
Secure kNN Computation on Encrypted Databases

W. K. Wong, David W. Cheung, Ben Kao, and Nikos Mamoulis
Department of Computer Science, The University of Hong Kong

Pokfulam Road, Hong Kong
wkwong2@cs.hku.hk, dcheung@cs.hku.hk, kao@cs.hku.hk, nikos@cs.hku.hk

ABSTRACT
Service providers like Google and Amazon are moving into
the SaaS (Software as a Service) business. They turn their
huge infrastructure into a cloud-computing environment and
aggressively recruit businesses to run applications on their
platforms. To enforce security and privacy on such a service
model, we need to protect the data running on the platform.
Unfortunately, traditional encryption methods that aim at
providing “unbreakable” protection are often not adequate
because they do not support the execution of applications
such as database queries on the encrypted data. In this
paper we discuss the general problem of secure computa-
tion on an encrypted database and propose a SCONEDB
(Secure Computation ON an Encrypted DataBase) model,
which captures the execution and security requirements. As
a case study, we focus on the problem of k-nearest neigh-
bor (kNN) computation on an encrypted database. We de-
velop a new asymmetric scalar-product-preserving encryp-
tion (ASPE) that preserves a special type of scalar product.
We use APSE to construct two secure schemes that support
kNN computation on encrypted data; each of these schemes
is shown to resist practical attacks of a different background
knowledge level, at a different overhead cost. Extensive per-
formance studies are carried out to evaluate the overhead
and the efficiency of the schemes.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security, integrity, and
protection

General Terms
Algorithms, Security

Keywords
Security, kNN, Encryption

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

1. INTRODUCTION
Emerging computing paradigms such as database service

outsourcing and utility computing (a.k.a. cloud comput-
ing) offer attractive financial and technological advantages.
These are drawing interests of enterprises in migrating their
computing operations, including DBMS’s, to service provi-
ders. Nevertheless, many vocal consultants, including Gart-
ner [7], have issued warnings on the security threats in the
cloud computing model. Private information, which includes
both customer data and business information, should not be
revealed to unauthorized parties. In this paper we address
a very important problem of security in services outsourc-
ing: the elements of an encryption scheme and the execution
protocol for encrypted query processing. More specifically,
we study how sensitive data and queries should be trans-
formed in an encrypted database environment and how a ser-
vice provider processes encrypted queries on an encrypted
database without the plain data revealed. We call our model
of secure query processing SCONEDB (for Secure Compu-
tation ON an Encrypted DataBase).

The conventional way to deal with security threats is to
apply encryption on the plain data and to allow only au-
thorized parties to perform decryption. Unauthorized par-
ties, including the service provider, should not be able to
recover the plain data even if they can access the encrypted
database. Some previous works [2, 10, 11] have studied
this encryption problem in the outsourced database (ODB)
model. However, these studies are restricted to simple SQL
operations, e.g., exact match of attribute value in point
query [12]; comparisons between numeric values in range
query [2]. In practice, users often interact with a database
via applications in which queries are not easily expressible
in SQL.

Moreover, most of the previous methods were specially
engineered to work against one specific attack model. How-
ever, the problem should be studied with respect to various
security requirements, considering different attacker capa-
bilities. In this paper we focus on k-nearest neighbor (kNN)
queries and show how various encryption schemes are de-
signed to support secure kNN query processing under dif-
ferent attacker capabilities. The kNN query is an impor-
tant database analysis operation, used as a standalone query
(e.g., in similarity search applications on top of multimedia
databases) or as a core module of common data mining tasks
(e.g., classification and clustering).

139

Player 1 Player 2

EDBMS

E(DB)

DB

ET() EQ()

D()

t

K

Query
Processor

K
q

D(R)

R EQ(q)ET(t)

Aux

CryptanalysisH DBA

Player 3 (attacker)

Figure 1: The SCONEDB Model

1.1 The SCONEDB Model
Figure 1 shows our SCONEDB model for secure encrypted

database computation. In our model, player 1 is the owner
of a database DB on which player 2 wants to execute certain
queries. To take advantage of the computational resources of
a Service Provider (SP), instead of processing queries locally,
player 1 exports DB to an Encrypted Database Management
System (EDBMS) at which queries submitted by player 2
are processed. (In some applications, player 1 may not even
store DB and rely on the EDBMS as the sole repository of
the data.) For security, all the tuples in DB are encrypted
by player 1 before they are exported to the EDBMS. The
EDBMS maintains and processes the encrypted database,
E(DB). Likewise, queries submitted by player 2 are also
encrypted. EDBMS executes an encrypted query on the en-
crypted database and returns to player 2 an encrypted result
R (e.g., R is a set of encrypted tuples which are the answer
of a kNN query). Player 2 applies a decryption function D
on R to obtain the plain results.

Under our SCONEDB model, players 1 and 2 have to
agree on a security protocol. In particular, they choose a
common encryption scheme. In SCONEDB, an encryption
scheme consists of the following components:

• A secret key K. A key K is required as a parameter
to the encryption and decryption processes (note that
a key may contain a number of components, e.g., RSA
requires a pair of numbers as the key). In our model,
the key is kept private to players 1 and 2.

• A database encryption function ET (). The encrypted
database E(DB) is obtained by encrypting each tuple
t in DB by ET (t,K).

• A query encryption function EQ(). Each query q is
encrypted by EQ(q,K) before it is submitted to the
EDBMS.

• A result decryption function D(). Each tuple t̂ in the
encrypted result R is decrypted by D(t̂, K).

• A set of auxiliary operators Aux. An auxiliary operator
Ae in Aux operates on the encrypted database to ob-
tain information for the purpose of answering queries.
Note that Ae operates without knowing the secret key
K and hence has no access to the plain tuples. For ex-
ample, for kNN queries, Ae may return the Euclidean
distance between an encrypted database tuple p and
an encrypted query tuple q.

The main goal in the SCONEDB model is to design an
encryption scheme in which Aux can operate on E(DB) to
support query processing.

1.2 Attack models
In our SCONEDB model, we assume that the EDBMS,

which is possibly located at a third party (e.g., a service
provider in the cloud), is not secure. Therefore, we as-
sume that an attacker (player 3) sees the environment of the
EDBMS. In particular, the attacker has accesses to the en-
crypted database, the encrypted queries, and the encrypted
results. Also, we assume that the attacker knows what en-
cryption scheme is being used. That is, he knows all the
components of the scheme except the key. These include
the encryption and decryption procedures (ET (), EQ() and
D()) and the set of auxiliary operators Aux. We assume
that the attacker’s objective is to recover a plain database
DBA ⊆ DB . We assume the attacker is capable to exe-
cute PTIME cryptanalysis algorithms with respect to the
size of the encrypted database. Our objective is to deny
the attacker from obtaining DBA. Apart from E(DB), the
attacker may possess additional knowledge about the origi-
nal data. To better evaluate the strength of an encryption
scheme, we classify attackers into different levels based on
the knowledge H they possess.

• Level 1: the attacker observes only the encrypted data-
base E(DB), i.e., H = 〈E(DB)〉. This corresponds to
the ciphertext-only attack (COA) in cryptography [5].
In practice, there are applications accessed by secluded
users, for which others can hardly observe any infor-
mation other than the encrypted data.

• Level 2: Apart from E(DB), the attacker knows a set
of plain tuples P in DB but he does not know the corre-
sponding encrypted values of those tuples in E(DB),
i.e., H = 〈E(DB), P 〉 where P ⊂ DB . This corre-
sponds to the known-sample attack in database liter-
ature [15]. For example, if the attacker observes the
encrypted database of a bank and some of his sources
are customers of the bank, he then knows the values
of several tuples in the plain database.

• Level 3: Apart from E(DB), the attacker observes a
set of tuples P in DB and he knows the corresponding
encrypted values of those tuples, i.e., H = 〈E(DB), P,
I〉, where P ⊂ DB and I(t) = ET (t,K) for all t ∈ P .
This corresponds to the known-plaintext attack (KPA)
in cryptography [5] or known input-output attack in
database literature [15]. For example, if the attacker
opens a new account at the bank and observes only
one new encrypted tuple afterwards, he can associate
the new account’s information (unencrypted) with the
encrypted value of the new tuple.

140

A higher-level attack is more powerful than a lower-level
one. If an encryption scheme resists a higher level attack,
it resists a lower level one as well. Among the 3 attack lev-
els defined, we remark that level-2 attacks capture practical
scenarios. This is because in some applications, it is not
difficult to observe a small number of plain database tuples
(e.g., by artificially inserting “spy” tuples in DB).

We assume the attacker cannot observe the plain queries
in all cases. In particular, we do not allow the attacker
to disguise as player 2 and submit queries to the database.
Note that level-3 attacks are rare in practice, since it is not
easy for someone who does not hold the encryption key to
associate known plain tuples to their encrypted values.

1.3 kNN on SCONEDB model
In this paper we focus on kNN queries and illustrate how

an encryption scheme (which includes the above five com-
ponents) can be developed to securely support kNN appli-
cations under the SCONEDB model. A kNN query searches
for k points in a database that are the nearest to a given
query point q. Note that each database tuple can be mod-
eled as a multi-dimensional point, if we consider some of
its attributes as dimensions and their values as their coor-
dinates. One approach to securely support kNN is to use
distance-preserving transformation (DPT) to encrypt data
points [20] so that the distance between any two encrypted
points in E(DB) is the same as that between the corre-
sponding original points in DB . Given this property, kNN
can be computed on the encrypted database. Unfortunately,
such transformation is shown to be not secure in practice. If
an attacker can access the DPT-encrypted database E(DB)
and knows a few points in the plain database DB , he can
recover DB entirely [15].

A similar problem on kNN computation at an untrusted
platform is studied for location based services (LBS) [8, 17,
9, 13], where users submit queries to an untrusted server
which holds the data. The focus of such applications is on
protecting the privacy of users (query content), since the
database is assumed to be owned by the server [9]. While
some studies in LBS also address the privacy of records in the
database, k-anonymity is adopted as the standard to protect
the database [8, 17]. We remark that k-anonymity has a
different security goal compared to our model; k-anonymity
aims at preventing an attacker to identify an individual from
the database, but the content in the database may be ex-
posed. In addition, most of these models require the exis-
tence of a trusted intermediate party (location anonymizer),
which handles the data and query transformation. This
party, except from being a single point of attack, compro-
mises performance as every query and result has to pass
through it. In this paper we seek for alternative encryption
schemes that protect data security and at the same time
they return accurate kNN results to users.

