that is
based on the propagation of double-spent transactions in the net-
work and we show that it does not incur significant modifications
to existing Bitcoin clients.

5.1 Using a “Listening Period”

As advocated in [13], one possible way for V to detect double-
spending attempts is to adopt a “listening period”, of few seconds,
before delivering its service to A; during this period, monitors
all the transactions it receives, and checks if any of them attempts
to double-spend the coins that V previously received from .A. This
detection technique is based on the intuition that since it takes every
transaction few seconds!! to propagate to every node in the Bitcoin
network, then it is highly likely that V would receive both TRy and
TR 4 within the listening period (and before granting service to A).
Note that this technique requires a modification of current Bitcoin
clients (i.e., to process and compare all incoming transactions).

Defeating the Listening Period.

We show that this detection technique can be circumvented by
A as follows. A can attempt to delay the transmission of TR 4
such that ¢ =(t5; — t¥) exceeds the listening period (Requirement
(3)) while TR 4 still has a significant chance of being spread in the
network. On one hand, as ¢ increases, the probability that all the
immediate neighbors of V in the Bitcoin P2P network receive TRy
first also increases; when they receive TR 4 later on, TR 4 will not
be added to the memory pool of V’s neighbors and as such TR 4
will not be forwarded to). On the other hand, A should make sure
that TR 4 was received by enough peers so that Requirement (2)
can be satisfied. To that end, A can increase the number of helpers
it controls.

""Our experiments in Section 4.4 show that the average time for a
peer to receive both TR 4 and TRy is approximately 3.354 sec-
onds if both transactions were sent adjacently in time.

913

To validate this claim, we conducted experiments using the setup
described in Section 4.4. Our experiments aimed at finding triplets
(At, N3y, C), where Ny is the number of helper nodes, and C' is
the number of V’ connections, such that the probability Pp that
V receives TR 4 (after having received TRy) is minimized. We
illustrate our results in Table 3.

In Table 3(a), we include a number of triplets (At, N, C) for
which Ps > 0 and Pp = 0 (i.e., t = t{; — tJ = o0). These are
instances of the case where all the neighbors of)V receive TRy first
and do not forward TR 4. We point out that in this case, although
Ps is modest, the advantage of A in mounting double-spending
attack is high since the probability that V detects her misbehavior
is zero. In Table 3(b), we show other instances of (At, Ny, C) for
which Ps > Pp. Here, although Pp > 0, A still has an advantage
in mounting double-spending attacks, since these attacks are more
likely to succeed.

Our findings therefore show that, even if) adopts a listening
period of few tens of seconds, double-spending is still possible.
Our experiments also show that the triplets (At, Ny, C') resulting
in Ps > Pp do not depend on the location of H nor V nor on the
time of the measurements'?; as shown in Table 3, the same triplets
can be used repeatedly by A to perform attacks at various times and
in different network topologies.

The Connectivity of V as a Security Parameter.

As shown from our results in Table 3, the fewer connections of V),
the more likely is that all the neighbors of V receive TRy before
TR.4 and thus that V' does not receive TR 4. Conversely, as the
number of connections of V increases, the effort (i.e., the number
of helpers, the amount of delay) that .4 needs to invest to ensure
that none of V’s neighbors receive TR 4 becomes considerable.
This is depicted in Figure 10; when V adopts a listening period of
at least 15 seconds, Pp increases as the number of }’s connections
increases. When) has more than 100 connections, the probability
that it does not receive TR 4 is negligible; in this case, using a
listening period might be effective to detect double-spending.

However, since the connectivity of Bitcoin peers largely varies
with the network churn'® (Figure 4), V needs to constantly mon-
itor its connection count to ensure that it does not drop below a
threshold so that it can detect double-spending by adopting a listen-
ing period. In Section 5.3, we propose a technique that effectively
detects double-spending even in the case when the number of the
connections of V is small.

