User Selection with Interference Alignment for MU-MIMO Networks

Gill

May 17, 2011
Motivation

Motivated by user selection in MIMO BC, where each BS opportunistically selects users in the corresponding cell
To obtain better performance in terms of sum-rate, some communication links are switched off instead of keeping all-on state

Key aspects of the study

Investigate sum-rate of multi-user network as a function of number of active links
Consider different user selection schemes
System model

- $M \times M$ MIMO network with N links (users)
- Single data stream at each link
- Rayleigh fading channel with no pathloss
- Equal transmit power at each Tx (P)
- Use of reciprocal network concept to do BF

Figure: The MU-MIMO Network
The filtered signal at the lth Rx:

$$\hat{x}_l = g_l^H y_l = g_l^H H_{ll} q_l x_l + \sum_{j=1}^{L} \sum_{j \neq l} g_l^H H_{lj} q_j x_j + g_l^H n_l,$$

where

- y_l: the received signal at the lth Rx,
- x_l: the transmit signal of the lth Tx,
- g_l: the interference suppression vector at lth Rx,
- H_{lj}: the complex channel gain from jth Tx to lth Rx,
- q_j: the precoding vector at jth Tx,
- n_l: the complex Gaussian noise at the lth Rx with power $P_N = N_0 B$.

Gill (University of Delaware)
The signal to interference plus noise ratio (SINR) of \(l \)th Rx:

\[
SINR_l = \frac{Pg_l^H H_{ll} q_l^H H_{ll}^H g_l}{g_l^H Q_l g_l + P_N g_l^H g_l},
\]

(2)

where the interference covariance matrix \(Q_l = \sum_{j=1}^{L} PH_{lj} q_j q_j^H H_{lj}^H \) (sum of signal power).

Objective: maximize sum-rate

\[
R_{\text{sum-rate}} = \sum_{l=1}^{L} \log(1 + SINR_l).
\]

(3)
Problem description

• If we use a BF algorithm to improve the performance in terms of interference cancelation, the maximum number of links given M is $2M - 1$.

 M antennas can cancel $M - 1$ interferers at most $\Rightarrow 2L(M - 1)$ DoF $\geq L(L - 1)$ interferers.

• Simulation result show that iterative ML-IA and MMSE can achieve the maximum number of links given M if one data stream is transmitted at each link.

• $2M - 1$ links instead of all links will be selected to transmit simultaneously if we want to cancel all interferers.
Problem description (cont.)

- User selection: L links are selected among N links for simultaneous transmission through a certain criterion.

- Beamforming: non-iterative algorithms
 - MMSE
 - MS-IA: ZF+MS for $M - 1$ links, and then minimizing interference (or ZF, if possible) for the remaining $L - M + 1$ links.

- What is the value of the optimal L to maximize the sum-rate when non-iterative algorithm is used?
Single-antenna system

- $M = 1$, $q_l = 1$ and $g_l = 1 \Rightarrow$ no BF.

- When $L = 1$, the achievable rate averaged over Rayleigh fading channels is

$$R = \mathbb{E} \left[\log \left(1 + \frac{P|h_{11}|^2}{P_N} \right) \right],$$

where $\mathbb{E}[x]$ denotes the expectation of x. $H_{ij} = h_{ij}$ is a scalar in this case. R is linearly increasing with P in dB. When $P \rightarrow \infty$, $R_1 \rightarrow \infty$.

- When $L \geq 2$, the sum-rate averaged over Rayleigh fading channels is

$$R_{\text{sum-rate}} = \mathbb{E} \left[\sum_{i=1}^{L} \log_2 \left(1 + \frac{P|h_{ii}|^2}{P|\sum_{j=1, j\neq i}^{L} h_{ij}|^2 + P_N} \right) \right],$$

$$= \mathbb{E} \left[\sum_{i=1}^{L} \log_2 \left(1 + \frac{|h_{ii}|^2}{|\sum_{j=1, j\neq i}^{L} h_{ij}|^2 + \frac{P_N}{P}} \right) \right].$$

$R_{\text{sum-rate}}$ is monotonically increasing with P.

Gill (University of Delaware)
The average sum rate of an L-user SISO system with Rayleigh fading channels is

$$R_{\text{sum-rate}} = L \ln 2 \int_0^{\infty} r^{2r} e^{\frac{(1-2r)P_N}{P}} \frac{[(L-1)\left(\frac{P}{P_N} + 2r - 1\right) + 1]}{\frac{P}{P_N}[(L-1)(2r - 1) + 1]^2} dr,$$

where P and P_N are the transmit power and the noise power at each link, respectively.

$$\lim_{P \to \infty} R_{\text{sum-rate}} = L \frac{\ln 1 - \ln(L-1)}{1 - (L-1)},$$

$$= L \cdot \frac{1}{L-1} \cdot \frac{\log_2 \frac{1}{L-1}}{1 - \frac{1}{L-1}} \cdot \left(\frac{\ln S - \ln I}{S-I}\right).$$
When $P \to \infty$, the sum-rate is

$$\lim_{P \to \infty} R_{\text{sum-rate}} = \frac{L \ln(L-1)}{(L-2) \ln 2}. \quad (8)$$

Especially,

$$\lim_{P \to \infty, L \to 1} R = \infty, \quad (9)$$

and

$$\lim_{P \to \infty, L \to 2} R_{\text{sum-rate}} = \frac{2}{\ln 2}. \quad (10)$$
Sum-rate of SISO network \((P \to \infty)\)

- \(N = 1, R = \infty\).
- When \(N \geq 2\),
 - Power of interference sum:
 \[
 P_I = P|\sum_{j=1,j\neq i}^{L} h_{ij}|^2. \tag{11}
 \]
 - \(N \uparrow, R_{\text{sum-rate}} \uparrow\).
 - Sum of interference power:
 \[
 P_I = P \sum_{j=1,j\neq i}^{L} |h_{ij}|^2. \tag{12}
 \]
 - \(N \uparrow, R_{\text{sum-rate}} \downarrow\).
Sum-rate of SISO network (cont.)

SISO system with sum of interference power

SISO system with power of interference sum

Gill (University of Delaware)
User selection schemes

- Random selection: select L links from N links randomly.
 - RS-MMSE
 - RS-MS-IA

- Large gain selection: select L links with the largest channel gains among N links.
 - LG-MMSE
 - LG-MS-IA 1: ZF+MS at $L-1$ links with larger channel gains, and then ZF at the remaining link.
 - LG-MS-IA 2: ZF+MS at $L-1$ links with smaller channel gains, and then ZF at the remaining link.
4 × 4 MIMO network with 100 links in total ($M = 4, N = 100$)

Select 4 links to transmit simultaneously ($L = 4$)

One stream per transmitter

Uniform power allocation

Independent Rayleigh fading

Performance measure → averaged sum-rate over 1000 trials of multipath fading
Compared with RS scheme, LG selection improves the performance using both BF algorithms.

The performance of LG-MS-IA 1 are almost the same as that of LG-MS-IA 2.
$\Delta R = R_{\text{max}} - R_{\text{min}}$, where R is the individual rate of each link.

Variance of ΔR achieved by RS-MMSE and LG-MMSE is the same.

Variance of ΔR achieved by LG-MS-IA 2 is smaller than that of LG-MS-IA 1 with the same sum-rate.
Future work

- Investigate the optimal number of active links in MIMO networks.
- Consider better (fair or/and distributive) user selection schemes.
- Extend to multiple streams at each link.
- Application to the multi-antenna cellular network with single antenna at each user.