In the rest of the paper, we study various encryption
schemes and analyze their vulnerability to different levels of
attacks. In Section 2, we show that if the distance between
any two points in the plain database DB can be determined
from the points’ encrypted values in E(DB) (a property we
call distance recoverability), then the encryption scheme is
vulnerable to level-2 attacks. This observation leads us to
develop an asymmetric scalar-product-preserving encryption
(ASPE) that is not distance-recoverable (Section 3). ASPE
can be used to construct a scheme to support kNN compu-

tation that resists level-2 attacks. In Section 4, we describe
how we can extend this scheme to resist level-3 attacks, how-
ever, with additional overhead. Section 5 empirically evalu-
ates the proposed schemes. In Section 6, we briefly discuss
how our encryption scheme effectively transforms the kNN
problem into a top-k problem, and how that leads to effi-
cient solutions to the problem of secure kNN computation.
Section 7 reviews related work. Finally, Section 8 further
discusses our SCONEDB model and concludes the paper.

2. DISTANCE-RECOVERABLE
ENCRYPTION

In kNN computation, distances between database points
to a query point are computed for finding the nearer neigh-
bors to the query point. To solve the secure kNN problem, it
is natural to consider adopting an encryption scheme that al-
lows the system to compute d(p1, p2) on E(DB) for database
points p1 and p2 in DB . kNN can then be computed effi-
ciently w.r.t. such a scheme. However, we show in this
section that no encryption scheme is secure against level-2
attacks if it allows distance computation as suggested above.
We start with the definition of distance recoverability.

Definition 1. (Distance-recoverable encryption (DRE))
Given an encryption function E and a key K, let E(p,K)

be the encrypted value of a point p in DB. E is distance-
recoverable if and only if there exists a computational proce-
dure f such that ∀p1, p2,K, f(E(p1,K), E(p2,K)) = d(p1, p2).

A DPT [20] is an example of DRE. This is because, by def-
inition, a DPT preserves distances in the transformed space.
Hence, if E is a DPT, we have d(E(p1,K), E(p2,K)) =
d(p1, p2). So, f is simply the Euclidean distance. A DPT
transforms the space by rotations and translations. For a
point p in DB represented as a column vector, the encrypted
value E(p,K) of p w.r.t. a DPT E can be expressed as
Np + t, where N is a d × d orthogonal matrix and t is a
d-dimensional column vector. Distance between points is
preserved, i.e., d(p1, p2) = d(E(p1,K), E(p2,K)). So, DPT
supports efficient kNN computations. Here, N and t to-
gether form the encryption key K. Regrading level-1 at-
tacks, the attacker cannot recover DB since he does not
know N or t [20]. So, DPT is a scheme that resists level-1
attacks. Note that in our model, we assume that the at-
tacker knows E. Therefore, if E is a DRE, we assume that
the attacker knows f as well. For example, if E is a DPT,
the attacker knows that f is the Euclidean distance function
d(). However, we will show that DRE, and hence DPT, is
not secure under level-2 or level-3 attacks. We first show
how to attack DRE at level-3.

Theorem 1. Assume a DRE E is used to encrypt DB to
get E(DB). A level-3 attacker with H = 〈E(DB), P, I〉 can
recover DB if P contains at least d + 1 points xi (1 ≤ i ≤
d + 1) such that the set of vectors {xj − x1|2 ≤ j ≤ d + 1}
are linearly independent.

Proof. Since the encryption is a DRE, the distance be-
tween any two points p and q, d(p, q), can be computed
by the attacker using f(E(p,K), E(q,K)). Suppose the at-
tacker wants to find the original value of an encrypted point
y′ ∈ E(DB). Let the set of known points in P be {x1, x2, ...,
xd+1} and y be the original value of y′ before encryption.
He can set up d + 1 equations: d(xi, y) = f(I(xi), y

′) for

141

i = 1 to d + 1. Note that the RHS of the equations are
known numeric values to the attacker. Each equation thus
represents a d-dimensional hypersphere. The solution of y
lies on the intersection of the hyperspheres. Since y exists
in the database, a solution must exist. We can show that
if the set of vectors {xj − x1|2 ≤ j ≤ d + 1} are linearly
independent, the d+ 1 hypersheres intersect at exactly one
point (see Appendix A). So, y can be uniquely determined.
Hence the attacker can recover the entire database.

The level-3 attack shown above is independent of the im-
plementation of DRE. So, no DRE (e.g., DPT) can survive
this level-3 attack. Furthermore, we can show that DRE
has poor resistance to level-2 attacks by showing that the
attacker can “upgrade” his level-2 knowledge to level-3 using
signature linking attack.

Let us explain signature linking attack. At level-2, H =
〈E(DB), P 〉, the attacker constructs the signature of P by
the pairwise distances between every two points in P . Sup-
pose the points in P are ordered and P = {x1, x2, ..., x|P |}.
The signature of P , sig(P), is a vector of size |P |C2 of
the form (d(x1, x2), d(x1, x3), ..., d(x1, x|P |), d(x2, x3), ...,
d(x|P |−1, x|P |)). The attacker tries to find an ordered set of
encrypted points Q in E(DB), such that |Q| = |P | and Q
gives the same signature as P . Let Q = {x′1, x′2, ..., x′|P |}.
sig(Q) is (f(x′1, x

′
2), f(x′1, x

′
3), ..., f(x′1, x

′
|P |), f(x′2, x

′
3), ...,

f(x′|P |−1, x
′
|P |)). If there is only one set Q with a matching

signature, the attacker can conclude that x′i is the encrypted
value of xi, i.e., he can construct I with I(xi) = x′i for all
xi ∈ P . With this I, H = 〈E(DB), P, I〉, and the attacker
can now carry out a level-3 attack.

The success of signature linking attack rests on two issues:
(1) Is it easy to find Q? (2) Is it likely that another set,
say Q′, which is not the transformed set of the points in P ,
happens to give the same signature? (We call this a signa-
ture collision.) For the first issue, we remark that although
the search space is huge1, it can be pruned very effectively.
For example, given two encrypted points x′1 and x′2 such
that f(x′1, x

′
2) 6∈ sig(P), we know that Q cannot contain

both x′1 and x′2. For the second issue, we can show that the
probability of signature collision is generally very small (see
Appendix B). Also, if multiple Qs are found with the same
signature as P , the attacker can increase the size of P to
lower the likelihood of collision and repeat the attack. In
Section 5, we will report experiments for evaluating the fea-
sibility of signature linking attack in terms of the number of
points in P required and its computation cost. The results
confirms that the attacker can easily recover the database
at an affordable cost.

3. ASYMMETRIC SCALAR-PRODUCT
-PRESERVING ENCRYPTION

From our discussion, we observe that the weakness of DRE
comes from the fact that the attacker is able to recover
distance information from the encrypted database. More
specifically, given any two points p1 and p2 in DB, their
distance d(p1, p2) can be determined from their encrypted
values ET (p1,K) and ET (p2,K). These distances allow the
attacker to compute signatures and thus to apply the sig-
nature linking attack. To resist level-2 attacks, we need an

1If there are n points in the database, there are nP|P | can-
didate Q sets to examine.

encryption function that does not reveal distance informa-
tion. For kNN search, we observe that exact distance com-
putation is not necessary. Rather, we only need a distance
comparison operation. Given two points p1, p2 in DB , we
must decide which of the two points is nearer to a query
point q. Note that,

d(p1, q) ≥ d(p2, q)√
||p1||2 − 2p1 · q + ||q||2 ≥

√
||p2||2 − 2p2 · q + ||q||2

||p1||2 − ||p2||2 + 2(p2 − p1) · q ≥ 0 (1)

where ||p|| represents the Euclidean norm of p, and · repre-
sents scalar product. ||p||2 can be represented by p · p. So,
the inequality is decomposed to a number of scalar prod-
uct computations. This suggests a scalar-product-preserving
encryption Espp, i.e., ∀p1, p2 ∈ DB , p1 · p2 = Espp(p1,K) ·
Espp(p2,K), for kNN computation. Unfortunately, a scalar-
product-preserving encryption is also distance-recoverable
and hence is not secure against level-2 attacks.

Theorem 2. Scalar-product-preserving encryption is
distance-recoverable.

Proof. Let p′1 (resp. p′2) be the encrypted point of p1

(resp. p2) in DB . We define the function f by

f(p′1, p
′
2) =

√
p′1 · p′1 − 2(p′1 · p′2) + p′2 · p′2 (2)

Since the encryption preserves scalar product, we have RHS
=
√
p1 · p1 − 2(p1 · p2) + p2 · p2 = d(p1, p2).

There are three types of scalar products: (type-1) scalar
product of a database point with itself (e.g., ||p||2); (type-
2) scalar product of a database point with the query point;
(type-3) scalar product of two different database points p1

and p2. We observe that Eq. 1 consists of type-1 and type-
2 products but not type-3 products, which are essential in
Eq. 2. If an encryption preserves only type-1 and type-2
products but not type-3 products, then we can compare the
distances d(p1, q) and d(p2, q) by Eq. 1, but the attacker
cannot recover distances using Eq. 2. Furthermore, for each
point p in the database, its corresponding type-1 scalar prod-
uct, ||p||2, is fixed. Hence, if player 1 pre-computes all type-
1 scalar products and make them available (e.g., by stor-
ing them in the database) for kNN query processing, then
the encryption needs not preserve type-1 products either.
In summary, we need an encryption that preserves type-2
but not type-1 or type-3 scalar products. With the pre-
computed type-1 scalar products, we can verify the inequal-
ity of Eq. 1 on the encrypted database to implement the
distance comparison operation. Since the encryption does
not preserve type-1 or type-3 products, it is not distance-
recoverable by design. The encryption is thus resilient to
level-2 attacks.

Definition 2. (Asymmetric scalar-product-preserving en-
cryption (ASPE))

Let E be an encryption function and E(p,K) be the en-
crypted value of a point p given a key K. E is an ASPE
if and only if E preserves type-2 scalar products but not the
other two types, i.e.,

(i) pi · q = E(pi,K) · E(q,K) for any pi in DB and any
query point q and

(ii) pi · pj 6= E(pi,K) · E(pj ,K) for any pi and pj in DB.

142

In Definition 2, we require that the encrypted value of a
query q not equal to that of any point pj in DB , even when
q = pj . This suggests that query points and database points
should be encrypted differently. That is the encryption func-
tions ET () and EQ() in the encryption scheme should be
different.