5.2 Inserting Observers in the Network

Another possible technique that naturally extends the aforemen-
tioned proposal based on the adoption of listening period would be
for V to insert a node that it controls within the Bitcoin network—
an “observer”—that would directly relay to V all the transactions
that it receives. This technique was originally proposed by Bit-
coin developers in [13]. In this case, V can be aware of a double-
spending attempt if either it or its observer receive TR 4.

Evaluation.

We evaluated this technique using up to 5 observers, that were
randomly chosen from the hosts listed in Table 2. Our findings in
Table 3 show that this method can help detecting double-spending

20ur results were stable across different measurement times.

For example, some of the nodes used in our experiments could not
acquire more than 40 connections over a period of few days, due to
the fact that these nodes were often restarted. In such cases, other
Bitcoin peers will assign a low priority when connecting to these
nodes.

(a) Example of triplets (At, N3, C') where Ps > 0, Pp = 0 and t{;‘ — tg = oo. In these cases, V never receives TR 4
and as such can not detect double-spending attacks, even if it adopts a very large listening period.

| Ps Pp t{ —ty (sec) % Observed |
South America, 8 Connections, 3 Helpers, At = 2.5 7.7% 0% 0 53%
South America, 8 Connections, 4 Helpers, At = 3.0 13.33% 0% 0 57%
Asia Pacific, 8 Connections, 3 Helpers, At = 2.75 10% 0% 00 57%
Asia Pacific, 8 Connections, 3 Helpers, At = 2.75 5% 0%* [ee) 66%
North America, 20 Connections, 3 Helpers, At = 2.75 5% 0% [ee) 47%
Asia Pacific, 60 Connections, 1 Helper, At = 3.00 10% 0%* o) 20%

(b) Example of triplets (At, N4, C') where Ps > Pp. In these cases, V can detect double-spending attempts with

some probability by adopting a listening period, but since Pg

> Pp, then a number of A’s double-spending attempts

will not be detected, which gives her incentives to perform double-spending attempts.

| Ps Pp t5 — ty (sec) % Observed |
Europe, 8 Connections, 3 Helpers, At = 2.00 10% 10% 8.664 53%
Europe, 8 Connections, 3 Helpers, At = 2.25 10% 10%* 5.65 47%
South America, 8 Connections, 2 Helpers, At = 2.5 20% 6.66%" 3.749 62%
Asia Pacific, 8 Connections, 2 Helpers, At = 1.75 55% 20%* 5.5 91%
North America, 20 Connections, 5 Helpers, At = 3.00 11% 11% 3.208 46%
North America, 20 Connections, 1 Helper, At = 1.25 30% 30%* 3.34 78%
North America, 20 Connections, 4 Helpers, At = 2.00 82% 63% 2.85 78%
North America, 20 Connections, 2 Helpers, At = 2.00 20% 20%* 4.79 60%
North America, 20 Connections, 1 Helper, At = 1.50 40% 30%* 3.51 60%
Europe, 20 Connections, 3 Helpers, At = 1.0 45% 45%* 3.844 87%
Europe, 30 Connections, 1 Helper, At = 1.5 15% 10%* 3.412 42%
Asia Pacific, 40 Connections, 1 Helper, At = 2.9 10% 10%* 4.946 42%
Europe, 40 Connections, 1 Helper, At = 1.25 10% 10% 1.841 36%
Europe, 40 Connections, 2 Helpers, At = 1.5 20% 20%* 3.075 36%
South America, 40 Connections, 1 Helper, At = 2.0 30% 40% 3.217 57%
Asia Pacific, 80 Connections, 1 Helper, At = 3.7 10% 20% 5.04 18%
Europe, 80 Connections, 1 Helper, At = 2.75 13.33% 26.67% 5.093 28%
Asia Pacific, 100 Connections, 1 Helper, At = 1.5 80% 80% 2.807 88%

