
An information services algorithm to heuristically summarize IP addresses for a

distributed, hierarchical directory service

Marcos Portnoi, Martin Swany

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716, U.S.A.

{portnoi, swany}@cis.udel.edu

Jason Zurawski

Internet2

Washington, DC 20036, U.S.A.

zurawski@internet2.edu

Abstract— A distributed, hierarchical information service for

computer networks might use several service instances, located

in different layers. A distributed directory service, for

example, might be comprised of upper level listings, and local

directories. The upper level listings contain a compact version

of the local directories. Clients desiring to access the

information contained in local directories might first access the

high-level listings, in order to locate the appropriate local

instance. One of the keys for the competent operation of such

service is the ability of properly summarizing the information

which will be maintained in the upper level directories. We

analyze the case of the Lookup Service in the Information

Services plane of perfSONAR performance monitoring

distributed architecture, which implements IP address

summarization in its functions. We propose an empirical

method, or heuristic, to perform the summarizations, based on

the PATRICIA tree. We further apply the heuristic on a

simulated distributed test bed and examine the results.

Keywords- IP, summarization, patricia tree, information

services, distributed system.

I. INTRODUCTION

Certain distributed computer network information
services work by dispersing resources and data among
several instances of the service, in a hierarchical manner.
One such service can be a distributed, hierarchical directory
service, where “lower-level” instances maintain local data
and publish the data to “higher-level” instances. The higher-
level instances are responsible for keeping a compact listing
of all the data administrated by lower level instances, and
must be able to indicate which particular instance maintains
specific data. The higher-level instances, therefore, hold a
summary of all the lower level counterparts.

For this mechanism to operate efficiently, the lower level
instances must summarize their data and publish this
summarization to the upper level layer. The kind of data
being summarized might accommodate different techniques
for this procedure, some of them based on heuristics. One
such example is the Lookup Service in the Information
Services plane used in perfSONAR architecture [1], which
resembles a distributed directory with two levels. Its lower
level instances summarize the controlled data and forward
the compacted version to the upper layer. Among the
published information, there are data descriptors (metadata)
and IPv4 addresses.

This paper describes the work done in producing a
heuristic to generate IPv4 addresses summarizations, and
utilizes the realm of perfSONAR‟s Information Services
plane as a motivator. The document is divided as follows.
Section II delineates the perfSONAR architecture, the
Information Services plane, and stimulates the need for IP
summarization. Section III demonstrates the heuristic‟s
mechanism, studying the construction of possible summaries
and the decision steps. In Section IV, we employ the
heuristic on several test sets and analyze the results. Section
V brings considerations about other summarization
techniques and route aggregation algorithms. Finally, in
Section VI, we conclude the work and present our final
thoughts.

II. INFORMATION SERVICES IN PERFSONAR

Oriented to network performance monitoring,
perfSONAR [1] is a distributed, services oriented
architecture, formulated by a worldwide consortium of
organizations, and it is comprised by a set of protocols and
interoperable software packages [8][14]. The purpose of
perfSONAR is to collect, store, and publish network-
monitoring data, such as latency, topology, utilization, as
also aid in diagnosing performance issues and anomalies.

The architecture defines several service types, namely
Measurement Point (MP) service; Measurement Archive
(MA) service; Transformation Service (TS); Lookup Service
(LS); Topology Service (ToS); Authentication Service (AS);
and Resource Protector Service (RPS) [1]. In particular, the
LS serves as a registering hub [16] for all participating
services and the capabilities they furnish. We will
concentrate in this service for the purposes of motivating this
paper.

The protocols, based on SOAP XML messages [7],
regulate how the services communicate. The software
packages act as middleware between the performance
measurement tools and applications for diagnostic and
visualization; they implement the service types and
guarantee that they work across multiple or multi-domain
networks.

A. The Lookup Service

1) General Operation
The general operation of the LS in perfSONAR context is

depicted in Figure 1.

Essentially, the LS acts as a distributed directory.
Currently, there are two types of instances (and levels) of
LSs in commission in the network: the global Lookup
Service, or gLS; and the home Lookup Service, or hLS. The
instances are typically individual network devices, or
computers, running the LS service in either gLS or hLS
mode. The gLSs compose the upper LS level, and the hLSs
form the lower level.

Figure 1. General operation of LS instances in perfSONAR‟s Information

Services plane.