The scalar product of p and q (represented by column vec-
tors) can be represented as pT Iq, where pT is the transpose
of p and I is a d × d identity matrix. I can be decom-
posed to MM−1 for any invertible matrix M , i.e., pT q =
(pTM)(M−1q). If we set p′ = ET (p,K) = MT p (resp.
q′ = EQ(q,K) = M−1q), it is not possible for one to de-
termine the value of p (resp. q), from p′ (resp. q′) with-
out knowing M . Also, p′T q′ = pTMM−1q = pT q, i.e.,
type-2 scalar product is preserved. Suppose p′1 and p′2 are
the encrypted points of p1 and p2 in DB respectively, then
p′T1 p

′
2 = pT1 MMT p2, which is not equal to pT1 p2 in general.

Type-1 and type-3 scalar products are therefore not pre-
served. So, we can implement ASPE by using M and M−1

as the transformations for database points and queries, re-
spectively.

3.1 A Secure Scheme Against Level-2 Attacks
We have described a special encryption function ASPE

that preserves type-2 scalar products; together with the pre-
computed type-1 scalar products, we can perform distance
comparisons to find the neighbors of a query point. How-
ever, if the type-1 product ||p|| is revealed to the attacker,
he knows that p lies on a hypersphere that is centered at the
origin with a radius ||p||. Although the exact location of p
is unknown, the information revealed partially compromises
security. In this section, we show how we hide this infor-
mation by “encrypting” ||p|| and how the EDBMS computes
kNN on such encrypted data.

Our idea is to treat a pre-computed type-1 scalar product
||p||2 as the (d+1)-st dimension of the point p. More specif-
ically, given a (d-dimensional) database point p, we create
a (d+1)-dimensional point p̂. The first d dimensions of p̂
are those of p, and the (d+1)-st dimension of p̂ is set to
−0.5||p||2. (We multiply ||p||2 with this factor to facilitate
distance comparisons, as shown later by Theorem 3.) The
extended database points are then transformed (encrypted)
using ASPE.

Similarly, we need to extend a query q to a (d+1)-dimen-
sional point q̂ before applying ASPE. The simplest way is
to set the (d+1)-st dimension of q̂ to 1. The weakness of
this simple method is that the unencrypted query points q̂’s
all lie on a d-dimensional hyperplane with the unit vector in
the (d+1)-st dimension being the normal of the hyperplane.
Since APSE is a linear transformation, the encrypted query
points all lie on a d-dimensional hyperplane in the trans-
formed space as well. The attacker can determine the nor-
mal of that hyperplane in the transformed space. By con-
sidering the normal in the original space and the normal in
the transformed space, the attacker obtains some level-3-like
information, which is undesirable.

To avoid this problem, we introduce a random factor. For
each query q, we generate a random number r > 0 and scale
q̂ by r, i.e., q̂ = r(qT , 1)T . We will show in Theorem 3 that
this scaling does not affect the correctness of the distance
comparison operation.

We summarize in Scheme 1 the procedures of the encryp-

• Key: a (d+ 1)× (d+ 1) invertible matrix M .

• Tuple encryption function ET : Consider a database
point p. (1) Create a (d+1)-dimensional point p̂ =
(pT ,−0.5||p||2)T . (2) The encrypted point p′ = MT p̂.

• Query encryption function EQ: Consider a query point
q. (1) Generate a random number r > 0. Create a (d+1)-
dimensional point q̂ = r(qT , 1)T . (3) The encrypted query
point q′ = M−1q̂.

• Distance comparison operator Ae: Let p′1 and p′2 be
the encrypted points of p1 and p2 respectively. To determine
whether p1 is nearer to a query point q than p2 is, the system
checks whether (p′1 − p′2) · q′ > 0, where q′ is the encrypted
point of q.

• Decryption function D: Consider an encrypted point

p′. The original point p = πdM
T−1

p′ where πd is a d×(d+1)
matrix which projects on the first d dimensions and πd =
(Id, 0) where Id is the d× d identity matrix.

Scheme 1. ASPE

tion scheme using ASPE.2

Theorem 3. Suppose p′1, p′2 and q′ are the encrypted
points of the database points p1, p2 and the query point
q, respectively, Scheme 1 correctly determines whether p1

is closer to q than p2 is by evaluating (p′1 − p′2) · q′ > 0.

Proof. Note that

(p′1 − p′2) · q′ = (p′1 − p′2)T q′

= (MT p̂1 −MT p̂2)TM−1q̂

= (p̂1 − p̂2)T q̂.

The scalar product of these two (d+1)-dimensional points
can be represented as

(p1 − p2)T (rq) + (−0.5||p1||2 + 0.5||p2||2)r

= 0.5r(||p2||2 − |p1||2 + 2(p1 − p2)T q)

= 0.5r(d(p2, q)− d(p1, q))

So, the condition is equivalent to
0.5r(d(p2, q)− d(p1, q)) > 0⇔ d(p2, q) > d(p1, q).

3.2 Cost and security analysis
In this section, we analyze the cost of Scheme 1 and study

whether the scheme can resist level-2 and level-3 attacks.
First, the cost:

• Encryption and decryption: To encrypt and decrypt,
we perform two kinds of operations: (1) multiplication
of an O(d) × O(d) matrix and an O(d)-dimensional
point, which takes O(d2) time, and (2) computation
of the Euclidean norm of an O(d)-dimensional point,
which takes O(d) time. Computing ET () requires both

2There is a special case that if an encrypted point is the
origin of the transformed space, the corresponding un-
encrypted point is the origin of the original space. In order
to avoid this special inference, we can perform a translation
before applying Scheme 1. In that case, the origin is trans-
lated to a random point O′. This translation does not affect
the correctness of the scheme.

143

operations and hence it takes O(d2) time. Computing
EQ() or D() requires (1) only and that takes O(d2)
time.

• kNN computation using linear scan: Given an encrypt-
ed query q′, the EDBMS is required to compute only
one scalar product for each encrypted database point
p′i. This takes O(nd) time where n is the size of data-
base. Then, every distance comparison can be made
by two scalar products: p′1 · q′ and p′2 · q′. This takes
O(1). In a linear scan, we can use a heap to store
the kNN results. So, it takes at most O(lg k) distance
comparisons for a point. In summary, a kNN query
can be computed in O(nd lg(k)) time. Note that the
time complexity is the same as linear scan on unen-
crypted data except that we have (d+1)-dimensional
points instead of d-dimensional points. (We will dis-
cuss how more sophisticated kNN algorithms can be
derived in Section 6.)

Regrading attacks, we first show that Scheme 1 is not
secure against level-3 attacks.

Theorem 4. Assume that Scheme 1 is attacked by a level-
3 attacker whose knowledge H = 〈E(DB), P, I〉. If there
are d+1 points xi (1 ≤ i ≤ d+1) in P such that the vectors
(xi,−0.5||xi||2) are linearly independent, then the attacker
can recover DB from E(DB).

Proof. To recover DB from E(DB), one needs to re-
cover the encryption key, that is the (d + 1) × (d + 1) ma-
trix M . Since we know P = {x1, x2, ..., xd+1} and the cor-
responding encrypted values I(xi), we can set up the fol-
lowing equations to solve M : Mx̂i = I(xi) where x̂i =
(xi,−0.5||xi||2)T for i = 1 to d + 1. Let A, B be (d +
1) × (d + 1) matrices such that A = (x̂1, x̂2, ..., x̂d+1) and
B = (I(x1), I(x2), ..., I(xd+1)). We have MA = B. Note
that A is invertible since the x̂i’s are linearly independent.
We can compute M = BA−1. Hence, we are able to recover
any encrypted point in E(DB).

We remark that level-3 attacks are rare, since it is gener-
ally difficult for the attacker to obtain the necessary knowl-
edge. Although Scheme 1 is not secure against level-3 at-
tacks, we can show that it is resilient to common level-2
attacks. Under level-2 attacks, H = 〈E(DB), P 〉, any point
in E(DB) can be the encrypted point of a given point in
P . The attacker must acquire more knowledge in order to
attack. For example, he can link the known points in P to a
set of encrypted points and use the signature linking attack
(see Section 2). We will show in Theorem 5 that Scheme 1
does not reveal the distances between database points and
thus it prevents the distance-based signature linking attack.

Theorem 5. ET in Scheme 1 is not distance-recoverable.

Proof. A detailed proof is presented in Appendix C.
Here we give an idea of the proof. If an encryption E is
distance-recoverable (i.e., E is a DRE), then by our defini-
tion, there exists a computational procedure f such that for
all points p1 and p2 and any encryption key K1 such that
a1 = E(p1,K1) and a2 = E(p2,K1), we have f(a1, a2) =
d(p1, p2). That is, given the encrypted values a1 and a2, the
distance d(p1, p2) can be computed by f regardless of the
encryption key. In our proof, we show that it is possible to
construct two points x and y and an encryption key K2 such
that

1. E(x,K2) = a1 = E(p1,K1), and

2. E(y,K2) = a2 = E(p2,K1), but

3. d(x, y) 6= d(p1, p2).

Now, if E is a DRE, we have

f(a1, a2) = f(E(p1,K1), E(p2,K1)) = d(p1, p2) and

f(a1, a2) = f(E(x,K2), E(y,K2)) = d(x, y)

A contradiction since d(p1, p2) 6= d(x, y).

There are other attacking techniques that are applicable
at level-2. Here we consider three examples, namely, PCA,
Duplicate Analysis, and Brute-force attack.

Principle component analysis (PCA) has been proposed in
[15] to match the correlations in the set of known data points
and the correlations in the encrypted data. The matching
result enriches the knowledge of the attacker. In our scheme,
the values on each dimension of E(DB) is a linear combina-
tion of the values on all dimensions in the plain database. So,
ASPE does not preserve the correlations among the original
dimensions in the transformed space. Hence, PCA is not
applicable. Duplicate analysis [2] exploits the observation
that the domains of some attributes may be small, e.g., day
of the month. Observations on the duplicates in the en-
crypted database may help an attacker to find the domain
of an attribute. Duplicate analysis targets at value-based
encryption, i.e., each value in each dimension is encrypted
individually. Since Scheme 1 is a tuple-based encryption,
duplicate analysis on individual attribute is not applicable.

