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ABSTRACT

The success of online social networks has attracted a ctrigta
terest in attacking and exploiting them. Attackers usuedintrol
malicious accounts, including both fake and compromisatiuser
accounts, to launch attack campaigns such as social spdmaraa
distribution, and online rating distortion.

To defend against these attacks, we design and implement a ma

licious account detection system called SynchroTrap. V¢enle
that malicious accounts usually perform loosely synctmediac-
tions in a variety of social network context. Our system @Ets
user accounts according to the similarity of their actiam$ancov-
ers large groups of malicious accounts that act similargratnd

the same time for a sustained period of time. We implement Syn
chroTrap as an incremental processing system on Hadoop iand

raph so that it can process the massive user activity datdairge.
online social network efficiently. We have deployed our egsin
five applications at Facebook and Instagram. SynchroTrambie
to unveil more than two million malicious accounts and 11&§¢
attack campaigns within one month.
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formation Systemg: Security and protection
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25], attackers can use online social networks to propagatm spa
messages, spread malware, launch social engineeringsatiac
manipulate online voting results.

Much of the previous work in defending against these attptks
3,35] aims to directly identify the fake or compromised accolarts
attacker controls. There exist two broad approaches. Op@agh
is to use an account’s social network connectivit®, 41, 45, 46|
to infer whether it is fake or not. This approach can help un-
cover fake accounts that have few connections to the re@lsoc
network, but cannot reliably identify compromised real ruge-
counts or well-maintained fake accounts that have acquirady
social connectiongdf]. Another approach, widely adopted in prac-
tice [20, 35,47], is to build machine learning classifiers to infer

G malicious (fake or compromised) accounts. This approacheta

fectively classify those malicious accounts with a set aikn ma-
licious features, but may miss many malicious accounts with
known features.

Motivated by the above challenges, Wang et 42] jand Beutel
et al. [16] have explored a new approach to uncover malicious ac-
counts. They analyzed ttaggregatebehavioral patterns of social
network accounts to distinguish malicious accounts fragitirmate
ones. In particular, Wang et al. analyzed how the http reqdissm
fake accounts differ from those from real user accounts aedl u
this feature to identify fake accounts. Beutel et al. showed
malicious accounts tend to post fake likes to fraudulenebaok
pages at roughly the same time, and designed CopyCatcheictdet
such synchronized posts.

This work advances the state of the art of using aggregatvbeh
ioral patterns to uncover malicious accounts. MotivatedCoypy-
Catch, we show that malicious accounts tend to act togethar i
variety of social network context. In addition to postingddikes,
they may log on, install social network applications, ugleg@am
photos, and so on in a loosely synchronized manngj.(8§

We then present SynchroTrap, a system that can uncover large
groups of malicious accounts that act in loose synchronyfate
a number of unique challenges in designing SynchroTra) &d

Online social networks (OSNs) such as Facebook, Googleit; Tw  these challenges set SynchroTrap apart from previous wacttkis

ter, or Instagram are popular targets for cyber attacks. rBgtiog
fake accounts19,44] or compromising existing user accouni]
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area, i.e., CopyCatch and Clickstread®][ First, unlike Copy-
Catch, we aim to detect loosely synchronized behavior faoad
range of social network applications. Therefore, we cammake
the assumption that a user can perform a malicious action onl
once, i.e., a user can like a specific page only once. Thisrdiff
ence in goals has greatly increased the algorithmic coriplek
SynchroTrap (8 and 89).

Second, detecting the actions from malicious accounts lieh c
lenging anomaly detection problem. Malicious actions ttute
only a small fraction of the total user actions. For instarkzce-
book has more than 600 million daily active use8kdnd they per-



form billions of actions everyday3H]. In contrast, the number of
malicious accounts involved in an attack campaign is oftethe
order of thousands. How can we accurately detect such a viggak s
nal from a large amount of noisy data? Third, we aim to deploy
our system on real-world online social networks such astae
Therefore, our detection algorithm must be able to processva
terabytes of data on a daily basis, while many of the offghel
anomaly detection algorithm&6] or previous work, such as Click-
stream, do not scale to data of this size.

We have developed several simple but pragmatic technigues t
address the above design challenges. First, we model theional
account detection problem as a clustering problen3.@§. We
compare pairwise user actions over a certain time periodjenp
those users who take similar actions at roughly the sameititoe 400
clusters, and mark a cluster whose size exceeds a tunabkhthr
old as malicious. This is because we observe from a reallsocia
network that legitimate social network users take divergéons
over time (82). Second, to make the clustering algorithm compu-
tationally tractable, we further use an attacker’s netwegource
constraint, e.g., the number of IP addresses under hisatomtithe
attacker’s target, e.g., a fraudulent Instagram accoomgduce the

N
o O
o O

Account ID
= N w
o
o

o
o

—

o

24 48 72 96 120 144 168
Time (hours)

(a) Synchronized attack

Account ID
= N w
o o
o o

o
o

pairwise comparison to be per IP address and/or per targbjedt, 0 0-. - 24 48 --72 : 96 .1-20-=:1-44- 168
depending on the specific application context. Finally, weifion Time (hours)
user action data into small daily or hourly chunks. We desilgn (b) Normal

gorithms to aggregate the comparison results between gmak
chunks to detect malicious actions over a longer period sisch

week (84.5). This technique enables us to implement SynchroTrap Figure 1: An example of malicious photo uploads in Facebook.

The x-axis shows the time when an account uploads a photo,

in an incremental-processing fashion, making it pradgjadploy- and the y-axis is the account's ID. A dot(z,y) in the figure

able at large online social networks. shows that an account with IDy uploads a photo at time z.
We have deployed SynchroTrap at Facebook and Instagram forThe color of a dot encodes the IP address of the action. Photo

over ten months (). In a detailed study of one-month data8(8), uploads of the same color come from the same IP address.

we observe that it uncovered more than two million maliciaas
counts and 1156 malicious campaigns. We have randomly sampl

a subset of malicious accounts SynchroTrap caught, andlaske 2. MOTIVATING EXAMPLES

curity specialists to inspect the accuracy of the resulte Manual In this section, we examine two real-world attack exampies t
inspection suggests that our system achieves a precigibertthan motivate SynchroTrap’s design. Beutel et aB][observe that ma-
99%. During the course of its deployment, SynchroTrap on aver- |icious accounts post fake likes at around the same timesé&tveo
age catches-274K malicious accounts per week. We have also additional examples show that: a) this attack pattern gipears in
evaluated the performance of SynchroTrap on a 200-machise ¢ other social network applications such as Instagram fatignand
ter at Facebook. The performance results show that ourmayiste ) malicious accounts not only act together but often froiméted

able to process Facebook and Instagram’s user data. Itadess set of IP addresses.
hours for SynchroTrap to process the daily data adé hours to o
process a weekly aggregation job. 2.1 Malicious Facebook photo uploads

Admittedly, strategic attackers may attempt to spread ¢tierzs
of malicious accounts to evade SynchroTrap’s detection.aiée
lyze SynchroTrap’s security guarantee and show that Sgiicap
can effectively limit the rate of malicious actions an dtercper-
forms, even if the attacker controls an unlimited number af m
licious accounts (%). In addition, we provide a set of parame-
ters that operators can tune to achieve a desirable tradetofeen
false positives and false negatives. With a strict sett8ygchro-
Trap yields a near-zero false positive rate.