Table 3: Monitoring received transactions at 1 (Section 5.1) and its observers (Section 5.2) to detect double-spending. Each data
point corresponds to 20 measurements. The helpers used in these experiments had between 125 and 400 connections. “Pp” denotes
the probability that V receives TR 4. “% Observed” refers to the fraction of observers (among 5) that received TR 4. (tf} — t‘lﬁ)
refers to the average of the time it takes) to receive TR 4 after having received TR, for those cases where V receives TR 4 (Pp). *
refers to the case where TR 4 was received, but after the listening period (i.e., after 15 seconds).

as all double-spent transactions were received by at least one ob-
server within few seconds. However, given that A delays the trans-
mission of TR 4, our results show that only a subset of the ob-
servers receive TR 4. As mentioned previously, this corresponds
to the case where all the neighbors of these observers have received
TRy first and as such they will not forward TR 4 back to the ob-
servers. Therefore, V needs to employ a considerable number of
observers (= 3) (that connect to a large number of Bitcoin peers)
to ensure that at least one observer detects any double-spending at-
tempt; this, however, comes at the expense of additional costs for
V to maintain the observers in the network.

Clearly, in the general case where A attempts to n-times spend
the same coins, the larger is n, the bigger is the probability that this
misbehavior is detected by fewer observers in the network.

5.3 Forwarding Double-Spending Attempts in
the Network

In order to efficiently detect double-spending on fast Bitcoin

payments, we propose that Bitcoin peers forward all transactions

that attempt to double-spend the same coins in the Bitcoin net-

914

work. Namely, our technique unfolds as follows. Whenever a peer
receives a new transaction, it checks whether the transaction uses
coins that have not been spent in any other transaction that resides
in the block chain and in their memory pool. If so, then peers fol-
low the current protocol of Bitcoin; peers add the transaction to
their memory pool and forward it in the network. If, on the other
hand, peers detect that there is another transaction in their memory
pool that spends the same coins to different recipients, then peers
forward the transaction to their neighbors (without adding the trans-
action to their memory pools).

The main intuition behind this technique is that while .A might
be able to prevent) and a subset of V’s observers from receiving
TR .4, a considerable number of Bitcoin peers receive both TR 4
and TRy. If the majority of these peers are honest'*, both trans-
actions would eventually reach V within few seconds. The double-
spending of A can be therefore detected before A actually receives
the service from). We emphasize that our proposed technique

'“This is the underlying assumption that ensures the correct opera-
tion of Bitcoin.

0.7 T T T T

0.6

0.5 |

04

0.1 |

100 150 200

Number of Connections

0 50 250

Figure 10: The connectivity of) as a security parameter. Here,
V is located in Asia Pacific, At = 3.0 seconds and A controls 4
helpers.

does not change the spread of each transaction within the memory
pools of Bitcoin peers (as such, it does not affect the success proba-
bility of the attack). Instead, this technique ensures that both trans-
actions are received within few seconds by V and that any possible
double-spending attempt is detected almost immediately. This in-
tuition is based on our previous measurements: our experiments in
Section 4.3 show that the average time for a peer a transaction is ap-
proximately 3.354 seconds after the transaction has been released
in the Bitcoin network.

We implemented this technique and integrated it with Bitcoin
client version 0.5.2. Our modified Bitcoin implementation is avail-
able for download at [7]. Our modified Bitcoin client also keeps
track of the number of established connections to warn the user
when this number drops below a threshold value (80 in our case)
and uses our proposed detection technique to (visually) alert the
user when a double-spending attempt was detected on any of its
transactions.

We have evaluated the performance of our modified client by
integrating it in the Bitcoin network for a period of 7 consecutive
days®. During the evaluation period, our modified client was able
to forward all double-spent attempts (that we manually injected in
the network) with a detection rate of 100 % and a false negative rate
of 0 % (i.e., only double-spent transactions were forwarded while
duplicate and ill-formed transactions were appropriately filtered).