As another option, the attacker may use a brute-force ex-
haustive attack. We have shown in Theorem 4 that d + 1
points are enough to solve the keys in a level-3 attack. Given
a level-2 attack, without the knowledge of I, the attacker has
to try every possible I to recover the database. He can di-
vide P into two sets: a training set Pt and a testing set Pv
where |Pt| = d + 1 and Pv = P − Pt. He randomly picks
a set of d + 1 encrypted points Q and sets up a hypothe-
sis that Q contains the corresponding encrypted points of
the points in Pt. Then, the attacker can set up equations to
solve for M and use Pv to verify the hypothesis: if the recov-
ered database contains Pv, the hypothesis may be correct;
otherwise, the hypothesis cannot be true. The confidence
in the verification of hypothesis increases with the number
of points in P . However, this brute-force exhaustive at-
tack is exponentially expensive for the attacker. There are

nPd+1 = O(nd+1) possible candidates of Q. For each candi-
date, the attacker performs a ‘decryption’ of database using
the recovered key which takes O(n) decryptions. For exam-
ple, if n = 10K, d = 2 and an attacker is capable to perform
1M decryptions in a second, it takes more than 310 years
to try all hypotheses. Our scheme is therefore very resilient
against this level-2 brute-force attack.

4. DEALING WITH STRONGER ATTACKS
In this section we discuss how the ASPE-based encryption

scheme can be enhanced to resist level-3 attacks.

4.1 Random Asymmetric Splitting
A weakness of Scheme 1 is that given an enough number

of points in P , a level-3 attacker can set up enough number
of equations to solve for the unknowns in the transformation
matrix M . To make the scheme harder to crack, one method

144

is to introduce randomness into the scheme to make it very
difficult to set up the equations. To achieve that, given a
database point p, we split the value of p at each dimension
randomly. More specifically, we randomly generate two d-
dimensional points pa and pb (called two random shares)
such that for each dimension i, we have p[i] = pa[i] + pb[i].
For simplicity, we write p = pa + pb. Note that for any
query q, we have p · q = pa · q + pb · q, and thus p · q can
be computed by two scalar products. As a 2-D example, if
p = (3, 7), we can create pa = (10, 2) and pb = (−7, 5). We
call this method p-splitting.

We can use two ASPEs with different keys to encrypt
and to compute the two scalar products. In other words,
we generate two transformation matrices, M1 and M2, and
encrypt the two random shares of p as p′a = MT

1 pa, and p′b =
MT

2 pb. If q is also encrypted by the same ASPEs to obtain
two encrypted query points: q′a = M−1

1 q and q′b = M−1
2 q,

we can compute spa = p′a · q′a and spb = p′b · q′b separately
and recover p ·q by spa+spb. Hence, this splitting preserves
type-2 scalar products and allows the distance comparison
operation to be correctly evaluated. Note that in the above
description, unlike p, q is not split.

This splitting technique alone, however, does not improve
security. Consider a query point q and let q′a and q′b be the
encrypted points of q using the two ASPEs M1 and M2. We
know that q′a = M−1

1 M2q
′
b. Note that M−1

1 M2 is an un-
known d × d matrix. If an attacker observes d (encrypted)
queries, he can construct a square matrix Q′a whose columns
are formed by the observed q′a vectors. Likewise, the ob-
served q′b vectors can be used to obtain a square matrix Q′b.
We have Q′a = M−1

1 M2Q
′
b and thus M−1

1 M2 = Q′aQ
′−1
b .

Now, a level-3 attacker can set up the necessary equations
to solve for M1 and M2 in the following way. Since p′a =
MT

1 pa, we have (Q′aQ
′−1
b)T p′a

= (Q′aQ
′−1
b)TMT

1 pa

= (M−1
1 M2)TMT

1 pa

= MT
2 (MT

1)−1MT
1 pa = MT

2 pa

Hence, (Q′aQ
′−1
b)T p′a + p′b = MT

2 pa + MT
2 pb = MT

2 p. For
a level-3 attacker, if p is a database point in his knowledge
base P , the attacker knows the encrypted values p′a and p′b.
So, t = (Q′aQ

′−1
b)T p′a + p′b can be computed by the attacker.

He can establish the equation: MT
2 p = t and solve for M2

as shown in the discussion of Theorem 4. The attacker can
also solve for M1 similarly, and thus crack the encryption
scheme.

Instead of splitting p, we can also consider splitting q.
Similar to the previous procedure, we can split q into two
random shares qa and qb so that qa+qb = q. The two vectors
qa and qb are encrypted using two ASPEs with different keys
to get q′a = M−1

1 qa and q′b = M−1
2 qb. Also, p (not split) is

encrypted by the two ASPEs and we get p′a = MT
1 p and p′b =

MT
2 p. We call this q-splitting. Now, player 1 and player 2

can secretly agree on what to split in the encryption scheme;
they can either agree to applying splitting only on database
points, or only on query points. In order for the attacker
to correctly set up equations to solve for the transformation
matrices, the attacker has to know which configuration (i.e.,
p-splitting or q-splitting) players 1 and 2 have agreed on.
Or, he has to attack each configuration separately. That
doubles his cost.

We can further extend this splitting technique by applying

splitting on each dimension independently. Again, consider
a 2D example where p = (x1, x2) and q = (y1, y2). We may
create pa = (x1, x2a), pb = (x1, x2b), qa = (y1a, y2), and
qb = (y1b, y2) such that x2a + x2b = x2 and y1a + y1b = y1.
In this example, we split p on the 2nd dimension and q on
the 1st dimension. The scalar product of p · q is preserved:
p · q = pa · qa + pb · qb.

In general, for each dimension i, players 1 and 2 secretly
agree on which of p[i] and q[i] to split. They thus share a
configuration bit vector, which is a d-bit vector such that
each entry in the bit vector indicates whether p-splitting or
q-splitting is used for the corresponding dimension. Basi-
cally, the attacker has to try all configurations in order to
solve for the transformation matrices. Since there are 2d pos-
sible configurations, the enhanced scheme is 2d more costly
to attack compared with Scheme 1.

4.2 Adding Artificial Dimensions
We can improve the security of our encryption scheme by

making d larger. This can be achieved by adding artificial
dimensions to the data points. We extend a d-dimensional
data point p (q) to a d′ dimensional (d ≤ d′) point ṗ (q̇)
by padding artificial attributes such that the scalar product
over the added attribute values is 0.

More specifically, The values of dimensions d+1 to d′ of ṗ
and q̇ are generated randomly. We partition the range [d+
1, d′] into two groups: Gp, Gq. Gp (resp. Gq) represents the
indexes of the dimensions on which we perform p-splitting
(resp. q-splitting). Without loss of generality, let us assume
Gp = [d + 1, s] and Gq = [s + 1, d′] for some integer s. We
will discuss how to generate the values for dimensions d+1
to s. (The values of the other dimensions can be similarly
generated except that we swap the roles of ṗ and q̇.) First,
we create a set of s− d pre-generated random values: wd+1,
wd+2, ..., ws, where ws 6= 0 if s − d ≥ 2. These random
numbers become parts of the encryption key. We set ṗ[i] =
wi for each i in [d+1,s]. Although we use the same set of
values (wi’s) for every ṗ, each ṗ is split into two shares ṗa
and ṗb randomly. Hence, the generated ṗa’s and ṗb’s appear
as random points to the attacker.

For each q̇, the values of dimensions d+1 to s-1 are all gen-
erated randomly. (Unlike p, different q could use a different
set of random numbers.) Let tc be the number assigned to
q̇[c] (d + 1 ≤ c ≤ s − 1). The s-th dimension of q̇ is set to

ts =
−

∑s−1
i=d+1 witi

ws
. (If s = d + 2, we set ts to 0 if ws 6= 0

or any value if ws = 0.) It is easy to see that the scalar
product of ṗ and q̇ over the attributes d+1 to s is 0.

We repeat the above value assignment procedure to at-
tributes s+1 to d′ except that the roles of ṗ and q̇ are
switched. Since the scalar product over the artificial at-
tributes is by design equal to 0, we have ṗ · q̇ = p · q.

4.3 Analysis on the Refined Scheme
The introduction of the splitting technique and artificial

attributes significantly increases the cost of the attacker.
We can integrate the two new techniques into Scheme 1 by
first applying them before ASPE is applied. The enhanced
encryption scheme is shown in Scheme 2.

As we have mentioned before, the number of possible ways

of splitting is 2d
′
, which is exponentially large. In order

to make the system secure, d′ must be sufficiently large.
RSA keys are required to be at least 1024-bit. The general

145

• Key: two d′× d′ invertible matrices M1, M2; A bit string
S of d′ bits: Si denotes the i-th bit in S; d′− (d+1) random
numbers: wd+2, wd+3, ..., wd′ .

• Tuple encryption function ET : Consider a database
point p. (1) Create a d′-dimensional point p̂ where the first
d dimensions are copied from p. p̂[d+ 1] is set to −0.5||p||2.
For i = d + 2 to d′, if Si = 1, set p̂[i] to wi; otherwise, set
p̂[i] to a random number. For the last dimension with which
Si = 0, p̂[i] is given a value so that the scalar product over
the artificial attributes is 0 (see Section 4.2). (2) Create
two shares of p̂: p̂a and p̂b. For i = 1 to d′, if Si = 1, we
randomly split the value of p̂[i] into p̂a[i] and p̂b[i]. If Si = 0,
p̂a[i] and p̂b[i] are both set to p̂[i]. (3) The encrypted value
of p is the pair (p′a = MT

1 p̂a, p′b = MT
2 p̂b).

• Query encryption function EQ: Consider a query point
q. (1) Generate a random number r > 0. Create a d′-
dimensional point q̂ where the first d dimensions are given
by rq. The (d+1)-st dimension is set to r. For i = d+2 to d′,
if Si = 0, q̂[i] is set to wi; Otherwise, q̂[i] is set to a random
number. For the last dimension with which Si = 1, q̂[i] is
given a value so that the scalar product over the artificial
attributes is 0. (2) Create two shares of q̂: q̂a and q̂b. For
i = 1 to d′, if Si = 0, we randomly split the value of q̂[i]
into q̂a[i] and q̂b[i]. If Si = 1, q̂a[i] and q̂b[i] are both set to
q̂[i]. (3) The encrypted value of q is the pair (q′a = M−1

1 q̂a,
q′b = M−1

2 q̂b).

• Distance comparison operator Ae: Let (p′1a, p
′
1b) and

(p′2a, p
′
2b) be the encrypted values of p1 and p2 respectively.