In summary, this work makes the following main contribuon
e We observe that malicious accounts tend to act togetherania v
ety of social network context (8).
e \We have designed, implemented, and deployed SynchroTmap. O
design addresses several practical challenges of usisgliosyn-
chronized actions to uncover malicious social network ant® 2.2 Inflating followers on Instagram
:/cglrllidégglirc]::\?ilot:sdgii(:;:%cnz tljaergae\/;r dlzoﬁs;aézg;;;c(’gmn Malicious users in Instagram follow target users to inflditg t

' number of their followers. Figur2 compares user-following activ-

ae\:\éitgge;egitc%lﬁ)sre;ggfr% a_lr]ﬁ:gs;;fSt:;eﬂ::;arargtveigstr:za?f ities between 1,000 malicious users and 1,000 normal u3érs.
' Y yp 9 malicious accounts are sampled from an attack campaigivingo

other feature-based malicious account detection syst8@)s ( 7K accounts

Figure 1 compares the photo-uploading activities of malicious
users to those of normal users at Facebook. Fig(agplots the
photo uploads with timestamps from a group of 450 maliciaus a
counts over a week. Facebook caught those accounts bebayse t
promoted diet pills by uploading spam photos. We can see that
those accounts use a few IP addresses to upload many spam pho-
tos. The horizontal color stripes indicate that they swéaoiong a
small set of IP addresses during the one-week period.

Figure 1(b) shows the photo uploads of 450 randomly chosen
accounts which have never been flagged as malicious. Weteefer
those users as normal users. As can be seen, the actionsere mu
more spread out in time and come from a much more diverse set of
IP addresses.



We can see in Figur&(a)that those malicious accounts are coor-
dinated to follow a target set of users in batches. The egtivap
of accounts show a salient on-off action pattern. Duringatté/e
periods, they follow the same set of users at around the same t
In contrast, normal users exhibit diverse user-followirgndovior.
As shown in Figure2(b), little perceivable correlation can be found
among the user-following sequences of normal users.

1000
800
600
400

200p I
0 24 48 72 96 120 144 168
Time (hours)

(a) Synchronized attack

Account ID

1000
800
600
400
200

Account ID

0 3 i
0 24 48 72 96 120 144 168
Time (hours)

(b) Normal

Figure 2. An example in Instagram user following. The x-axis
is the timestamp of an account’s following action and the y-
axis is an account’s ID. A dot(z,y) shows that an accounty
follows a targeted account at timez. The color of a dot encodes
the followed account’s ID. Actions of the same color followlie
same account.

2.3 Economic constraints of attackers

In this subsection, we speculate why various social netabrk
tacks tend to happen in loose synchrony. We believe thatighis
partly due to the economic constraints on the attacker side.

Cost on computing and operating resources. Attackers have
limited physical computing resources. Although they carchase
or compromise machines (e.g., botnets), or even rent framdcl
computing services, such resources incur financial costth&u
more, those computing resources have limited operating. tirhis

is because an infected machine may go offline, recover, ar lege
quarantined at any time3g, 48], and that a machine rental is usu-
ally charged based on the consumed computing utiityAnother
operating cost is the human labor to fabricate fake or comz®

fore, the mission requirements often include léneel of prevalence
that a customer pursues and a stdeadlineby which the mission
must be accomplished. For example, many social-netwotkisis
in Freelancer solicit X Facebook friends/likes within Y d483].
Similar tasks target other social network missions, sudoléswy-
ings, posts, reviews, etc. These underground tasks witt stne
requirements force attackers to target certain aspectsictien’s
service and to act in advance of the mission deadlines.

We call the constraints of limited computing and operatieg r
sources asesource constraintsand the constraints of strict re-
quirements on an attacker's missionsnaission constraints Our
understanding of these economic constraints and theiegulest
manifestation on the activities of controlled accountgkels di-
rectly attack the weak spot of attackers, making it hardHent to
evade detection.

3. SYSTEM OVERVIEW

3.1 High-level system architecture

SynchroTrap is a generic and scalable framework that can ef-
fectively throttle large groups of malicious accounts inNBSThe
main idea of SynchroTrap is to use clustering analy2tbtp detect
the loosely synchronized actions from malicious accounssale.

In particular, it measures pairwise user behavior sintifand then
uses a hierarchical clustering algorith26] to group users with
similar behavior over an extended period of time together.

3.2 Challenges

We face a number of challenges in making SynchroTrap a prac-
tical solution for large-scale OSNs.

Scalability: A main challenge originates from the enormous scale
of today’s OSNSs. First, the large volume of user activityadatds

to a low signal-to-noise ratio, making it hard to achievenhigtec-
tion accuracy. For example, Facebook has more than 60Gmilli
daily active users{], while the number of malicious accounts in-
volved in an attack campaign is often on the order of thousand
As a result, approaches (e.g., clickstream analy®®) that use
holistic comparison of all user activities may yield low acacy.

In response to this challenge, we partition user actions ¥ @p-
plications and detect on a per-application basid.(§. We further
partition user actions by their associated target or soobjects,
such as IP addresses, followee IDs, and page IDs, to captere t
constraints of an attacker &2).

Second, the sheer volume of activity data prohibits a prakti
implementation that can cope with generic actions. Largecam-
plex batch computations at Facebook-scale services ahébjfince
due to their requirements on hardware capacity (e.g., mgmor
Such computations make resource sharing difficult andriaile-
covery costly. To handle massive user activities at Fadelsoale
OSNs, we apply divide-and-conquer. We slice the computaifo
user comparison into smaller jobs along the time dimensioiuse
parallelism to scale (8.5). We then aggregate the results of multi-
ple smaller computations to obtain period-long user sirityla

real accounts, and to maintain and manage the accounts.rUnde pccyracy: The diversity of normal user behavior and the stealthi-

these operating constraints, an attacker often contrsishlicious
accounts from a set of machines within a limited time.

Revenue from missions with strict requirements. OSN attackers
are often deeply rooted in the underground markets, e.gckBlat-

World and FreelanceBB,36,37]. Most of their missions are driven
by customer demands with specific requirements. Usuallpkhe

ness of malicious activity hinder high accurate detectfamomaly
detection schemes inevitably incur false positives andtiegs. As
a result, the goal of an automated detection system is oftee-t
duce both the false positive and negative rates. In ordechizee
high accuracy, we design SynchroTrap based on our unddistan
of an attacker’'s economic constraints. Moreover, as tse fabsi-

jective of a campaign is to achieve prevalence in OSNs. There tive and false negative rates are usually inversely rel&gdchro-



Trap provides a set of tunable parameters in its design aaolen
operators to tune these parameterd.@ for a desired trade-off.

Adaptability to new applications: Attack campaigns can target
distinct OSN applications. Because the properties of auser
tions, such as the association between the user and othelo®SN
jects, can vary in different applications, a detection sohepti-
mized for one application may not be applicable to otherseréh
fore, it is challenging to develop a generic solution that adapt
to new applications. For example, CopyCatitb][detects fraudu-
lent page likes (once-only actions), but cannot be used ¢ower
repeated spam-photo uploads from the same IP addressake Unl
CopyCatch, in our design we decouple the similarity me(i§es 3
from the clustering algorithm (8.4), which enables us to handle
both once-only and other generic actions. Furthermore,epe r
resent an action with a tuple abstraction4(g), including a times-
tamp dimension and an attacker constraint dimension. THisisac-
tion makes the system design independent of the OSN applisat
that SynchroTrap protects.