We acknowledge that this detection technique can result in the
increase of the number of transactions circulating in the Bitcoin
network and could be (ab)-used to affect the performance of the
network. We argue however that, given the ongoing performance
optimizations in the Bitcoin software and given that our technique
solely relies on the forwarding of pending transactions (i.e., con-
firmed transactions should not be forwarded in our technique), the
performance penalty that is incurred by the Bitcoin network due to
our proposal can be, to a large extent, tolerated.

6. RELATED WORK

First introduced in 2008, Bitcoin has recently attracted the at-
tention of the research community. In [21], Elias investigates the
legal aspects of privacy in Bitcoin. In [35], Reid and Harrigan ex-
plore user anonymity limits in Bitcoin. In [25], Babaioff ez al. ad-
dress the lack of incentives for Bitcoin peers to include recently
announced transactions in a block. In [20], Syed et al. propose a
user-friendly technique for managing Bitcoin wallets.

SDuring this evaluation period, the modified client was located in
Europe.

915

Finney [17] describes a double-spending attack in Bitcoin where
the attacker includes in her generated blocks transactions that trans-
fer some coins between her own addresses; these blocks are only
released to the network after the attacker double-spends the same
coins using fast payments and acquires a given service. Clark et
al. [31] proposes the use of the Bitcoin PoW to construct verita-
ble commitment schemes. Barber et al. [26] analyze possible ways
to enhance the resilience of Bitcoin against a number of security
threats; they do not, however, analyze the security of fast Bitcoin
payments.

Double-spending in online payments has received considerable
attention in the literature [24,32]. In Credit-Card based payments,
fairness is achieved through the existence of a bank (e.g., [28, 34])
or another trusted intermediary. Here, the intermediaries are trusted
(i) to verify that the client has not already spent the funds he/she is
paying the vendor with, and (ii) to reverse a charge, if the vendor
has misbehaved.

Micropayments [23,33,36] is an efficient payment scheme aim-
ing primarily at enabling low-cost transactions. Here, the payer
provides signed endorsements of monetary transfers on the ven-
dor’s name. Digital signatures in these systems constitute the main
double-spending resistance mechanism. ECash [29,30] is another
form of digital cash which supports payer anonymity. ECash of-
fers strong accountability guarantees by relying on a set of cryp-
tographic primitives that ensure that when a user double-spends a
coin, his/her identity is revealed.

Similar to Bitcoin, a number of decentralized payment systems
[27,37] were designed to resist double-spending attacks. In [37],
Yang and Garcia-Molina introduce a P2P payment system, in which
the first owner of an electronic coin authorizes that coin’s transfer
among other peers in the network. Here, the generator of the coin
is responsible for preventing double-spending.

In [27], Belenkiy et al., introduce an ECash-based P2P payment
scheme that provides accountability at the cost of privacy. In [33],
Karame et al. propose a novel micropayment model based on veri-
fiable microcomputations.

7. CONCLUSION

The ability of Bitcoin to support and process fast payments—in
which the time to acquire a service is in the order of few seconds—
is of paramount importance to its growth and popularity among
users. Given the increasing reliance on Bitcoin among businesses,
the use of Bitcoin in fast payment scenarios is only expected to in-
crease. However, given its design, Bitcoin can only ensure the se-
curity of payments when a payment verification time of few tens of
minutes can be tolerated. Moreover, our results show that the stan-
dard verification time of Bitcoin payments exhibits a large variance
since the block generation time follows a shifted geometric distri-
bution. This slow payment verification is clearly inappropriate for
fast payments; it is, however, essential for the detection of double-
spending attacks.

In this paper, we analyzed and evaluated the double-spending re-
silience of Bitcoin in fast payments. More specifically, we showed
that not only these attacks succeed with overwhelming probability,
but also that—contrary to common beliefs—they do not incur any
significant overhead on the attacker. As far as we are aware, our ex-
periments constitute the first comprehensive double-spending mea-
surements in Bitcoin.