To determine whether p1 is nearer to a query point q than p2,
the system checks whether (p′1a−p′2a)·q′a+(p′1b−p′2b)·q′b > 0
where (q′a, q

′
b) is the encrypted value of q.

• Decryption function D: Consider an encrypted value
(p′a, p

′
b). First, recover the two shares and extract the first

d dimensions in it: pa = πdM
T−1

1 p′a and pb = πdM
T−1

2 p′b
where πd is a d× (d+ 1) matrix which is the projection on
the first d dimensions. Then, p[i] is equal to pa[i] if Si = 0;
or pa[i] + pb[i] if Si = 1.

Scheme 2. Enhanced ASPE

consensus is that 1024-bit RSA keys are roughly equivalent
in strength to that of 80-bit symmetric keys. We can set d′ ≥
80 so that the search space is sufficiently large. In addition,
a large d′ implies larger transformation matrices, making
the encryption scheme even harder to crack. Therefore, it is
generally very difficult for the attacker to successfully attack
Scheme 2.

Theorem 6. Scheme 2 is resilient to a level-3 attack if
the attacker cannot derive the splitting configuration, i.e.,
the bit string S of the key in Scheme 2.

Proof. Let the knowledge of the attacker beH = 〈E(DB),
P, I〉. Without loss of generality, let us assume d′ = d + 1,
i.e., no artificial attributes are added. (Note that the addi-
tion of artificial attributes will only increase the security of
the scheme.) For any point pi ∈ P , by definition, a level-3
attacker knows the encrypted values (p′ia, p

′
ib). If the at-

tacker does not know the splitting configuration, he has to
model p̂ia and p̂ib as two random d′-dimensional vectors.

The equations for solving the transformation matrices are:
MT

1 p̂a = p′a and MT
2 p̂b = p′b, where M1 and M2 are two

d′ × d′ unknown matrices. There are 2d′|P | unknowns in
p̂ia, and p̂ib and 2d′2 unknowns in M1 and M2. Since there
are only 2d′|P | equations, which are less than the number of
unknowns, the attacker does not have sufficient information
to solve for the transformation matrices. Hence, Scheme 2
is resilient against this level-3 attack.

5. EMPIRICAL EVALUATION
In this section we present two sets of experiments we have

conducted to evaluate: (i) the time taken by a level-2 at-
tacker to break a DRE scheme; (ii) the overhead incurred in
the three encryption schemes (DPT, Scheme 1 and Scheme
2) in secure kNN computation. All programs are imple-
mented in C++. Experiments are performed on an Intel
Core 2 Duo 2.66GHz computer with 2 GB RAM running
Windows XP.

5.1 Feasibility of signature linking attack on
DRE

We have shown that it is theoretically feasible for a level-2
attacker to break a DRE scheme using the signature linking
attack. In this experiment, we study the effectiveness of the
attack in two aspects: (i) the smallest size (denoted by σ)
of P that is required for the attack to be successful, and (ii)
the execution time of a successful attack.

First, we outline an algorithm to implement the signature
linking attack. Given a set P = {x1, x2, ..., x|P |} ⊂ DB in
a level-2 attacker’s knowledge H, we want to find a unique
ordered set Q ⊂ E(DB) such that sig(Q) = sig(P). (If more
than one such Q with the matching signature are found, a
signature collision occurs and the attacker cannot break the
DRE scheme.) To find such a Q, we perform incremental
binding in a depth-first manner. We start by picking up a
y1 ∈ E(DB) and bind it to x1. We denote this binding by
Q = {y1, ∗}. (The asterisk denotes that x’s on the right
are unbound yet.) We extend this binding by picking an-
other y2 ∈ E(DB) and bind it to x2, giving the binding
Q = {y1, y2, ∗}. This binding extension induces the con-
straint: d(y1, y2) = d(x1, x2). We check this constraint and
if it is satisfied, we continue with the binding extension;
otherwise, we backtrack and pick another y′2 to be bound to
x2. In general, extending a binding Q = {y1, . . . , yi, ∗} to
the binding Q = {y1, . . . , yi, yi+1, ∗} induces i constraints:
d(yj , yi+1) = d(xj , xi+1) (for 1 ≤ j ≤ i). If any constraint is
not satisfied, we rollback the extension and try another y′i+1.
When a complete binding Q = {y1, y2, . . . , y|P |} is found, Q
gives a solution. Then, we continue the process by rolling
backing the binding in search of another solution Q.

To determine the size of P that is required to break a DRE
scheme, we randomly generate a P of size 3. We execute
the above binding procedure until one of the following cases
happen: (1) if 2 solutions (i.e., 2 Q’s) are found, we stop
the binding process, extend the size of P by adding one
more point to it and repeat the binding process; (2) if only
1 solution (a unique Q) is found, we stop. The size of P
is taken as σ. Also, the time taken to find the solution Q
given the final P set is taken as the time to attack the DRE
scheme. In our experiment, the above exercise is repeated
10 times. We report the average value of the σ’s obtained
in the 10 trials.

We perform experiments on both synthetic and real datasets.

146

n time sigma
10 10000 5.7969 4.4 13.28771 2.535282
20 20000 24.8811 4.7 14.28771 4.636978
30 30000 57.9205 5 14.87267 5.856002
40 40000 102.145 5 15.28771 6.674475
50 50000 181.365 5.4 15.60964 7.502752
60 60000 258.048 5.6 15.87267 8.011496
70 70000 377.978 5.9 16.09507 8.562158
80 80000 497.688 6 16.28771 8.959098 2.141272
90 90000 627.651 6.3 16.45764 9.293819
100 100000 791.316 6.3 16.60964 9.62811

10

120
1
2
3
4
5
6
7

0 20 40 60 80 100

n (in thousands)

σ

Figure 2: Minimum size of P required for a success-
ful attack (σ) vs. n.

n time sigma
10 10000 5.7969 4.4 13.28771 2.535282
20 20000 24.8811 4.7 14.28771 4.636978
30 30000 57.9205 5 14.87267 5.856002
40 40000 102.145 5 15.28771 6.674475
50 50000 181.365 5.4 15.60964 7.502752
60 60000 258.048 5.6 15.87267 8.011496
70 70000 377.978 5.9 16.09507 8.562158
80 80000 497.688 6 16.28771 8.959098 2.141272
90 90000 627.651 6.3 16.45764 9.293819

100 100000 791.316 6.3 16.60964 9.62811

2

4

6

8

10

12

13 14 15 16 17

lg (n)

lg
 (T

 (i
n

s)
)

0
100
200
300
400
500
600

0 20000 40000 60000 8000

n

Ex
ec

ut
io

n
tim

e
(in

 s
)

0
1
2
3
4
5
6
7

0 20 40 60 80 100

n (in thousands)

Figure 3: Average execution time T of a successful
attack vs. n.

A synthetic database consists of n uniformly distributed ran-
dom points in a d-dimensional space (for various values of
n and d). We also use the dataset ‘Shuttle’ from the UCI
repository as the real dataset [4]. The Shuttle dataset con-
tains 58K points and 9 dimensions.

Figures 2 and 3 show the average value of σ and the av-
erage attack time in log scale under various values of n for
the synthetic databases.

Figure 3 shows a straight line with a slope of 2.14. This
suggests that the execution time required by signature link-
ing attack is of the order of n2.14, which is polynomial time.
The cost is thus affordable. For example, with n = 100K,
an attack takes about 800 seconds. Moreover, σ varies from
4.4 when n = 10K to 6.3 when n = 100K. The knowledge
required to attack is generally very small. For the Shuttle
dataset, σ = 4.6 and the average attack time is 314 seconds.
These numbers are similar to those obtained from the syn-
thetic dataset. The results show that DRE is easily break-
able. This strengthens the motivation in our exploration of
non-distance-recoverable encryption schemes.

5.2 Performance of encryption schemes
In this section, we evaluate the overhead incurred by the

encryption schemes. We compare their cost to that of exe-
cuting kNN on plain data. We implemented the three en-
cryption schemes: DPT, Scheme 1 and Scheme 2. We eval-
uate the performance of the schemes under 4 tasks: (i) key
generation; (ii) database encryption; (iii) kNN computation
and (iv) query encryption and result decryption. Again,
synthetic datasets and the Shuttle dataset are used in the
evaluation.

With synthetic datasets, we conduct two experiments. In
the first experiment, we vary n from 10K to 100K with a
fixed d = 4. In the second experiment, we vary d from 2
to 100 with a fixed n = 50K. For Scheme 2, we need to
pick the number of dimensions d′ of the transformed space

n 20K 40K 60K 80K 100K

DPT 0.0045 0.0092 0.0139 0.0186 0.0231
Scheme 1 0.0064 0.0131 0.0208 0.0266 0.0331
Scheme 2 1.4150 2.8298 4.2477 5.7106 7.5997

Table 1: Average database encryption time (in s)
vs. n under various schemes (d = 4).

DPT Scheme 1 Scheme 2
Execution time (in s) 0.0341 0.0456 4.113

Table 2: Encryption time (in s) of the Shuttle
dataset under various schemes.

E(DB). To make the scheme secure, we set d′ = 80. For
those synthetic datasets with d > 80, we pick d′ = d + 1.
(We will further study the effect of d′ later.)

5.2.1 Key generation
For Scheme 1, the key is an O(d) × O(d) matrix. For

Scheme 2, the key consists of an O(d′) × O(d′) matrix, an
O(d′) vector and O(d′) random numbers. In our experi-
ments, it take less than 1ms to generate the keys for d rang-
ing from 2 to 100 under either scheme.

5.2.2 Database Encryption
For each value of n and d, 100 synthetic databases are

generated and the average amount of time taken by each
scheme to encrypt the database is recorded. Table 1 shows
the encryption time for various n with d = 4, while Figure
4 shows the encryption time for various d with n = 50K.
We also show the encryption time of the Shuttle dataset in
Table 2.

Tables 1 and 2 show that the encryption cost scales well
against n under all three schemes. In particular, DPT and
Scheme 1 encrypt the databases in sub-seconds. Scheme 2
requires more time because the transformation matrices are
much bigger (d′ = 80) than those of Scheme 1 (d = 4). Since
we pick d′ = 80 unless d > 80, the database encryption time
for Scheme 2 stays flat when d ≤ 80 (see Figure 4). Consid-
ering that database encryption generally has a less stringent
response time requirement compared with query processing,
the database encryption costs are relatively small.