4. SYSTEM DESIGN

In this section, we describe the design of our system in ld&té
categorize user actions according to OSN applications Igand
perform detection on a per-application basis. We define argen
matching metric for time-stamped user actions4(8 and quan-
tify the similarity of a user pair using the fraction of thematched
actions (84.3). We use a single-linkage hierarchical clustering al-
gorithm to group users based on the pairwise user similggidy4).

In § 4.5, we parallelize the computation of user-pair comparison to
address the large-data challenge.

4.1 Partitioning activity data by applications

OSNs usually provide many features and functions in the form
of OSN applications, such as photo uploading, page like sates
ing, etc. Malicious accounts are not necessarily coordthatross
all types of actions allowed by the platforms. To reduce apenal
cost, an attacker can focus his missions and target onliapelit
mensions of the user action space, e.g., uploading spanoghot
promoting rogue apps, etc. As a result, a scheme using ikolist
comparison of user activities may miss malicious usersttrget
only particular OSN functions. This problem is reminiscehthe
“curse of dimensionality” in clustering high-dimensiormkta P9].

To mitigate the impact of irrelevant actions, we categoaizser’s
actions into subsets according to the applications thegnigeto,
which we callapplication contexts We then detect malicious ac-
counts within each application context. For example, weusdp
the photo upload and page like applications to suppress pham
tos and fraudulent page likes, respectively. Next, we desdrow
we cluster user actions for an OSN application.

4.2 Comparing user actions

In SynchroTrap, we abstract time-stamped user actions-as tu
ples, each of which has an explicit constraint field that cqress
both resource and mission constraints. We require exaatnoet
the constraint field to capture an attacker’s constraintemrRhe
point of view of an OSN provider, each user action has a number
of attributes. Tabld summarizes the main attributes used in this
paper and their definitions. AAppID can include an identifier of
an application-layer network protocol (e.g., HTTP) to oate a
fine-grained application category. A&ssoclDcan be the identi-
fier of an associated OSN object (e.g., photos, pages, \eejs,
We denote our tuple abstraction of a time-stamped userraaso
(U, T, C), whereU, T', andC represent user ID, action timestamp,

and a constraint object, respectively.cAnstraint objectan be a
combination of certain action attributes, such as a coneditan of
AssoclD, source |IP address, etc.

Attribute Meaning

uiD User ID

Timestamp| Timestamp of the user action

AppID Application identifier, e.g., posting and messaging
AssoclD Object ID with which a user action is associated
IP address| IP address of the user client

Table 1: Attributes of a user action and their meanings.

Our tuple abstraction of user actions is expressive. It lesab
SynchroTrap to quickly adapt to a specific attack in an apfiba,
provided that the constraint field is properly designateat.exam-
ple, one can choose the followee identifier (a typés$oclD as
the constraint field to defeat abusive user following ondgsam.

Based on the tuple abstraction, we define acti@ich denoted
by "a". Two actions of different users match if they pertain to the
same constraint object and their timestamps fall into tieestime
window of a pre-defined lengtlfs;, (e.g., 1 hour). That is, a
match of two user actions is possible only if they occur withi
matching window ofl ;.

(Ui, Ti, Ci) =~ (U;, 15, Cj)

4.3 Pairwise user similarity metrics

We quantify the similarity of two users by computing the frac
tion of their matched actions during a time periBd(e.g., a week).
We use the Jaccard similarity, a widely-used metric thatsuess
the similarity of two sets24], as the similarity metric. The Jaccard
similarity metric ranges from 0 to 1. A value close to 1 indé&s
high similarity.

if C; = Cj and|Ti—T]~| < Tsim

Per-constraint similarity. We introduce the per-constraint simi-
larity to measure the fraction of matched actions on a singhe
straint object (e.g., a single source IP address).A;die the set of
actions performed by uséf;, i.e. A; = {(U, T, C)|U=U, }. As we
require exact match on the constraint field of user actiomsfun

ther break dowrd; into disjoint subsets according to the value of
the constraint field, i.e., whetd? = {(U, T, C)|U=U;, C=C}}.

We derive user similarity on a single constraint object gsiac-
card similarity, as shown below. When we compute the Jaccard
similarity, we apply the action matching operatee™ (8§ 4.2) to
obtain the set intersection and the set union.

. |AF A

Slm(UZ7U],Ck) = |Af U Aﬂ
Overall similarity. In certain OSN applications, the association
of a user to a constraint object does not appear more than once
For example, in Facebook app installation, a user can Irstapp

only once. In such cases, the Jaccard similarity of a useropai

a single constraint object (i.e., an app ID) can only be either

1. To better characterize the similarity among users, wethise
overall Jaccard similarity, which accounts for user actiagross

all constraint objects.

_JAnA)| _ X lAT N A7
A UA; - 3, JAY U A

Sim(U,L-, Uj)

4.4 Scalable user clustering

We choose the single-linkage hierarchical clusteringritigm [26]
to cluster users due to its effectiveness and potentizhiitidy. We
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Figure 3: Transforming the single-linkage hierarchical cluster-
ing algorithm to the algorithm of connected components in tvo

steps. Edges represent similarity between users. A user pai
connected by a thicker edge has a higher similarity.

do not use other off-the-shelf clustering schemes becdueseet-
ther rely on a special distance metric (e.g., Euclidearadist in
k-means), or are not scalable. We refer reader@&pfpr a com-
plete review of the clustering techniques. In addition, wendt
seek to use graph partitioning algorithms for clusteringrsisbe-
cause even widely-used graph partitioning tools like ME2§]
take many hours to process a graph with only multiple miion
of nodes £0]. Instead, our objective is to transform our detection
scheme to a clustering algorithm that can scale up to largesOS

Single-linkage hierarchical clustering. The single-linkage hier-
archical clustering algorithm uses an agglomerative sgrdhat
begins with each user as a different cluster, and itergtivedrges
clusters with high similarity and produces larger clustdisis al-
gorithm generates a cluster-mergidgndrogramthat shows the
merging hierarchy of clusters and the degree of similanityeach
level. By breaking the dendrogram at a desired level, onaiabt
a set of clusters in which intra-cluster user similarity esds a
certain threshold. A detailed description of the algoritisnaloc-
umented in 26]. Because this algorithm relies on a sequential pro-
cess to construct the entire dendrogram in a bottom-updashi
straightforward implementation is difficult to scale.

Making the algorithm suitable for parallel implementation. The
key property of single-linkage hierarchical clusteringthsit the
similarity of two clusters is determined by the maximum $ami
ity among all pairs of users drawn from each different clustée
cluster-similarity metric merges a group of close clustarsach
iteration into a larger connected component imser similarity

graph where nodes are users and an undirected edge exists be

tween a pair of users if their similarity is above a certairesfold.

Using this property we adapt the single-linkage hiera@hitus-
tering algorithm to a parallel version. Our idea is that if &t the
similarity threshold first and filter out user pairs belowtthiqe
desired user clusters are exactly the connected compoimetiits
pruned user similarity graph. Therefore, we can employ fciefit
graph algorithm27] to search for connected components. FigRire
illustrates our two-step adaptation of the single-linkafyestering
algorithm. We choose to adapt to the connected components al
gorithm because it is highly scalable on massive graphs alits t
inherent parallelismZ7].

User-pair filtering function. We use a filtering function to select
user pairs with action similarity above a certain degree.ivif®-
duce two criteria to choose a user pair according to theiilaiity
at different granularities (8.3).
e F1: There exists at least one constraint object, for which users
have a per-constraint similarity above a certain threshold
e F2: Their overall similarity is above a certain threshold.

