Differential Privacy-1

Most slides from Aaron Roth (UPenn) and Yuxiang Wang (CMU)
Limitation of previous privacy notions

- Requires identifying which attributes are quasi-identifier or sensitive, not always possible
- Difficult to pin down due to background knowledge
- Syntactic in nature (property of anonymized dataset)
Outline

• Intuition behind differential privacy (Dynthia Dwork 2006)
 – What exactly does DP protects

• What and how
 – ϵ-Differential Privacy and (ϵ, δ)-Differential Privacy
 – Global sensitivity
 – Laplace Mechanism
A running example: Justin Bieber

• Suppose you are handed a survey:

1) Do you like listening to Justin Bieber?
2) How many Justin Bieber albums do you own?
3) What is your gender?
4) What is your age?

• If your music taste is sensitive information, what will make you feel safe? Anonymous?
A simplified model

\[D_i = \{d_i \mid i \in I\} \]

\[Q(D_i) = R \]

Q is the privatized query run on the data set and R is the result released to the public.
What do we want?

• I would feel safe submitting a survey if…
 – I knew that my answer had no impact on the released results
 \[Q(D_{I-me}) = Q(D_I) \]
 – I knew that any attacker looking at the published result R couldn’t learn (with any high probability) any new information about myself
 \[Prob(secret(me)|R) = Prob(secret(me)) \]
Why can’t we have it?

- If individual answers had no impact on the released results, then the results would have no utility
 - By induction
 \[Q(D_{I-m}) = Q(D_I) \rightarrow Q(D_{me}) = Q(\emptyset) \]

- If R shows there is a strong trend in my population (everyone is age 10-15 and likes Justin Bieber), with high probability, the trend is true for me too (even if I did not submit a survey)

\[\text{Prob}(\text{secret}(me)|\text{secret}(\text{Population})) > \text{Prob}(\text{secret}(me)) \]
Why can’t we have it?

• Even worse, if an attacker knows a function about me that’s dependent on general facts about the population
 – I am twice the average age
 – I am in the minority gender

• Then releasing just those general facts gives the attacker specific information about me. (Even if I don’t submit a survey)
Disappointing fact

- We can’t promise my data won’t affect the results

- We can’t promise that an attacker won’t be able to learn new information about me. Giving proper background information.

- What can we do?
One more try

• I’d feel safe submitting a survey…

• If I knew the chance that the privatized released result would be R was nearly the same, whether or not I submitted my information
Differential Privacy

• The chance that the noisy released result will be C is nearly the same, whether or not you submit your info.

• Definition: ϵ-Differential Privacy

\[
\frac{\Pr(M(D) = C)}{\Pr(M(D') = C)} < e^{\epsilon}
\]

for any $|D - D'| \leq 1$ and any $C \in Range(M)$

• The harm to you is “almost” the same regardless of your participation.
Differential Privacy

• The chance that the noisy released result will be R is nearly the same, whether or not you submit your information

$$\frac{\Pr(R|\text{true world}=D_I)}{\Pr(R|\text{true world}=D_{I-i})} \leq e^\epsilon$$ for all I, i, R and small $\epsilon > 0$

• Given R, how can anyone guess which possible world it came from?
Popular over-claims

• DP protects individual against ALL harms regardless of prior knowledge. Fun paper: “Is Terry Gross protected?”
 – Harm from the result itself cannot be eliminated.

• DP makes it impossible to guess whether one participated in a database with large probability.
 – Only true under assumption that there is no group structure.
 – Participants is giving information only about him/herself.
A short example: Smoking Mary

• Mary is a smoker. She is harmed by the outcome of a study that shows “smoking causes cancer”:
 – Her insurance premium rises.

• Her insurance premium will rises regardless whether she participate in the study or not. (no way to avoid as this finding is the whole point of the study)

• There are benefits too:
 – Mary decided to quit smoking.

• Differential privacy: limit harms to the teachings, not participation
 – The outcome of any analysis is essentially equally likely, independent of whether any individual joins, or refrains from joining, the dataset.
 – Automatically immune to linkage attacks
Summary of Differential Privacy idea

• DP can
 – Deconstructs harm and limit the harm to only from the results
 – Ensures the released results gives minimal evidence whether any individual contributed to the dataset
 – Individual only provide info about themselves, DP protects Personal Identifiable Information to the strictest possible level
A Basic Model

- Let X represent an abstract data universe and D be a multi-set of elements from X.
 - i.e. D can contain multiple copies of an element $x \in X$.