We note that Scheme 2’s database encryption cost is af-
fected by the choice of d′. We thus repeat the experiment
on Scheme 2 varying d′ in the range [56,100]. In this exper-

Data Gaussian
Dimension 4
Size DB(in 10 20 30 40 50 60 70 80
DPT 0.00203 0.00453 0.00657 0.00922 0.01156 0.01391 0.01625 0.0186
Scheme 2 0.00312 0.0064 0.01 0.01312 0.01954 0.02078 0.02358 0.02656
Scheme 3 0.70938 1.415 2.12203 2.82984 3.53718 4.24765 4.95843 5.71062

Data Gaussian
Size DB(in 50
Dimension 2 3 4 5 6 7 8 9
Scheme 2 3.77171 3.84828 3.53718 3.56296 3.5675 3.56234 3.55952 3.57391
Scheme 1 0.01297 0.01422 0.01656 0.01954 0.02359 0.02875 0.03391 0.03999
DPT 0.00734 0.00984 0.0114 0.01329 0.01593 0.02062 0.02469 0.02891

0
1
2
3
4
5
6

0 20 40 60 80 100

d

En
cr

yp
tio

n
tim

e
(in

 s
) Scheme 2

Scheme 1
DPT

Figure 4: Average database encryption time (in s)
vs. d under various schemes (n = 50K).

147

transform n=50K d=4
d' time d' time

56 1.79063 56 48.594
60 2.02844 60 48.234
64 2.30703 64 53.657
68 2.59515 68 56.282
72 2.90625 72 57.546
76 3.21641 76 58.796
80 3.54781 80 64.47
84 3.87984 84 63.671
88 4.23687 88 66.124
92 4.6414 92 70.939
96 5.02407 96 74.36

100 5.53953 100 76.299

0
1
2
3
4
5
6

50 60 70 80 90 100

d'

En
cr

yp
tio

n
tim

e
(in

 s
)

0

20

40

60

80

100

50 60 70 80 90 100

d'

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(in

 m
s)

Figure 5: Average database encryption time (in s)
vs. d′ under Scheme 2 (n = 50K; d = 4).

Unencrypted Scheme 1 Scheme 2
/ DPT

Execution time 11.25 10.52 74.48
(in ms)

Table 3: Average query execution time (Shuttle
dataset; k = 10).

iment, n = 50K and d = 4. Pervious research has suggested
that a search space of 256 (such as 56-bit DES) is generally
considered not secure against brute-force search with today’s
computing power. Also, a commonly accepted standard is
80 bits as a low-end requirement of encryption key length.
So, the range [56,100] for d′ is a reasonable one for our study.
Figure 5 shows the results. From the figure, we see that en-
cryption time is reasonably small within the range studied.
For example, when d = 100, it takes about 6.0s to encrypt
a 50K database.

5.2.3 kNN computation
In this experiment, we measure the execution time of kNN

queries. We implement kNN search using a simple linear
scan algorithm which uses a heap structure to maintain the
k closest points to the query that the algorithm has seen so
far during the execution. (We will discuss how faster kNN al-
gorithms can be implemented using our encryption schemes
in Section 6.) For each encryption scheme, we measure its
average execution time over 1,000 random kNN queries. We
compare their performance against the case in which kNN
is executed on plain unencrypted data (called ‘unencrypted
scheme’ in the performance figures). Note that DPT pre-
serves the distances between data points. Hence, the query
execution time under DPT is the same as that under the
unencrypted scheme. Figures 6 and 7 show the results for
synthetic datasets. In the former, we vary n with d = 4
while in the latter, we vary d with n = 50K. In both cases
k is 10 and d′ = 80 if d ≤ 80. Table 3 shows the results for
the Shuttle dataset.

Figure 6 shows that the cost of kNN computation scales
linearly to the number of points in the database under all
three encryption schemes. The reason why Scheme 2 is
slower than the others is that the default number of dimen-
sion of the transformed space (d′) is 80 for Scheme 2, while it
is only 4 for the other schemes. For this reason, we see from
Figure 7 that the query execution time of Scheme 2 stays
flat for 2 ≤ d′ ≤ 80. Also, we see that Scheme 1 is actually
faster than the unencrypted scheme in processing queries. It
is because we have pre-computed ||p|| for each point p in the

Data Gaussian
Dimension 4 k 10
Size DB(in 10 20 30 40 50 60 70 80
Scheme 2 14.594 29.079 43.219 57.017 73.625 86.97 97.202 108.529
Scheme 1 0.874 2.765 4.297 5.765 7.234 8.671 10.109 11.562
Unencrypte 0.828 2.64 4.218 5.672 7.031 8.563 10 11.5

Data Gaussian
Size DB(in 50 k 10
Dimension 2 3 4 5 6 7 8 9
Scheme 2 81.219 76.876 73.625 70.716 73.298 74.889 79.627 78.281
Scheme 1 6.218 6.687 7.234 7.671 8.156 8.657 8.922 9.328
Unencrypte 3.468 6.891 7.031 7.39 7.969 10.828 11.094 11.64

Data Gaussian
Size DB(in 50 Dimension 4
k 1 5 10 20 50 100 200 500
Scheme 3
Scheme 2 7.203 7.188 7.234 7.188 7.203 7.297 7.454 7.782
Unencrypte 7.063 7.125 7.031 7.078 7.125 7.094 7.219 7.516

0
20
40
60
80

100
120
140
160

0 20 40 60 80 100

n (in thousands)

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(in

 m
s)

Scheme 2
Scheme 1
Unencrypted / DPT

0
20
40
60
80

100
120

0 20 40 60 80 100

d

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(in

 m
s)

Scheme 2
Scheme 1
Unencrypted / DPT

Figure 6: Average query execution time vs. n (Syn-
thetic data; k = 10; d = 4).

Data Gaussian
Dimension 4 k 10
Size DB(in 10 20 30 40 50 60 70 80
Scheme 2 14.594 29.079 43.219 57.017 73.625 86.97 97.202 108.529
Scheme 1 0.874 2.765 4.297 5.765 7.234 8.671 10.109 11.562
Unencrypte 0.828 2.64 4.218 5.672 7.031 8.563 10 11.5

Data Gaussian
Size DB(in 50 k 10
Dimension 2 3 4 5 6 7 8 9
Scheme 2 81.219 76.876 73.625 70.716 73.298 74.889 79.627 78.281
Scheme 1 6.218 6.687 7.234 7.671 8.156 8.657 8.922 9.328
Unencrypte 3.468 6.891 7.031 7.39 7.969 10.828 11.094 11.64

Data Gaussian
Size DB(in 50 Dimension 4
k 1 5 10 20 50 100 200 500
Scheme 3
Scheme 2 7.203 7.188 7.234 7.188 7.203 7.297 7.454 7.782
Unencrypte 7.063 7.125 7.031 7.078 7.125 7.094 7.219 7.516

0
20
40
60
80

100
120
140
160

0 20 40 60 80 100

n (in thousands)

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(in

 m
s)

Scheme 2
Scheme 1
Unencrypted / DPT

0
20
40
60
80

100
120

0 20 40 60 80 100

d
Q

ue
ry

 p
ro

ce
ss

in
g

tim
e

(in
 m

s)

Scheme 2
Scheme 1
Unencrypted / DPT

Figure 7: Average query execution time vs. d (Syn-
thetic data; k = 10; n = 50K).

database under Scheme 1. For each query q, Scheme 1 per-
forms d+1 multiplications and d additions to compute p′ · q′
for each database point p. Under the unencrypted scheme,
we compute d(p, q)2 for each database point p and a query
point q. This takes d multiplications, d subtractions and d
- 1 additions. So, when d is large, Scheme 1 is noticeably
faster.

Next, we vary d′ in the range [56,100] and measure query
execution time under Scheme 2. In this experiment, we set
n = 50K, d = 4 and k = 10. Figure 8 shows the result.
We see that the execution time scales linearly with d′. We
can thus use a reasonably large d′ to provide good security
protection without significantly degrading query processing
time.

5.2.4 Query encryption and result decryption

transform n=50K d=4
d' time d' time

56 1.79063 56 48.594
60 2.02844 60 48.234
64 2.30703 64 53.657
68 2.59515 68 56.282
72 2.90625 72 57.546
76 3.21641 76 58.796
80 3.54781 80 64.47
84 3.87984 84 63.671
88 4.23687 88 66.124
92 4.6414 92 70.939
96 5.02407 96 74.36

100 5.53953 100 76.299

0
1
2
3
4
5
6

50 60 70 80 90 100

d'

En
cr

yp
tio

n
tim

e
(in

 s
)

0

20

40

60

80

100

50 60 70 80 90 100

d'

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(in

 m
s)

Figure 8: Average query execution time of Scheme 2
vs. d′ (Synthetic data; n = 50K; d = 4; k = 10)

148

For each query, player 2 needs to perform one encryption
and k decryptions. In our experiments, it takes at most 1ms.
The cost is negligible.

5.3 Summary
We have shown that signature linking attack only requires

a small number of known points in P to break a DRE and the
attack cost is not expensive. So, a level-2 attacker can eas-
ily compromise the security of a DRE scheme. This justifies
the need of non-distance-recoverable encryption schemes for
secure kNN computation. We evaluated the performance of
the two proposed schemes. Scheme 1 has a very low cost and
it resists level-2 attacks. We remark that targeting level-2
attacks in security protection is practical and Scheme 1 is
suitable for this requirement. Relatively speaking, Scheme
2 has higher overheads due to the introduction of additional
dimensions. We remark that the additional dimensions are a
necessary evil if the primary goal of the scheme is to provide
the best protection against attackers. Thus, there is a trade-
off between Scheme 2, which is resilient to level-3 attacks,
and Scheme 1, which allows more efficient query processing.

6. FAST KNN SEARCH
So far, we have discussed kNN computation on encrypted

data using a simple linear scan algorithm. Although we have
shown that query processing is generally very fast in our ex-
perimental results, it is interesting to see how more advanced
kNN algorithms can be employed under the SCONEDB mo-
del. Such techniques would be very useful particularly in ap-
plications where there is a massive amount of data and/or
queries. In this section, we briefly discuss how the kNN prob-
lem in the original data space can be easily transformed into
a top-k problem in the encrypted transformed space. This
observation allows the service provider to apply any exist-
ing efficient top-k algorithm on the encrypted data to answer
kNN queries very efficiently.