The first filtering criterion uncovers malicious user painstt
manifest loosely synchronized behavior on a set of singhstraint

User activities

Daily user
comparison

Aggregation
& Clustering

t+1
t+2
t+3
t+4

t+5

Figure 4. SynchroTrap’s processing pipeline at Facebook. A
new aggregation job (dashed) does not incur re-execution of
daily jobs. Arrows indicate the data flow.

objects (e.g., IP addresses). In some cases, maliciousrstsanay
even spread their actions over a number of constraint abj&te
use criterior=2 to compare user similarity for applications where a
user can carry out a certain action only once per constraject

4.5 Parallelizing user-pair comparison

To process continuous user-activity data stream at scaleise
incremental processing. In particular, we divide the lasgmpu-
tation of user-pair comparison on a bulk data set into a serfie
smaller ones in the time dimension. We store the intermedit
sults and aggregate them over a certain time period. Thiseps
ing pipeline greatly reduces the size of a single job and ttaus
hardware consumption, making SynchroTrap a more scalatole a
manageable solution in practice.

4.5.1 Daily comparison

Figure4 shows the data flow of SynchroTrap’s processing pipeline
at Facebook. We slice the computation of user comparisodesid
ignate daily jobs to generate similar user pairs based onigbe
activity log. Because SynchroTrap detects consistentlydty syn-
chronized activities over a sustained period of time, weeggate
daily similarity metrics and perform user clustering pdiaally
(e.g., weekly). As shown in Figuré, because aggregation jobs
can reuse the results of daily jobs, a new aggregation job doe

incur re-execution of daily jobs.

We design an aggregatable data interface between dailyajubs
aggregation jobs by decomposing the period-long user aiityil
(8 4.3 over days, as shown below. Lﬂlﬁt denote the set of ac-
tions on constraint objec?, that userU; performs on day, i.e.
AF, = {(U, T, C)|U=U;, C=C, T is within dayt}. For a user
pair (U;, U;) and a constraint objecty, we generate and store the
number of their daily action matches}¥, N A%, |, and the number
of daily total actions that each of them has carried out, ji4 |
and| A% ,|.

_|AFnAY |A¥ n A
|AF U AF] |AF| + [AS] — |AF N AY
_ S AR N AY
Zt |A'Ii€,t| + Zt |Ak,t| - Zt |A§,t n A?ﬂﬁ'

By aggregating the daily results, we derive user similavitgr a
course of time. The last equality holds because user-actainhes
across days are rare, as the size of a matching window we €hoos
is on the order of minutes or a few hours.

Sim(Ui, Uj, Ck)
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Figure 5: Distribution of user population over IP addresses at
Facebook login. We depict the fraction of IP addresses with
respect to the number of active users per IP address.

4.5.2 Hourly comparison with sliding windows

Stragglers in daily jobs. A straightforward MapReduce imple-
mentation of the daily user comparison yields jobs whoseptem
tion time could be prolonged by straggler reducers. Thiagstr
gler issue is caused by the highly skewed distribution of ase
tions over constraint objects. Even on a daily basis, thest bot
objects that are associated with an extremely large nuntbac-o
tions/users. Figurd shows the distribution of the number of login

users over IP addresses on one day at Facebook. As we can se
while most of IP addresses are not used by many users (lass tha

100), the user population distribution per IP is heavyethilThese
few popular IP addresses used by more thaax daily active
users can lead to straggler reducers that might run for days.

Mitigation with overlapping sliding windows. We mitigate this
issue by further partitioning users with their actions amgéacon-
straint objects. If the number of users in a partition is cedliby a
factor of% (f > 1), the execution time can be reducedjbjy, aswe
perform a quadratic number of user-user similarity comiparna.
The challenge is to effectively partition the user actidata, while
retaining the capability of accurately capturing actiorichas. Our
insight is to divide the user actions into overlapping sigivin-
dows in the time dimension and to process different slidirig-w
dows in parallel. This method not only mitigates the straggisue
by feeding each individual worker smaller chunks of data,atso
effectively filters out unmatched actions that reside ifedént slid-
ing windows before the pairwise comparison.

Figure6 illustrates how we partition by overlapping sliding win-
dows to precisely capture all possible user-action matelitsa
matching window set t@;.,. In principle, a sliding window size
>Tsim and an overlapping periog Ts: can guarantee the full
coverage of user-action matches. This is because a slidimdpw
size ¥, ensures that any user-action match with a maximum
spanning periods;,, can be covered by a sliding window; an over-
lapping period> Ts:.m ensures that the sliding windows are dense
enough to cover the all user-action matches across windows.

Sliding window setup. Counting in each overlapping sliding win-
dow entails duplicates of user-action matches that appe#ne
overlapping area. The de-duplication of action matchesdcbe
complicated if the sliding window size and the overlappimrgipd
are not properly set. To strike an appropriate balance testilee
effectiveness of cutting the data volume within each stjdiindow
and the complexity of de-duplicating action matches, weoskdo
use a sliding window size dfT%s;,, and an overlapping period of
length T, (Figure 6). With such a setting, we achieve single
counting by simply discarding the user action matches withe
second (or the first) half of each sliding window.
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Figure 6: Settings of the overlapping sliding windows in
SynchroTrap. Action matches within the overlapping area
(shaded) are exactly double counted. We depict actions from
different users using different markers.

We now discuss our parallel counting scheme’s guarantee tha
one can exactly single count all user-action matches bypiee
dently counting in each sliding window only. Suppose we have
sequence of sliding windowBW = [iTsim, (¢ + 2)Tsim) (i > 0).
Without loss of generality, let; and¢. be the timestamps of two
matched user actions, whete € [t1,t1 + Tsim]. Suppose: €

)Tsim) (j > 0). We havety < (j + 2)Tsim. TWO

Tszm7
%‘7 ases eX|st regardlng the location of the action paitzay (j +

Tsim. Botht1 andt, belong to the intervdli Tsim , (54+1)Tsim ),
WhICh is the overlapping area of two consecutive slidingdeins
SW_1 andSW.. Because we discard action matches within each
second-half window, the action pair is only single counte8W;
b)ta € [(j + 1)Tsim, (5 + 2)Tsim). Only SW; covers botht; and
t2, becausé; € [jTsim, (7 + 1)Tsim). Hence the action pair is
single counted irbTW;. We always append an empty half window
after the last sliding window in order to cope with the exteetase
at the end of the data stream.

4.6 Improving accuracy

It is challenging for a detection system, such as SynchmTra
to achieve desired accuracy for several reasons. Firstolbenes
and synchronization levels of malicious actions vary irfedént
OSN applications. In extreme cases, attackers may chamge th
strategies over time to evade an existing detection schedee-
ond, as a system that influences user experience on an OSN, Syn
chroTrap must use conservative parameters to minimizeatke f
positive rate, i.e., not flagging any legitimate user as cialis.
SynchroTrap allows OSN operators to tune a set of parameters
to achieve the desired trade-off between false positivesfalse
negatives. The main parameters include the action-majchin-
dow sizeTs;,, and the filtering thresholds for per-constraint sim-
ilarity (Simyc) and overall similarity $impverar). The settings of
these parameters have monotonic effects on false ratesger la
action-matching window enables SynchroTrap to find a lasger
of matched actions for two users, and hence increases timdliais
ity on a constraint object; on the other hand, a larger useitagiity
threshold decreases the number of user pairs consider#drsand
reduces the likelihood that two users are clustered togetiese
monotonic effects simplify the process of setting paransetad
reduce the need for human intervention. The operators ofyssr
tem can choose to tune parameter values up or down accomling t
the false positive rate with the current settings. At Faokbee
set parameters equal to the values that meet the interrduigion
requirements. We do not reveal the specific parameter ggttine
to confidentiality agreements.