We also explored the solution space for detecting double-spending
attacks against fast Bitcoin payments. Our findings show that the
techniques recommended by Bitcoin developers for fast transac-
tions are not always effective in detecting double-spending. Given
that the vulnerability of existing clients to double-spending might

severely harm the growth of Bitcoin, and impact its financial and
economic standing, we argue that the integration of effective de-
tection techniques to counter double-spending attacks against fast
payments in Bitcoin emerges as a necessity. Based on our findings,
we propose a modification to the current Bitcoin implementation
in order to effectively detect double-spending attacks against fast
payments.

Acknowledgements

The authors thank Matthias Herrmann and Hubert Ritzdorf for col-
lecting various measurements in the Bitcoin network. The authors
also thank the anonymous reviewers for their feedback and their
helpful comments.

8.
(1]

(2]
(3]
(4]
(3]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

REFERENCES

Bitcoin — Wikipedia, Available from
https://en.bitcoin.it/wiki/Introduction.
Trade - Bitcoin, Available from
https://en.bitcoin.it/wiki/Trade.

Bitcoin Charts, Available from
http://bitcoincharts.com/.

Bitcoin ATM, Available from
http://bitcoinatm.com/.

CNN: Bitcoin’s uncertain future as currency, Available from
http:

//www .youtube.com/watch?v=75VaRGdzMMO.
FAQ - Bitcoin, Available from
https://en.bitcoin.it/wiki/FAQ.

Double Spending Fast Payments in Bitcoin , Available from
http:
//www.syssec.ethz.ch/research/Bitcoin.
Bitcoin Block 80000, Available from
http://blockexplorer.com/b/80000.
Protocol Rules — Bitcoin, Available from https:
//en.bitcoin.it/wiki/Protocol_rules.
Protocol Specifications — Bitcoin, Available from
https://en.bitcoin.it/wiki/Protocol_
specification.

Difficulty — Bitcoin, Available from
https://en.bitcoin.it/wiki/Difficulty.
Block hashing algorithm — Bitcoin, Availabe from
https://en.bitcoin.it/wiki/Block__
hashing_algorithm.

Myths - Bitcoin, Available from https://en.bitcoin.
it/wiki/Myths#Point_of_sale_with_
bitcoins_isn.27t_possible_because_of_
the_10_minute_wait_for_confirmation.
Casascius Bitcoin POS system, Available from
https://en.bitcoin.it/wiki/Casascius_
Bitcoin_POS_system.

Satoshi Client Node Connectivity, Available from
https://en.bitcoin.it/wiki/Satoshi_
Client_Node_Connectivity.

Bitcoin Block Explorer, Available from
http://blockexplorer.com/.

The Finney Attack, Available from
https://en.bitcoin.it/wiki/Weaknesses#
The_.22Finney.22_attack.

Comparison of Mining Pools, Available from
https://en.bitcoin.it/wiki/Comparison_
of_mining_pools.

916

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]
[36]

(371

Comparison of Mining Hardware, Available from
https://en.bitcoin.it/wiki/Mining_
hardware_comparison.

Bitcoin Gateway, A Peer-to-peer Bitcoin Vault and Payment
Network, 2011. Available from
http://arimaa.com/bitcoin/.

Bitcoin: Tempering the Digital Ring of Gyges or Implausible
Pecuniary Privacy, 2011. Available from
http://ssrn.com/abstract=1937769%0ordoi:
10.2139/ssrn.1937769.

SATOSHI NAKAMOTO. Bitcoin: A Peer-to-Peer Electronic
Cash System, 2009.

ANDROULAKI, E., RAYKOVA, M., STAVROU, A., AND
BELLOVIN, S. M. PAR: Payment for Anonymous Routing.
In Proceedings of PETS (2008).

ASOKAN, N., JANSON, P., STEINER, M., AND WAIDNER,
M. State of the Art in Electronic Payment Systems. /EEE
Computer (1999).