In our encryption schemes, the EDBMS uses the distance
comparison operator Ae to find the nearest point to a query
point. Specifically, given two encrypted points p′1 = ET (p1,
K), p′2 = ET (p2,K) and an encrypted query q′ = EQ(q,K),
Ae compares p′1 ·q′ and p′2 ·q′ (see Scheme 1). If p′1 ·q′ > p′2 ·q′
then p1 is closer to q than p2 is. We can generalize this and
observe that the k encrypted points pi’s that give the largest
type-2 scalar products p′i · q′ are the k nearest neighbors of
q. Hence, given q, the kNN query can be treated as a top-k
query with the linear ranking function F : F (p′) = p′ · q′ for
all p′ ∈ E(DB).

The problem of top-k queries has been studied extensively
in the literature [23, 22, 24]. For a linear ranking function,
an efficient solution is to build a ranking cube that stores the
top-k results [23]. While data cube suffers from the curse
of dimensionality, a novel technique of ‘ranking fragments’
is introduced to handle high-dimensional rank queries [23].
We remark that the choice of a “top-k” algorithm is orthog-
onal to our study (as long as the algorithm can handle lin-
ear ranking functions3). The service provider is thus free
to choose an efficient implementation for fast kNN search.
This decoupling of the search algorithm and our distance
comparison operator allows much flexibility in the design of
the SCONEDB model.

3Indeed, most existing top-k algorithms such as [23, 22] sat-
isfy this requirement.

7. RELATED WORK
The outsourced database (ODB) model was introduced

in [12]. A data owner (DO) outsources its database host-
ing and query answering to a service provider (SP), who
is not trusted. Security in ODB is studied, similarly to
our SCONEDB model. The goal is to protect the data us-
ing encryption and allow query processing on the encrypted
database. For example, an order-preserving encryption sch-
eme (OPES) [2] applies an encryption function E to an or-
dinal domain, such that E(x) < E(y) for every pair of val-
ues for which x < y. OPES facilitates evaluation of range
queries. In addition, an additive and multiplicative homo-
morphic encryption function E (i.e. E(x)+E(y) = E(x+y)
and E(x)E(y) = E(xy)) is proposed in [11] to support aggre-
gate queries on encrypted data. However, as shown in [19],
the homomorphic scheme is not secure even at the lowest
security level (level-1 in our model). In summary, in previ-
ous ODB models only simple numerical domains and SQL
operations on them have been considered, while we target
more sophisticated operations (i.e., kNN search). In addi-
tion, every study in ODB assumes one single type of attack,
while SCONEDB considers different levels of attacks and it
is being adapted to each of them.

Apart from encryption techniques with special properties,
there are other data protection methods that facilitate se-
cure computation of queries. “Coarse” (a.k.a. bucket-based)
indexes are introduced to facilitate execution of SQL state-
ments in the ODB model [10]. The tuples are encrypted by
common encryption schemes like RSA. The domain of each
database attribute is divided into partitions. Each parti-
tion is assigned an ID by a hash function. DO sends to
SP the encrypted tuples together with their partition ID to
serve as the “coarse” index. The query is transformed to
retrieve the partitions that contain the targeted tuples. SP
returns a superset of the query result. The users, who own
the key, decrypt the result and perform a post-processing
to filter false positives. For advanced queries, the number
of false positives can be huge, causing a heavy load at the
users. For example, distances between database points to
the query point are required in k-NN computation and can-
not be easily captured by the partition IDs. Therefore, the
direct application of this technique may cause the SP to re-
turn the entire database and let the user to compute the
query result on his own. In addition, the bucket-based ap-
proach is not suitable when users have limited processing
power, e.g. they use mobile devices.

Another approach for protected query processing makes
use of special hardware: the secure co-processor [18, 1]. This
is a secure computation unit; no parties can observe the per-
formed computations and the data stored in it. The use of
the unit is straightforward; we install the encryption and de-
cryption key and deploy the application logic directly at the
co-processor. On the other hand, the device is much slower
than usual processors. It is not suitable for sophisticated
applications that demand heavy computations. In addition,
the co-processor must be maintained by the users. For ex-
ample, if the device is down, the user has to re-deploy the
co-processor. This conflicts to the paradigm of cloud com-
puting in which users purchase the services without main-
taining the resources themselves.

Various data anonymization models, like k-anonymity, have
been proposed for privacy preserving data publishing [21, 14,
16]. The basic idea is to make the quasi-identifiers (sets of

149

attributes that can be linked with external data to uniquely
identify an individual) of each tuple in the database indistin-
guishable from at least k−1 other tuples (k is a user defined
parameter). k-anonymity can be achieved by generalizing
the quasi-identifiers (e.g., replacing exact attribute values
by domain ranges), by suppressing tuples, or by perturb-
ing them [3, 6]. Apart from the information loss incurred
by this process (queries are no longer applied on the orig-
inal data), the model itself suffers from certain drawbacks.
For example, as pointed out in [16], the indistinguishable
groups of anonymized quasi-identifiers should also contain
a diverse set of sensitive values, while information leakage
may also occur with the help of limited background knowl-
edge by the attacker. In addition, the generalized ranges
of values may give an adversary an accurate estimation on
the original database or valuable statistics (e.g. the number
of customers who have more than 10M in their accounts).
Note that the goals of data privacy in publication and data
security in ODB are not the same; data privacy strives to
avoid the linkage of published data to specific individuals,
while data security in ODB aims at the protection of the
stored data against unauthorized database users.

In this paper, we focus on kNN search as a case-study
operation for the SCONEDB model. Distance-preserving
transformation (DPT) is proposed in [20] as an encryption
method for such queries. DPT transforms a given point x
to Nx + t where N is an orthogonal d × d matrix and t is
a d-dimensional vector. The main feature of DPT is that
distance between points is preserved in the transformation,
i.e., d(x, y) = d(E(x), E(y)) where d is the Euclidean dis-
tance, E is the encryption/transformation function. Since
distance is preserved, kNN queries can be computed cor-
rectly. However, the authors in [15] show that DPT is not
secure w.r.t. level-2 and level-3 attacks. For a level-3 attack,
we can observe a number of points {x1, x2, ..., nm} in DB and
their corresponding encrypted values {y1, y2, ..., ym}. We
can then set up a number of yi = Nxi + t equations, form-
ing a system of linear equations where there are d2 unknowns
in N and d unknowns in t. So, if m ≥ d + 1, the system
is generally solvable. For a level-2 attack, an attacker ob-
serves a number of points P in DB . Since DPT preserves
the correlations between dimensions, [15] uses PCA to iden-
tify the principle components in the set of points P and in
the transformed database. By matching the principle com-
ponents, the attacker can obtain an accurate estimation of
N and t. Note that the attacks proposed in [15] do not over-
lap with our proposed attacks described in Section 2. [15]
discusses how to attack DPT specifically and the proposed
attacks are not applicable to general DRE, which is vulnera-
ble to attacks shown in Section 2. Though the safety level of
DPT is not high, we remark that DPT is useful in situations
where only level-1 attacks are concerned.

kNN computation at an untrusted platform is also con-
sidered in location-based service (LBS) systems [8, 17, 9,
13]. In LBS models, a server holds a set of tuples namely
points of interest (POI). Users submits queries (range query
or kNN queries) to the server and retrieves the desired POIs.
The main security goal is to protect the location of the query
issuers, while some models also consider the privacy of POI
[8, 17]. The main model used is k-anonymity; the goal is to
convert the location of the query into a spatial range, such
that at least k−1 other locations are included in that range
and the service provider cannot distinguish the user in a set

of k candidates. Although such a model can be used for our
problem, it has certain drawbacks. First, the anonymized
database reveals approximately the original values which is
not desired in our model. Second, in certain models [9], the
database is assumed to be owned by the server and hence
the server can observe the original database. Third, in such
systems (as in bucket-based indexes), the server usually re-
turns a superset of the query result, which then has to be
post-processed by the user. This requires additional effort
at the user’s side which may be considerable for light-weight
clients. An LBS model that performs encryption for the
purpose of kNN search is proposed in [13]. The main idea
is to use a Hilbert curve to ‘encrypt’ database points and
the queries. The Hilbert value of the points are given to the
server. kNN is then computed on the Hilbert transformed
space to give an approximate result. Except from returning
an approximate result, this method has a similar problem to
DPT; the Hilbert curve can be considered as an advanced
type of linear transformation which can be easily attacked
as we discussed in Section 2.

8. DISCUSSION AND CONCLUSION
In this paper, we introduced the SCONEDB model, which

captures the behavior of the users and the attacker on en-
crypted databases. Many existing techniques in database
service outsourcing can be incorporated into SCONEDB,
e.g., OPES for range queries; homomorphic encryptions for
aggregate queries. All these schemes and our proposed sch-
emes use different encryption strategies. However, they can
be integrated on a single encrypted database. For exam-
ple, in a bank database, we can encrypt account balances
by OPES, encrypt branch locations by Scheme 1, and en-
crypt names and addresses by a strong encryption like RSA.
Range and kNN queries can be performed on balances and
locations independently. The possibility of integrating dif-
ferent schemes in the SCONEDB model to support a wide
range of applications makes EDBMS a practical solution to
service outsourcing. In the integrated solution, we need to
ensure that the different schemes are aligned on the same
security level.

Emerging computing paradigms such as database service
outsourcing and cloud computing call for the study of se-
cure computation on encrypted data. In this work, we have
made the following contributions: (1) We have formulated a
general secure database model SCONEDB which is defined
independent of the query type. The model incorporates the
attacker capability as a distinct component and uses it to
measure the security level of the encryption scheme. It also
defines the notion of an encrypted database which can sup-
port secure computation such as secure kNN search on en-
crypted data. (2) We have defined distance-recoverable en-
cryption which supports kNN computation and show that
it is not secure. (3) We have developed a new asymmetric
encryption function ASPE that preserves a special type of
scalar product and use it to construct two secure encryption
schemes that resist attackers of different levels and yet sup-
port secure and accurate kNN query computation. (4) We
have carried out a performance evaluation of the proposed
schemes. We remark that the SCONEDB model consoli-
dates the requirements and goals in a single model which can
integrate the previous work on database service outsourcing.