4.7 Computational cost

In theory, SynchroTrap’s computational costi$rn?), where
n is the number of daily active users per application arid the
number of daily actions per user. In practice, we can sicanifiy
reduce this computational cost because we only need to gempa
user actions pertaining to the same target object or conmmg f
the same source object. Therefore, in our implementatienglaily
computational cost is th@(rm?), wherem is the number of daily
active users per application per target or source objeet, (per
campaign target or per IP address). The cost for weekly ggtice
is linear to the number of user pairs generated by daily jdite
cost for searching connected components in a user singitnaiph
is O(n). Thus the overall computational costirm? + n).

5. IMPLEMENTATION

We built SynchroTrap on top of the Hadoop MapReduce sta38k [
at Facebook. We implemented the daily user comparison reodul
and the weekly aggregation module on Haddgjpdnd the cluster-
ing module on Giraphg], a large-graph processing platform based
on the Bulk Synchronous Parallel (BSP) mod&0][ Giraph pro-
vides a parallel implementation of the connected comparaigb-
rithm. Apart from the basic functions supported by Facetsoiok
frastructure, our implementation of SynchroTrap congi$tg,500
lines of Java code and 1,500 lines of Python code.

6. SECURITY ANALYSIS

In this section we provide a security analysis of our appnoac
under various adversarial strategies.

Spread-spectrum attacks. Attackers could attempt to hide the
synchronization signal that SynchroTrap detects, whiclcalithe
spread-spectrurattacks. Given a target amount of abusive actions,
attackers can statistically spread actions over eithengelotime
period or more constraint objects (e.g., IP addresses angdaign
targets). Due to the increased resource cost and the redaoed
paign revenue, such attacks are less profitable. We now gieiw t
SynchroTrap limits the damage of attack campaigns, evetr if a
tackers control an unlimited number of accounts. We proeide
upper-bound analysis on the total number of actions thatlkets
can perform on a constraint object during a certain peridtho.

Suppose our detection winddW, (e.g., one week) contains
action-matching windows of lengtf,, (e.g., 1 hour). Because
per-account rate-limiting is widely used in OSNs such aseFac
book [13, 14], we assume that an account can perform at niost
actions within each action-matching window. Although thieber
of each account’s actions is boundedby,, without SynchroTrap
the total malicious actions remain unlimited if attackeas control
an extremely large number of malicious accounts.

In contrast, SynchroTrap limits the total number of abusize
tions on a constraint object (e.g., an IP address), irrdispenf the
number of malicious accounts an attacker controls. Thétiotuis
that under SynchroTrap an attacker has to spread out tlemadcif
his accounts over matching windows so that a pair of accalmts
not have many matched actions. Therefore, givenatching win-
dows, the number of malicious accounts that can simultasigou
act on a constraint object is bounded.

Specifically, SynchroTrap uses the Jaccard similarity tduate
the action sets of two users. In order to evade the detedtien,
fraction of matched actions of malicious accoutitsandU; must
be below a certain threshopd(0 < p < 1): [As N A;] < p x | A4
and|A;NA;| < px|A;|. Anoptimal attack strategy is to schedule
a group of accounts according to the set of such action{s&ts
that has the maximum cardinality so as to minimize the chance

two malicious accounts are caught in the same cluster. fgndi
{A;} with the maximum cardinality is still an open problem in in-
tersection set theoryl B], which poses a challenge to attackers.
We give an upper bound on the cardinality of such a{sét}
by computing the maximum size of its superset. We find such a
superse{B; } inwhich B; C B; only if B, = B;. Thatis, in{ B;}
none of the sets is contained in another. Becausg/sgt does not
require a threshold ofB; N Bj|, it relaxes the conditions of set
{A;} and hencg4;} C {B;}. Set{B;} approximates sefA;}
if the matched fraction thresholdis set close to 1. In set theory,
{B;} is called anantichainof sets in which none of the sets is a
subset of another. According to the Sperner’s theor&sh piven
that the detection window contains matching windows, the size
of the maximum antichain satisfi¢gB:}| < (|,/,). Therefore,

we havel{4;}] < (Lw“;%)’ which specifies the upper bound of the
number of active malicious accounts per constraint obj&tius,
the total number of actions from this malicious account griu
further bounded b)(LwleJ)wL, assuming all of the accounts are

kept active during the detection winddi.

Aggressive attacks.Aggressive attacks could be launched by con-
trolling accounts to perform bulk actions within a shortéigeriod.
SynchroTrap may miss such attacks if the user action-setiz
the user-pair similarity does not meet the criteria of Sya¢hap’s
user-pair filtering function. However, such attacks havernbthe
focus of existing countermeasured5], which look for the abrupt
changes in user activity. Our system works together witktig
anomaly detection schemes and complements them by taggleéin
stealthier attacks.

7. DEPLOYMENT

We deployed SynchroTrap at Facebook and Instagram to un-
cover malicious accounts and integrated it into the sitgquting
stack at Facebook. In this section, we present five use c83e$) (
and describe how the findings of SynchroTrap can be usedterbet
monitor and protect OSN services1{8).

7.1 Use cases at Facebook and Instagram

We present SynchroTrap’s use cases according to the ciostra
by which an attack campaign is bound. For each type of attacke
side constraint, we present a couple of use cases at Facahdok
Instagram.

Resource-constrained synchronization.The resource constraint
we use is the source IP addresses from which the attacks origi
nate. We deployed SynchroTrap with this configuration ateFac
book user login and photo upload. An OSN provider could aiso i
clude certain security cookieg,[L2] into SynchroTrap’s constraint
field, which enables the detection of resource-constraaitatks

at a finer granularity.

Mission-constrained synchronization. The mission constraints
we use are target object IDs, which include Facebook appdbeF
book page ID, and Instagram followee ID as the constraird,fre-
spectively. We deployed SynchroTrap at Facebook app iastal
and page like, and at Instagram user following context. \Walus
the overall similarity in these cases.

7.2 Signatures and response

As an unsupervised detection scheme, SynchroTrap automati
cally discovers large groups of malicious accounts aftedéploy-
ment. This malicious account corpus can be used as higlizgual
training data to build accurate classifiers. We now desdnib&



we fingerprint attacks and take actions on detected accaunuts
user-created content.

Attack signatures. SynchroTrap extracts the common constraint
objects on which groups of suspicious accounts act togeffer
OSN entities pointed by those constraint objects can beiahus
and thus can be used as attack signatures. They include Fagee
book apps, Facebook pages with inappropriate contentjvablins
stagram accounts soliciting excessive followers, etc. fBgking
back to the complete user action log, SynchroTrap can eveida
the fingerprints of an attacker’s machines, including IPresses,
user agents, browser cookies, etc. All of the above sigeatcan
be used to build fast classifiers to suppress future attackearly
real time B5], and to decide on proper responses.

Response. The response to attacks in SynchroTrap is multifold:
large groups of detected accounts are challenged with CARREC
actions performed in attack campaigns are invalidatediinspect;
and user-created content, such as photos, is sent for atetsen-
ity check (e.g., photoDNAY]) or manual inspection.