New hosts that wish to provide some monitoring service
to the perfSONAR domain(s) (such as an MA or MP service)
must register themselves to some hLS. These new services
find a hLS by either knowing its URI (Uniform Resource
Identifier) beforehand, or by performing a discovery query to
the upper level gLS, which will in turn reply with existing
hLS instances. Obviously, the new service must know where
to find at least one gLS; there is a list of gLSs, the gLS root
hints file, hosted by well-known servers that provide the
URIs for available gLSs.

Each hLS keeps account of the registrations of the
individual services that registered with this particular hLS.
Each hLS must periodically register itself with at least one
upper level gLS, so that the gLSs can update their
information about current hLS instances. Finally, the gLSs
synchronize with other gLSs. This layered, distributed
mechanism attains scalability advantages [2]. We examine
this concept next.

2) LS: Keeping and Publishing Information (and

Motivating Summarization)
When a new service registers with a hLS, it conveys

information such as the type of service or metric, and,
possibly, interfaces where measurements are being
conducted. Therefore, among other data, the hLS will have a
list of IP addresses belonging to the devices that registered
with it, and IP addresses of the network devices that are
being monitored and which data can be available.

A client computer that aspires to obtain measurement
data will query the LS in order to know where this
information is available, either in an MA for an already
stored measurement, or an MP to conduct a new
measurement. If it does not yet know which MA or MP is
responsible for the data, the client can contact the gLS,
which will respond with a list of hLSs that know about the
MA/MPs in question. The client then contacts the hLSs and
obtains the URI of the MA or MP service.

For this distributed scheme to operate accordingly, the
gLSs must periodically synchronize with each other, and
each hLS must publish the data it controls to the upper level
gLS. To understand how this information is exchanged, let
us consider some cases.

If one gLS contained the complete information published
by an hLS, the very purpose of the hLS would be
diminished. Instances of gLSs would contain all necessary
data, and clients could query in one step. This solution can
be said to be, however, less scalable [2], and requires that
individual gLSs possess enough computing resources to
handle all registering data from all domains monitored by the
deployed architecture. A single directory, which is clearly
feasible only for restricted domain sizes.

If the gLS were excluded from the picture, clients would
not have an “abridged” directory to query. Thus, they would
need to contact every hLS in order to find the desired
information. An obvious problem in this case is how to let a
client know the list of available hLSs. One of the solutions
is utilizing upper level summary directories: the gLSs.
Other solution would be to have the list of hLSs (such list
might become very large) hosted in a web server; the list
solves the problem of finding the hLSs, but each of them
would still have to be queried until the desired information
was found.

In the distributed solution, the gLS therefore contains a
summary of the data handled by individual hLSs. Moreover,
the local hLS instances must contain enough information to
facilitate the discovery of what service data is controlled by
them, but should manage the volume of that information that
is published into the network; simply publishing the
complete stored registrations is inefficient. To achieve this,
in the distributed Information Services plane in perfSONAR,
the hLS performs a summary of its data and then publishes it
to the upper level gLS.

The complete distributed directory algorithm can be
realized as having the goal of maintaining sub-directories
scattered among domains, and having an abridged directory
in the upper level. The task of summarizing the complete
base of information handled by all sub-directories is then
distributed among instances (the hLSs), and finally the
summarized pieces are brought together at the higher level
(the gLSs). This method permits higher scalability [2] of the
directory service. In particular, we focus on the
summarization applied to the hosts‟ IPv4 addresses.

3) Summarizing IP Addresses
IPv4 addresses (henceforth simply “IP” for compactness)

are constituted by a sequence of binary numbers. In this
vision, we could employ summarizations dealing with IP
addresses “beginning” with a specific sequence of bits. This

is essentially the CIDR (Classless InterDomain Routing)
mechanism (used in IP routing) notation of IP addresses.

In CIDR notation, a portion of the beginning (from left to
right) of the IP address is used as an identifier of the network
(the network prefix), and the rest of the IP address is used to
identify a particular host in that network (the suffix). A
number, written after the IP address and separated by a slash,
distinguishes the prefix portion: this number is the number
of bits, from the total IP address, reserved for the prefix.

Consequently, we are able to exploit CIDR notation and
summarize individual IP addresses into subnets that
comprise the appropriate range of addresses. We will see
that advertising an IP subnet as summary will not necessarily
mean having possession of the entire set of hosts in that
subnet, but claiming to have some hosts in that subnet.

III. HEURISTIC FOR SUMMARIZING IP ADDRESSES

IP summarization is commonly employed in route
advertisement [5], in order to lower the resources needed by
routers. In this case, the summarization is generally closely
managed and configured by the network manager; in a
dynamic information services environment, new services
(and their IP addresses) may register frequently. The
summarization process must then be automatic. We now
analyze aspects that must be taken into account in this
procedure, and how we addressed them by means of a
heuristic.