A future research issue is the systematic study on different
operators that can be supported on an encrypted database

150

w.r.t different security levels and goals. In the SCONEDB
model, the capability of the attacker is specified by its back-
ground knowledge, which is intuitive. It is possible to extend
the attack model to include other aspects, e.g., the amount
of available computational power. Also, the security goal
in SCONEDB is to prevent the attacker from breaking into
the system and acquiring unauthorized data. There could be
other security goals, like for example, the protection of the
location privacy of query issuers [8, 17]. How to include se-
curity goal as another component into the SCONEDB model
is a subject for future work.

9. REFERENCES
[1] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li.

Sovereign joins. In ICDE, 2006.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In SIGMOD,
2002.

[3] R. Agrawal and R. Srikant. Privacy-preserving data
mining. In SIGMOD, 2000.

[4] A. Asuncion and D. Newman. UCI Machine Learning
Repository, 2007.

[5] H. Delfs and H. Knebl. Introduction to Cryptography:
Principles and Applications. Springer, 2002.

[6] A. Evfimievski, R. Srikant, R. Agrawal, and
J. Gehrke. Privacy preserving mining of association
rules. In KDD, 2002.

[7] Gartner. Assessing the Security Risks of Cloud
Computing (ID Number: G00157782), 2008.

[8] B. Gedik and L. Liu. Location privacy in mobile
systems: A personalized anonymization model. In
ICDCS, 2005.

[9] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi,
and K. L. Tan. Private queries in location based
services: Anonymizers are not necessary. In SIGMOD,
2008.

[10] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra.
Executing sql over encrypted data in the
database-service-provider model. In SIGMOD, 2002.

[11] H. Hacigumus, B. Iyer, and S. Mehrotra. Efficient
execution of aggregation queries over encrypted
relational databases. In DASFAA, 2004.

[12] H. Hacigumus, S. Mehrotra, and B. Iyer. Providing
database as a service. In ICDE, 2002.

[13] A. Khoshgozaran and C. Shahabi. Blind evaluation of
nearest neighbor queries using space transformation to
preserve location privacy. In SSTD, 2007.

[14] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. In ICDE,
2007.

[15] K. Liu, C. Giannella, and H. Kargupta. An attacker’s
view of distance preserving maps for privacy
preserving data mining. In PKDD, 2006.

[16] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. In ICDE, 2006.

[17] M. F. Mokbel, C. Y. Chow, and W. G. Aref. The new
casper: Query processing for location services without
compromising privacy. In VLDB, 2006.

[18] E. Mykletun and G. Tsudik. Incorporating a secure
coprocessor in the database-as-a-service model. In
IWIA, 2005.

[19] E. Mykletun and G. Tsudik. Aggregation queries in
the database-as-a-service model. In ESORICS, 2006.

[20] S. R. M. Oliveira and O. R. Zaiane. Privacy
preserving clustering by data transformation. In
SBBD, Manaus, Amazonas, Brazil, 2003.

[21] L. Sweeney. k-anonymity: A model for protecting
privacy. In IJUFKS, 2002.

[22] D. Xin, J. Han, and K. C.-C. Chang. Progressive and
selective merge: computing top-k with ad-hoc ranking
functions. In SIGMOD, 2007.

[23] D. Xin, J. Han, H. Cheng, and X. Li. Answering topk
queries with multidimensional selections: The ranking
cube approach. In VLDB, 2006.

[24] L. Zou and L. Chen. Dominant graph: An efficient
indexing structure to answer top-k queries. In ICDE,
2008.

APPENDIX
A. PROOF OF UNIQUENESS OF

INTERSECTION OF HYPERSPHERES

Lemma 1. Given d+1 hyperspheres in d-dimensional sp-
ace that have common intersections. Let gi and µi be the
center and radius of the i-th hypersphere. If the d vectors
gj − g1 for j = 2 to d+ 1 are linearly independent, the com-
mon intersection of the d+1 hyperspheres is exactly a point.

Proof. Let x be the intersection of the hyperspheres.
We want to show that there is a unique solution to x. Since
x lies on the d + 1 hyperspheres, we have d + 1 equations:
||gi − x|| = µi ⇔ ||x||2 − 2gi · x = µ2

i − ||gi||2 for i = 1
to d + 1. We can eliminate the term ||x||2 by subtracting
the equations by the first equation. We have d equations:
(g1 − gj) · x = 1

2
(µ2
j − µ2

1 + ||g1||2 − ||gj ||2) for j = 2 to
d+1. Note that RHS of each equation is a constant and the
d equations form a system of linear equations. If the vectors
gj − g1 are linearly independent, there is a unique solution
to the system of linear equations.

B. ANALYSIS OF SIGNATURE LINKING
ATTACK IN ATTACKING DRE

Lemma 2. Assume a DRE E is used to encrypt DB to get
E(DB). With a level-2 attack in which H = 〈E(DB), P 〉,
∀ε > 0, if |P | ≥ d + 1 + lnε

lnφ
, Pr(signature collision) < ε

where φ denotes the probability of a point being present in
DB.

Proof. The probability of signature collision is the same
as the probability of having a set ofQ in E(DB) that matches
the signature generated by an arbitrary set of points P
(so P is independent to E(DB)). Let Pi ⊆ P (Qi ⊆ Q
resp.) denotes the set of first i points in P (Q resp.). Let
ei be the event that the signature generated by Pi col-
lides with the signature generated a randomly picked Qi.
We have Pr(ei) = Pr(ei−1)Pr(ei|ei−1). In the base case
i = 1, sig(P1) = ∅. Any Q1 gives the same signature. So,
Pr(e1) = 1. Next, we evaluate the value of Pr(ei|ei−1).
Let xi be the i-th point in P and yi be the i-th point in
Q. With one more point included in Pi, sig(Pi) has i − 1
more values (the pairwise distance from xi to each of the

151

first i−1 points in P)) than sig(Pi−1). Pr(ei|ei−1) depends
on the probability of Qi having the same i− 1 values in the
signature. These i − 1 values depends on the value of yi.
When i ≥ d + 2, there are other d + 1 points in Qi and
the distances from these points to yi is given in sig(P). We
can establish d+ 1 equations of hyperspheres and yi lies on
the intersection of the hyperspheres. Since there are d + 1
hyperspheres, there is only 1 possible solution of yi (or no
solution if the intersection falls outside the possible values
domain). Each point in the domain has a probability of φ
to be present in DB . So, Pr(ei|ei−1) ≤ φ for i ≥ d + 2.
When i < d + 2, we can also establish i − 1 equations of
hyperspheres but the solution to yi is not unique in general.
Assume the domain on each dimension is J and J is discrete.
We can pick d + 1 − i dimensions in yi and try all possible
values for these dimensions (|J |d+1−i cases). In each case,
there are i− 1 variables remained in the equations and the
dimension of the hyperspheres reduces to i− 1. Given i− 1
equations in (i−1)-dimensional domain, it gives 2 possible
values of yi (because the equations are quadratic). In sum-
mary, there are at most γ = 2|J |d−i possible solutions to
yi if i < d + 2. This gives Pr(ei|ei−1) ≤ 1 − (1 − φ)γ for
i < d+2. Hence, we can compute an upper bound for Pr(ei)
for any i by Πi

j=2Pr(ej |ej−1). When |P | ≥ d + 1 + lnε
lnφ

,

Pr(e|P |) ≤ φ|P |−d−1Πd+1
j=21− (1− φ)γ ≤ φ

lnε
lnφ = ε

Theorem 7. Assume a DRE E is used to encrypt DB to
get E(DB). With a level-2 attack in which H = 〈E(DB), P 〉,
∀ε > 0, if |P | ≥ d+ 1 + lnε

lnφ
, Pr(DBA = DB) > 1− ε where

φ denotes the probability of a point being present in DB.

Proof. Followed from Lemma 2, the attacker can iden-
tify a unique I with probability 1 − ε. So, he obtains the
necessary knowledge for a level-3 attack. Next, he can ex-
ecute the attack as shown in the proof of Theorem 1 and
recover DBA = DB .

In order to achieve a small signature collision probability
ε, the number of points required in P in the attack should
be at least d + 1 + lnε

lnφ
. As the points in the database are

usually sparse, especially when the dimension is high, we
expect a low probability of having a particular point present
in the database. So |lnφ| is large. Hence lnε

lnφ
is small and

the number of points required to attack is practically small.
So, if the attacker can find the distances between database
points, the scheme cannot be secure at level-2 attacks.

C. PROOF OF THEOREM 5
Proof. If an encryption E is distance-recoverable, i.e.,

E is DRE, there exists a computational procedure f such
that for all database points p1, p2 and any encryption key K
such that f(E(p1,K), E(p2,K)) = d(p1, p2). To prove ET
in Scheme 1 is not distance-recoverable, we show that such f
does not exist. Given any two different database points p1,
p2 and any encryption key M (a (d+ 1)× (d+ 1) invertible
matrix), we will show later that we can construct two points
x and y and an encryption key M2 such that

(i) a1 = ET (p1,M1) = ET (x,M2); and

(ii) a2 = ET (p2,M1) = ET (y,M2); and

(iii) d(p1, p2) 6= d(x, y).

If E is DRE, we have

f(a1, a2) = f(E(p1,K1), E(p2,K1)) = d(p1, p2) and

f(a1, a2) = f(E(x,K2), E(y,K2)) = d(x, y)

It leads to a contradiction since d(p1, p2) 6= d(x, y). ET in
Scheme 1 is not distance-recoverable. In the following, we
describe how to construct x, y and M2 that satisfies the
above three conditions for any p1, p2, M1 that p1 6= p2.

Given two d-dimensional points p1, p2 and a (d + 1) ×
(d + 1) invertible matrix M . The encrypted value of p1

(p2 resp.) is a1 = ET (p1,M1) (a2 = ET (p2,M1) resp.).
We construct x = mp1 and y = mp2 where |m| 6= 0, 1.
So d(x, y) 6= d(p1, p2). Condition (iii) is satisfied. Next,

we construct M2 =

(
1
m
Id 0

0 1
m2

)
M1 where Id is a d × d

identity matrix. Note that M2 must be invertible because
det(M2) = 1

md+2 6= 0. We can use ET to encrypt x and y

using M2. ET (x,M2) = MT
2 (x,−0.5||x||2)T

= MT
1

(
1
m
Id 0

0 1
m2

)
(mp1,−0.5m2||p1||2)T

= MT
1 (p1,−0.5||p1||2)

= ET (p1,M1) = a1

Similarly, we have ET (y,M2) = a2. Condition (i) and (ii)
are satisfied. All the three conditions are satisfied.

152