8. EVALUATION

We evaluate SynchroTrap using a one-month execution log at
Facebook in August 2013. We answer the following questions t
show that SynchroTrap provides a practical solution fogdaon-
line social networks:

e Can SynchroTrap accurately detect malicious accountsewhil

yielding low false positives?

e How effective is SynchroTrap in uncovering new attacks?

e Can SynchroTrap scale up to Facebook-size OSNs?

We obtain SynchroTrap’s detection accuracy by manually in-
specting sampled accounts and activities it uncovered. Nake t
study the new findings through cross-validation againsstiag
approaches that run at Facebook. We examine the social conne
tivity of the identified accounts by using SybilRankd], a scal-
able social-graph-based fake account detection systemal$tde
share the operation experience to shed light on how SyncapoT
works in practice over time. Lastly, we demonstrate theeadmkty
of SynchroTrap using performance measurements obtainetdr
200-machine cluster.

8.1 Validation of identified accounts

We first validate the malicious accounts with support from th
Facebook security team. We proceed with investigation@ttn-
firmed accounts to understand how adversaries managedéeo tak
control of them. Furthermore, we study the network-levelrels-
teristics of the detected attacks, including the email dosiand 1P
addresses used by malicious accounts.

o Page | Instagram| A Photo .
Application | | o3¢ | o0 | inotall upload | -09"
Campaigns | 201 531 74 29 321
Accounts 730K | 589K 164K | 120K | 564K
Actions 357M | 65M aM 48M 29M
Precision 99.0% | 99.7% 100% | 100% | 100%

Table 2: Identified accounts and precision. Precision is th@ortion of
identified accounts that are confirmed malicious. We derivecrecision
from manual inspection of randomly sampled accounts by the &ce-
book security team.

Methodology. A main challenge to validate the detected accounts
and their actions is their large number. During the monthwf o
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Figure 7. CDF of campaigns with respect to the number of in-
volved users. In a large campaign, an attacker manipulates
multiple thousands of malicious accounts.

study, SynchroTrap uncovers millions of accounts. Maryuedh
viewing all those accounts imposes prohibitive human vwoadl
Furthermore, cross validating the detected accounts wihitbr@x-
isting Facebook countermeasures is not possible becawmge |
fraction of detected accounts are not caught by other met{&&i2).
Therefore, our approach is to inspect representative ssnblthe
detected accounts with manual assistance from the seéty
cialists. We randomly sample subsets of the detected atxfam
inspection and obtain the false rates.

Precision. Table2 shows the numbers of suspicious accounts Syn-
chroTrap caught and attack campaigns uncovered by SynappT
and the precision in each application. In total, SynchrpTde-
tected 1156 large campaigns that involve more than 2 mitien
licious accounts, with a precision higher than 99%. Tabkdso
shows that the large attack campaigns are comprised obmslbf
user actions. Among the five deployed applications, attackere
more active in page like and user following, presumably beea
campaigns in these applications are more lucrative. Byvaratg
large campaigns, SynchroTrap allows Facebook and Instata
identify and properly invalidate millions of malicious usactions
in each application.

Post-processing to deal with false positivesFalse positives are
detrimental to OSN user experience. Besides adding hunfiantsef
into the process of setting parameters4(g), we further reduce
false positives through post-processing. First, we dissarall user
clusters and screen out only large clusters, which are rialg ko
result from large attacks. Based on the experience withyibies),
the Facebook security team sets a threshold of 200, abowehwhi
almost all users in each cluster are found malicious. Secward
do not invalidate all actions that a malicious account hafopmed
during a detection window,, but conservatively focus on those
that match at least one action of each of the other accourttgin
same cluster. This post processing step helps rule out aefidns
that a user account may have delivered while being compezinis

Scale of campaigns. Figure7 shows the CDF of the scale of the
attack campaigns after post-processing, in terms of thebeuwf
involved malicious accounts. While 80% of the campaignsive
fewer than 1,000 accounts, we also find a few very large caynpai
in which attackers manipulate a few thousands of accounts.

How are the malicious accounts taken under control?Because
attackers have to use accounts to perform malicious desvin
OSNs, it is critical for them to own or hijack a large number of
accounts before launching their campaigns. To understaad h
adversaries take control of accounts, the Facebook sgdadm
classifies the reviewed accounts into categories basedwhay
were involved in campaigns. The means by which attackerselsar
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Figure 8: Breakdown of top email domains associated to the ma-
licious accounts in each application.

accounts include creating fake accounts with frauduleet us
formation [L9, 44], compromising user accounts via malwat€][
stealing user credentials by social engineerih@, 5], etc. A
breakdown of the malicious accounts in app installatiorhimas

in Table3. In this application, attackers manipulate malicious ac-
counts to promote rogue Facebook apps that can later be ased t
send out spam, to steal user personal information, etc. riglea
fake accounts, social engineering, and malware are thendorni
malicious account sources, accounting for more than 90%ef t
detected accounts.

Fake accounts| Social Engineering| Malware | Others
286% | 21.4% | 429% | 7.1%

Table 3: Classification of the malicious accounts detected at
Facebook app install.

Network-level characteristics. We study the email domains and
IP addresses used by malicious users to shed light on th@retw
level characteristics of attacks.

An OSN account usually associates to a contact email address
Figure 8 shows the distribution of the email domains of the iden-
tified accounts in each application. As we can see, the emeil ¢
dentials used by the controlled accounts are mainly fromdive
mains, including those major email domains Yahoo, Hotnzait]
Gmail. Email domains with accounts that can be obtained from
derground markets (e.g., Yahoo, Hotmail, and AOL) are ikkelbe
used to provide fraudulent contact email addresses foralted
accounts. Whereas Gmail accounts incur higher cost tokattsic
according to an underground market survgy]| a fraction of the
identified accounts are found to use Gmail addresses. |ni@aldi
a non-negligible fraction of the contact email addressesfiam
the domain *.ru, which is dominated by mail.ru and yandexge-
cause the identified accounts used a diverse set of emad s,
this result suggests that the email domain alone is not abieli
criterion to detect malicious accounts.

We further study the source IP addresses of the detected mali
cious activities. We found that the two million detected mauts
have usedv1.2 million IP addresses in total. Figueshows the
distribution of the IPv4 addresses used by attackers in appli-
cation. As can be seen, the threats are initiated from thrgerm
regions of the IPv4 address space: 36.67.* — 44.99.*, 77%246
125.226.*, and 170.226.* — 207.78.*. The distributions Bfdd-
dresses in different applications are close to each otkeepe that
attackers in app install use more intensively the IP addsefsm
the region 77.246.*-~125.226.*. We investigate a randompéam
set of those IP addresses via queries to WHOIS servers, which
vide the registration information of the domain names. Mighgd-
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Figure 9: Distribution of the IPv4 addresses used for identified
attack campaigns in each application.

dresses are administrated by large regional ISPs arounddtie
(e.g., Global Village Telecom in Brazil and Saudi TelecorSaudi
Arabia). Some of those IP addresses are used to providedsimare
ternet access (e.g., for network proxies or public Inteatetess
points). We also observed that a non-trivial fraction of tRead-
dresses are from hosting services such as GoDaddy and I%ipgle
as well as from large cloud computing services such as Amazon
AWS. This observation indicates that cloud-based senapes up
another avenue for threats to break into the Internet, wiich
contrast to traditional botnet-based attackd|

L Overlap with New findings
Application existing arr))proaches by SynchroT?ap
Page like 175K 555K
Instagram follow 66K 523K
App install N/A 164K
Photo upload N/A 120K
Login 12K 552K
Total 253K 1,914K

Table 4: New findings of SynchroTrap. It uncovers a significant
fraction of malicious accounts that were undetected previosly.
SynchroTrap is the first dedicated countermeasure in app in-
stall and photo upload at Facebook. So there is no data avail-
able from previous work to compare with.