BABAIOFF, M., DOBZINSKI, S., OREN, S., AND ZOHAR,
A. On Bitcoin and Red Balloons. CoRR (2011).

BARBER, S., BOYEN, X., SHI, E., AND UZUN, E. Bitter to
Better - How to Make Bitcoin a Better Currency. In
Proceedings of Financial Cryptography and Data Security
(2012).

BELENKIY, M., CHASE, M., ERWAY, C., JANNOTTL, J.,
KUPCU, A., LYSYANSKAYA, A., AND RACHLIN, E.
Making P2P Accountable without Losing Privacy. In
Proceedings of WPES (2007).

BELLARE, M., GARAY, J., HAUSER, R., KRAWCZYK, H.,
STEINER, M., HERZBERG, A., TSUDIK, G., VAN
HERREWEGHEN, E., AND WAIDNER, M. Design,
Implementation and Deployment of the iKP Secure
Electronic Payment System. IEEE Journal on Selected Areas
in Communications (2000).

CAMENISCH, J., HOHENBERGER, S., AND LYSYANSKAYA,
A. Compact E-Cash. In Proceedings of Advances in
Cryptology - EUROCRYPT (2005).

CHAUM, D., FIAT, A., AND NAOR, M. Untraceable
electronic cash. In Proceedings on Advances in Cryptology -
CRYPTO (1990).

CLARK, J., AND ESSEX, A. (Short Paper) CommitCoin:
Carbon Dating Commitments with Bitcoin. In Proceedings
of Financial Cryptography and Data Security (2012).
EVERAERE, P., SIMPLOT-RYL, I., AND TRAORE, I. Double
Spending Protection for E-Cash Based on Risk Management.
In Proceedings of Information Security Conference (2010).
KARAME, G., FRANCILLON, A., AND CAPKUN, S. Pay as
you Browse: Microcomputations as Micropayments in
Web-based Services. In Proceedings of WWW (2011).
KRAWCZYK, H. Blinding of Credit Card Numbers in the
SET Protocol. In Proceedings of the International
Conference on Financial Cryptography (1999).

REID, F., AND HARRIGAN, M. An Analysis of Anonymity
in the Bitcoin System. CoRR (2011).

RIVEST, R. Peppercoin Micropayments. In Proceedings of
Financial Cryptography (2004).

YANG, B., AND GARCIA-MOLINA, H. PPay:
micropayments for peer-to-peer systems. In Proceedings of
the ACM Conference on Computer and Communication
Security (2003).

8 10 12
| |

6
|

Percentage of Transactions(%)

20 30 40 50

Announcement Time of Transactions (seconds)

T
0 10

Figure 11: Distribution of the announcement times of trans-
actions. To measure the transaction announcement times, we
parsed the block chain of Bitcoin and we counted the number of
transactions in each block and we assume that transactions are
announced uniformly at random within two successive blocks.

APPENDIX
A. BLOCK GENERATION IN BITCOIN

To generate a block, peers work on solving a PoW problem. In
particular, given the set of transactions that have been announced
since the last block’s generation, and the hash of the last block,
Bitcoin peers need to find a nonce that would make the SHA-256
hash of the formed block smaller than a 256-bit number (target):

SHA-256{BIl; || MR(TR4,..., TRy4) || No} < target, (4)
where Bl; denotes the last generated block, MR (Z) denotes the root
of the Merkle tree with elements 7, TR1 || ... || TRx is a set of

transactions which have been announced (and not yet confirmed)
since Bl;’s generation, and No is the 32-bit nonce. To solve the
PoW, each peer chooses a particular subset of the candidate solu-
tions’ space and performs brute-force search. It is apparent that the
bigger target is, the easier is to find a nonce that satisfies the PoW.
For the purpose of our analysis, we note the following:

1. The probability of success in a single nonce-trial is negligi-
ble. Taking in consideration that SHA-256 maps its argu-
ments randomly to the target space, each of the 2% nonces has

#ﬁef;ﬁ) probability of satisfying the PoW, where, target

is the number of targets which are smaller than target and
max(target) = 22°° — 1 is the number of all targets.