- Convenient to represent D as a histogram:

 \[
 D \in \mathbb{N}^{|X|}
 \]
 \[
 D[i] = |\{x \in D : x = x_i\}|
 \]
An example

• For a database of heights

\[D = \{5'2, 6'1, 5'8, 5'8, 6'0\} \subset [4 - 8] \]
\[D = (\ldots, 1,0,0,0,0,0,0,2,0,0,0,0,1,1,0,\ldots) \in \mathbb{R}^{48} \]
A Basic Model

- The size of a database n.
 - As a set: $n = |D|$
 - As a histogram: $n = \|D\|_1 = \sum_{i=1}^{X} |D[i]|$

Definition: ℓ_1 (Manhattan) Distance.

For $\hat{v} \in \mathbb{R}^d$, $\|\hat{v}\|_1 = \sum_{i=1}^{d} |\hat{v}_i|$.
A Basic Model

• The *distance* between two databases:
 – As a set: $|D \Delta D'|$
 – As a histogram: $\|D - D'|_1$
A Basic Model

- For a database of heights

\[D = \{5'2, 6'1, 5'8, 5'8, 6'0\} \subset [4 - 8] \]
\[D = (..., 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, ...) \in \mathbb{R}^{48} \]

\[D' = (..., 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, ...) \in \mathbb{R}^{48} \]

\[\|D\|_1 = |1| + |2| + |1| + |1| = 5 \]
\[\|D'\|_1 = |2| + |1| + |1| + |1| + |1| = 6 \]
\[\|D - D'\|_1 = |-1| + |-1| + |1| = 3 \]
Definition: A randomized algorithm with domain \(\mathbb{N}^{|X|} \) and range \(R \)

\[
M : \mathbb{N}^{|X|} \rightarrow R
\]

is \((\varepsilon, \delta)\)-differentially private if:

1) For all pairs of databases \(D, D' \in \mathbb{N}^{|X|} \) such that \(\|D - D'\|_1 \leq 1 \) and,

2) For all events \(S \subseteq R \):

\[
\Pr[M(D) \in S] \leq e^\varepsilon \Pr[M(D') \in S] + \delta.
\]
Resilience to Post Processing

Proposition: Let $M: \mathbb{N}^{|X|} \rightarrow R$ be (ε, δ)-differentially private and let $f: R \rightarrow R'$ be an arbitrary function. Then:

$$f \circ M: \mathbb{N}^{|X|} \rightarrow R'$$

is (ε, δ')-differentially private.

Thinking about the output of M can’t make it less private.
Answering Numeric Queries

Definition: The ℓ_1-sensitivity of a query $Q: \mathbb{N}^{|X|} \rightarrow \mathbb{R}^k$ is:

$$GS(Q) = \max_{D,D': \|D-D'\|_1 \leq 1} ||Q(D) - Q(D')||_1$$

i.e. how much can 1 person affect the value of the query?

“How many people in this room have brown eyes”: Sensitivity 1

“How many have brown eyes, how many have blue eyes, how many have green eyes, and how many have red eyes”: Sensitivity 1

“How many have brown eyes and how many are taller than 6”: Sensitivity 2
Answering Numeric Queries

The Laplace Distribution:

$Lap(b)$ is the probability distribution with p.d.f.:

$$p(x \mid b) = \frac{1}{2b} \exp \left(-\frac{|x|}{b} \right)$$

i.e. a symmetric exponential distribution

$Y \sim Lap(b)$, \quad $E[|Y|] = b$

$\Pr[|Y| \geq t \cdot b] = e^{-t}$
Answering Numeric Queries: The Laplace Mechanism

\[
\text{Laplace}(D, Q: \mathbb{N}^{|X|} \rightarrow \mathbb{R}^k, \varepsilon):
\]
1. Let \(\Delta = GS(Q) \).
2. For \(i = 1 \) to \(k \): Let \(Y_i \sim \text{Lap}(\frac{\Delta}{\varepsilon}) \).
3. Output \(Q(D) + (Y_1, \ldots, Y_k) \)

Independently perturb each coordinate of the output with Laplace noise scaled to the sensitivity of the function.

Idea: This should be enough noise to hide the contribution of any single individual, no matter what the database was.
Answering Numeric Queries: The Laplace Mechanism

Laplace\((D, Q : \mathbb{N}^{|X|} \rightarrow \mathbb{R}^k, \epsilon)\):

1. Let \(\Delta = GS(Q)\).
2. For \(i = 1\) to \(k\): Let \(Y_i \sim \text{Lap}(\frac{\Delta}{\epsilon})\).
3. Output \(Q(D) + (Y_1, \ldots, Y_k)\)
Example: Counting Queries

• How many people in the database are female?
 – Sensitivity = 1
 – Sufficient to add noise \(\sim \text{Lap}(1/\epsilon) \)