8.2 New findings on malicious accounts

To evaluate SynchroTrap’s capability to find malicious\atiés
that were previously undetectable, we compare the mabcam
counts detected by SynchroTrap against those detectedsiingx
approaches inside Facebook. At Facebook, a large set df exis
ing approaches cope with aggressive attacks by monitobingpa
changes in certain types of user activitig§|[ In each deployed ap-
plication, the accounts detected by SynchroTrap in Augis8are
compared to those detected by other approaches during e sa
period. Table4 shows the overlap of the malicious accounts that
SynchroTrap and other approaches identified, as well ashBync
Trap’s new findings. As we can see, SynchroTrap identifiedgela
number of previously unknown malicious accounts. Spedifica
in each application at least 70% of the identified accounteewe
not discovered by existing approaches. We investigate@xhet
number of accounts detected by each existing approach. e ca
not report them due to confidentiality, but SynchroTrap clste
fairly large portion of those accounts. We believe that-fidtlged
deployment of SynchroTrap in each application on more OSN ob
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Figure 10: CDF of the detected accounts with respect to the
ranking percentile generated by SybilRank. The percentile
are calculated from the bottom of the ranked list.

jects (e.g., certain fields of browser cookies) could yielstemew
findings and achieve higher recall of malicious accounts.

In particular, the large number of previously undiscovearei-
cious accounts indicates that the loosely synchronizedlatthave
been underestimated in existing countermeasures. Syfemo
complements existing OSN countermeasures by effectivetpw
ering such attacks.

8.3 Social connectivity of malicious accounts

Social-graph-based defense mechanisms have attractédatiuc
tention from the research community9 39,41,45,46]. We exam-
ine the social connectivity of the identified accounts by panng
them against the ranked list generated by SybilRd® [ Sybil-
Rank discerns bulk accounts created at a low per-account kos
ranks users based on connectivity in the social graph. Sosigi
users with limited connections to legitimate users areedri@w.

We run SybilRank on a snapshot of the Facebook friendship
graph obtained in August 2013. This social graph contairisaale-
book users that have been perceived as benign by existimjezou
measuresdy] until this study. We do not include the users already
stopped by existing countermeasures before the graph testaps
Figure 10 shows the CDF of the ranking percentile of the mali-
cious accounts that SynchroTrap detects in each Facebptikap
tion. As can be seen, a certain fraction of malicious used0@6
in login and~15% in each of other applications) are ranked at the
bottom. That portion of users are comprised of fake accatlnatis
have little engagement on the social graph. Whereas SyiilRa
gives low rankings to a large portion of the identified malic
users (e.g., 80% of the detected users in app install are gthen
lowest 25% rankings), a non-negligible fraction of the asspear
in the middle or even the top intervals of the ranked list. sTihi
dicates that attackers manipulate accounts with a variegyes of
social connectivity to legitimate users. For example, a phthe
accounts caught in photo upload are ranked high, presuniably
cause attackers tend to use well-connected accounts tdsgpam
photos to many of their friends. As described i8.8, these well-
connected accounts can be obtained via malware, socialesrgi
ing, etc. The potential influence on the social graph and iple h
cost to get such accounts make them more valuable to atsacker

8.4 Operation experience

We perform a longitudinal study on the number of users caught
by SynchroTrap for the first 11 weeks after SynchroTrap’dalep
ment (Figurell). From the beginning, the variation is small in
Facebook login, app install, and photo upload. In contrems,
number of detected users decreases after the first monthcer Fa
book page like and Instagram user following. It then stabdiat
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Figure 11: Number of users detected by SynchroTrap per week
over a course of 11 weeks.
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Figure 12: Distribution of the users repeatedly caught by Syn-
chroTrap. We depict the fraction of detected users with respct
to the number of times they have been repeatedly caught.

by SynchroTrap’s deployment. Either the attackers are blet t&
obtain new controlled accounts to launch attacks or they ste
attacks temporarily to prevent their controlled accourdaafbeing
caught. The stabilized number of detected accounts in each a
plication suggests that SynchroTrap continued to effeltidetect
malicious accounts over time.

Although most of the detected accounts were being caught for
the first time by SynchroTrap, we observed that a non-ndzégi
fraction of them were repeatedly caught. FigliBshows the frac-
tion of these users (who were caught at least twice). As weean
in each application 5%15% of the detected users are caught twice
by SynchroTrap; the fraction of users caught more than fivedi
is less than 1%. Some accounts are caught repeatedly bebayse
are able to clear the challenges sent to them. When a maliciou
account is detected, Facebook’s security system sendenhes
such as CAPTCHAs or SMS to it. Either the attackers or the own-
ers of the compromised accounts could have cleared thecolgals
so that the accounts were used to launch new attacks.

8.5 System performance

We evaluate the performance of SynchroTrap on a 200-machine
cluster at Facebook. The daily activity data in each apftioas
on the order of terabytes. We measure the execution timeabf ea
stage of SynchroTrap’s pipeline under different paramstéings.

Daily jobs. In a daily job, the action-matching windoW;,, de-
termines the size of the sliding comparison windowg&2. To
examine its impact, we vary the valueBf;,,, from 10 minutesto 5
hours. Figurel 3 shows that the execution time of daily jobs grows
as we sefls;., to higher values. This is because a higher compar-
ison windowTs;,, causes more user pairs to be compared. As we
partition data using overlapping sliding windows, eachydab in

an application finishes within a few hours.

Aggregation jobs. Figurel4 shows the execution time of aggre-

around 100K per week. We suspect that this drop may be causedgation jobs in each application with;;,,, set to different values.
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Figure 13: The execution time of SynchroTrap’s daily jobs in
each deployed application. We seT’;,,, to 10 mins, 1 hour, and
5 hours. Error bars represent 95% confident intervals.
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Figure 14: The execution time of aggregation jobs in each appli-
cation. The input data volume varies as we generate daily use
pairs using different T%;,, values (10 mins, 1 hour, and 5 hours).
Error bars represent 95% confident intervals.
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Figure 15: Execution time of finding connected components in
each application. We set the similarity thresholds in our usr-
pair filtering function to 0.2, 0.4, 0.6, and 0.8. Error bars rep-
resent 95% confident intervals.

As can be seen, an aggregation job takes longer time when-we in
creas€els; in the daily jobs. This is because a daily job with a
largerTsinm value generates more user pairs with matched actions,
and hence increases the aggregation time. In all applitateach

set of aggregation jobs completes execution withitb hours.

Single-linkage hierarchical clustering on Giraph. SynchroTrap’s
user-pair filtering function (8.4) allows distinct similarity thresh-
olds on different granularities. We use a one-week dataosex-t
amine the execution time of clustering under varying sintifa
thresholds. For simplicity we assign the same value to adi-si
larity thresholds and set this value to 0.2, 0.4, 0.6, andr@spec-
tively. Figurel5 shows that the execution time in each application
increases as we set the thresholds to lower values. This#&ibe

a smaller threshold value leads to fewer user pairs to beefite

and hence makes the user similarity graph denser. A Synchro-

Trap’s clustering job finishes within 100 minutes as Girapi]]
is highly efficient.