2. Peers compute their PoW independently; as such, the prob-
ability that one of them succeeds does not depend on the
progress of PoW of the others.

3. Peers are frequently required to restart their PoW. In particu-
lar, whenever a new transaction is added to the memory pool
of a peer, the Merkle root (included in the block) changes;
therefore, the effort in constructing the PoW is “reset”. This
also applies to the case when new blocks are generated; the
“previous block™ field needs to be updated (cf. Figure 1).
For the sake of our analysis, we approximate the time inter-
val between the announcement of successive transactions as
follows. We extract the various block generation times from
the Bitcoin block explorer (cf. Figure 1) and we assume that
transactions are announced uniformly at random within two
successive block generations. Our findings (Figure 11) show
that the time interval between the announcement of most pairs
of successive transactions is below 15 seconds. Therefore, we

917

assume in the sequel that the PoW for block generation is “re-
set” approximately every dt ~ 15 seconds.

Given the first two observations, the probability of a peer in
succeeding in an individual block generation attempt can be mod-
eled as an independent Bernoulli process with success probability

target
max(target)”

Given this, and based on the last observation, we claim that con-
secutive block generation attempts can be modeled as sequential
Bernoulli trials with replacement. Our claim for replacement is jus-
tified by the fact that maximum possible PoW progress performed
by a peer (expressed as a number of hash calculations) before its
PoW resets, is negligible in comparison to max(target). This is
the case since the PoOW progress approximates 2°° < mazx(target)
given the computing power of most Bitcoin peers [18, 19]. This

target
max(target)

Let n; refer to the number of attempts that a peer m; performs
within a time period d¢. Typically, 0t is in the order of few minutes.
the probability p; of m; finding at least one correct PoW within
these trials is given by p; = 1 — (1 — &)™. Since ¢ and n; are
small, p; can be approximated top; = 1 — (1 — &)™ ~ nge.

Therefore, the set of trials of m; within d¢ can be unified to con-
stitute a single Bernoulli process with success probability n;e.

Assuming that there are ¢ peers, m;, ¢ = 1.../¢ with success
probability p;, ¢ = 1.../¢ respectively, the overall probability of
success in block generation can be approximated to:

£ =

also means that ¢ is always equal to

14
prl—[JA=p), orp=1-(1-p)~t-p,
i=1
where the latter corresponds to the simplified case when the peers
have equal computing power, i.e., p; = p,i = 1...¢. Note that
pl < 1.

Let time be divided into small intervals Jto, t1], . .., |tn—1, tn] of
equal size ¢, where to = 0 denotes the time when the last block
was generated. Here, each peer can make up to n; trials for block
generation within each interval. Let the random variable X, denote
the event of success in ¢ = {¢x, tx1}. That is,

1
oo

It is evident that: Prob (X 1) = p. Conceivably, after a
success in block generation, peers stop mining for that particular
block. We denote the number of attempts until a success is achieved
by another random variable).

if a block is created within{tx_1, %},
otherwise.

k—1
Prob() = k) = Prob(X) = 1) [[Prob(X; = 0)
=1

=p(l-p)""

Assuming a constant rate of trials per time window dt, the num-
ber of failures until a success is observed in block generation is
proportional to the time it takes for a block to be generated. Let T
denotes the time period till a block is generated.

Prob(T =k - 6t) = Prob(Y = k) = p(1 — p)"* L.

Given this, we conclude that the distribution of block generation
times can be modeled with a shifted geometric distribution with
parameter p. In Figure 1, we confirm this analysis and we show
that (experimental) block generation times in Bitcoin, can be fitted
to a shifted geometric distribution with p = 0.19. For the purpose
of our experiments, we considered J¢ to be 2 minutes.