9. RELATED WORK

In this section, we briefly describe previous OSN defense pro
posals and compare them with this work. We classify priorkwor
into three broad categories: social-graph-based appesafgature-
based account classification, and aggregate behavioeghgst This
work belongs to the category of aggregate behavior clueri

The social-graph-based approach#8, #6] use social connec-
tivity to infer fake accounts that have limited social coctiens to
legitimate users. They can detect a significant fractiorakéfac-
counts that are created in bulk, but can miss well-mainthfake
accounts and compromised accounts.

Feature-based account classification uses various acteamnt
tures to train classifiers to detect malicious accou2®s3b,42,44].

For example, the Facebook Immune System provides system sup
port to manage many Facebook attack classifi@ss COMPA [20]
identifies compromised accounts using statistical modelsdatch
sudden changes in a user’s behavior, i.e., message sending.

Clickstream £2] and CopyCatch16] pioneered the work in ag-
gregate behavior clustering for online social network sis@ick-
stream compares the pairwise similarity of the http requsim
social network accounts, and clusters accounts with sirnitp re-
quest patterns together. It uses pre-labeled data tofylassiuster
as fake or legitimate. If the number of pre-labeled fake ant®
in a cluster is larger than a certain threshold, then thetelus
classified as fake; otherwise, it is legitimate. Althougitidtream
achieved good detection results on a data set of 16K RenRen ne
work users, we cannot directly borrow this approach maimdy b
cause we aim to deploy SynchroTrap at much larger onlineakoci
networks. First, it is practically challenging to compaliecticks
from every pair of users at a large social network with hudsref
millions of active users. Second, it is difficult to obtaimga vol-
umes of training data at a large social network because fines)
expensive manual labeling. Thus, many clusters may notgont
any labeled data, leaving them unclassified.

CopyCatch 16], a Facebook internal system, detects fake likes
casted in loose synchrony. SynchroTrap’s design is basedson-
ilar insight that malicious accounts tend to act togethesweler,
CopyCatch assumes that a user can perform a malicious actipn
once (e.g., like a page at most once) and models the detgetbn
lem as a co-clustering probler8]]. When a user can repeat the
same malicious action multiple times, such as log on fronséme
IP address repeatedly, the computational complexity ofyCagpch
grows exponentially with the number of repeated actions.

In contrast, SynchroTrap assumes malicious accounts paatre
any action many times, and adopts a clustering algorithmseho
computational complexity grows linearly with the numberaaf
tions an account performs &7). Moreover, SynchroTrap uses the
source IP addresses and campaign targets to further reidwoeni-
putational complexity, making it deployable at a largelscacial
network such as Facebook.

In addition to social network defense systems, Synchro@tsp
borrows insight from previous work on botnet detectiai23,43,

47], as some attackers use botnets to control malicious atsoumn
particular, BotMiner 21] and BotSniffer P2] detect the bots that
respond to commands in a similar way. BotGrag¥ detects bot-

net IP addresses that are shared by a large number of spamming
email accounts. SynchroTrap also uses shared IP addresses a
signal to detect groups of malicious accounts, but usesiriest
tamps of user actions to further improve detection accuracy



10. CONCLUSION

This work aims to detect large groups of active malicious ac-
counts in OSNs, including both fake accounts and comprainise
real user accounts. We designed a generic and scalableioletec < . )

[17] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All YauContacts Are Belong

system, Synchrc_JTrap, that uses Clu_Stermg anaIySIS tcn:tjkaxge to Us: Automated Identity Theft Attacks on Social Networks\WWW 2009.
groups of malicious users that act in loose synchrony. T@cop [18] F. Brunk.Intersection Problems in Combinatoriddniversity of St Andrews
with the enormous volume of user activity data in a large OB&, thesis. University of St Andrews, 2009.

: ; h 19] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aidihg Detection of Fake
Implemented SynchroTrap as an incremental processmgrﬂysm 1) gccounts in Large Scale Socigl Online Se?viceﬂxlDth%lz

top of Hadoop and Giraph. We further optimize it by partitian [20] M. Egele, G. Stringhini, C. Kriigel, and G. Vigna. COMFBetecting
user activity data by time and only comparing pair-wise wser Compromised Accounts on Social NetworksNBS$ 2013.

; i i idi ; _ [21] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Gluisg Analysis of
tions that fa” intO overlappmg sliding windows. We depéaWSyn Network Traffic for Protocol- and Structure-Independentrio Detection. In
chroTrap in five applications at Facebook anc_i Instagram.inur USENIX SECURITY2008.
one month of deployment, SynchroTrap unveiled 1156 large-ca  [22] G.Gu,J. Zhang, and W. Lee. BotSniffer: Detecting BotBemmand and

aigns and more than two million malicious accounts thatlived Control Channels in Network Traffic. INDSS 2008.
5] tﬁe campaigns [23] S.Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Kragsetecting

) . Spammers with SNARE: Spatio-Temporal Network-Level Auabia
Although we designed SynchroTrap for OSNs, we believe that Reputation Engine. INSENIX SECURITY2009.

the approach of detectlng |Oose|y Synchronlzed actionsatem [24] P. Jaccard. The Distribution of the Flora in the Alpineng.New Phytologist
: . . . 11(2), 1912.
uncover Iargg attacks in other online Ser\{lces’ such as W@| € [25] T.N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Men&zeial Phishing.
and electronic commerce, at the present time. Furtherritozen- Communications of the ACNS0(10), 2007.
cremental processing and data partitioning techniquesame ax- [26] A. K. Jain, M. N. Murty, and P. J. Flynn. Data ClusterirgReview ACM
- P Computing Survey81(3), 1999.
plored may benefit other applications that analyze largenael of

. ) . . : [27] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUiBirg Peta-Scale
time-independent data by reducing the requirements ondbai- GraphsKnow. Inf. Syst.27(2), 2011.

[15] I. Anderson.Combinatorics of finite set€larendon Press, 1987.

[16] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. FalostsBopyCatch:
Stopping Group Attacks by Spotting Lockstep Behavior ini&iddetworks. In
Proceedings of the 22nd International Conference on WoitteWVeb (WWW)
2013.

puting infrastructure. [28] G. Karypis and V. Kumar. Multilevel Algorithms for MutConstraint Graph
; ) : ; Partitioning. InProceedings of the 1998 ACM/IEEE conference on
Fln_ally, we note that Synchro'l_’rgps des_lgn uses un_supmﬂws SupercomputingL998.
learning and does not detect malicious actions in real time¢he [29] H.-P. Kriegel, P. Kroger, and A. Zimek. Clustering Higimensional Data: A

Survey on Subspace Clustering, Pattern-Based ClustenmCorrelation
Clustering. ACM Trans. Knowl. Discov. Dat&(1), 2009.

[30] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, |. HioN. Leiser, and
G. Czajkowski. Pregel: a System for Large-Scale Graph Bgieg. In
SIGMOD 2010.

[31] I. V. Mechelen, H. H. Bock, and P. D. Boeck. Two-mode tug methods: a
structured overviewStatistical Methods in Medical Researd3:363-394,
2004.

future, we can extract attack signatures from the malicimars-
paigns and accounts it detects and use supervised leamiuher t
velop fast classifiers that can detect attacks in real time.
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