A. Summarization Goals: the Problem of Balancing

Compression and Miss Rate

In the Information Services plane described earlier, IP
summarization must fulfill two goals: it must decrease the
original set of IP addresses by a reasonable amount (i.e., it
must achieve a good compression rate), but it must not
summarize so much as to result in claiming many more IP
addresses than the original set. If an hLS advertises a
summarizing IP of /20, it is claiming to have in its directory
all 212 hosts in the advertised /20 subnet, even if the hLS
holds actually only a small subset of this range. Therefore,
claiming a large subnet for a comparable small number of
hosts within that subnet poses an extra burden in the search
process, because a client will believe that the advertiser hLS
does possess all hosts in that subnet (even if it is not the
case), and must query the hLS to confirm.

If the desired IP address is not in the hLS, we have a
penalty in the form of wasted time and resources to perform
the query. This is analogous to a cache miss, and the
penalty, to a miss penalty. If the hLS advertises a smaller
subnet, the precision of the advertisement improves, thus
lowering the probability of a miss (the miss rate) and
lowering the miss penalty. Of course, publishing the
complete, not-summarized list of IP addresses incurs in miss
penalty zero (a miss rate or probability of zero), but this does
not achieve the goal of saving resources in publishing
information to the gLSs.

Conversely, advertising the most general summarization,
which would be the subnet 0.0.0.0/0 that comprises all
possible IP addresses in the IPv4 address space, achieves a
maximum compression, but also incurs in the maximum

miss rate. In the IP summarization schema, overlapping
ranges between hLS can be common; using the least general,
tighter subnet possible in the summarization reduces the
chances of overlaps, but it also reduces compression.

00001010.00001010.00000000.00000001

10.10.0.1/32

00001010.00001010.00000000.000000xx

10.10.0.0/30

00000000.00000000.00000000.00000000

0.0.0.0/0

00001010.00001010.00000000.00000001

10.10.0.1/32
00001010.00001010.00000000.00000010

10.10.0.2/32

(a) (b)

00001010.00001010.00000000.000000xx

10.10.0.0/30

00000000.00000000.00000000.00000000

0.0.0.0/0

00001010.00001010.00000000.00000001

10.10.0.1/32

00001010.00001010.00000000.00000011

10.10.0.3/32

(c)

00001010.00001010.00000000.0000001x

10.10.0.2/31

00001010.00001010.00000000.00000010

10.10.0.2/32

00001010.00001010.00000000.000000xx

10.10.0.0/30

00000000.00000000.00000000.00000000

0.0.0.0/0

00001010.00001010.00000000.00000001

10.10.0.1/32

00001010.00001010.00000000.00000011

10.10.0.3/32

(d)

00001010.00001010.00000000.0000001x

10.10.0.2/31

00001010.00001010.00000000.00000010

10.10.0.2/32

00001010.00001010.00000000.00000xxx

10.10.0.0/29

00001010.00001010.00000000.00000100

10.10.0.4/32

00000000.00000000.00000000.00000000

0.0.0.0/0

Figure 2. Systematic construction of a PATRICIA tree.

It is clear that IP summarization must then balance
compression and miss rate. It cannot pursue maximum
compression, as in a lossless file compression system, since
that increases the miss probability. Moreover, it cannot
focus on minimum miss rate, as that causes low compression
rates.

The optimum balance between compression and miss
rate is susceptible to administrator interpretation. One might
prefer less general IP summarizations and reduce the chance
of overlaps, accepting the higher volume of published data
and consumed resources. Other might accommodate more
general, smaller summarizations and deal with overlaps
accordingly. It is unclear, therefore, whether there exists a
an optimal IP summarization.

B. Finding Subnets: the PATRICIA Data Structure

The key for summarizing a list of IP addresses is finding
which subnets the IP addresses match. Then, we pick some
of these subnets and some original IP addresses, such that all
original IP addresses are represented by some subnet or by
themselves, and the final selection fulfills the administrator
requirement of compression/miss rate balance.

We attain this process by making use of a special data
structure called PATRICIA tree [9][10], which is a form of
trie [6]. The PATRICIA tree, basically, is a binary search
tree, where the original data is distributed among the leaves
of the tree, and the internal nodes are common string prefixes
shared by the respective descendants. Therefore, each

internal node of the tree characterizes a whole prefix, and the
branches designate different suffixes that exist in the original
data set.

The algorithm for generating a PATRICIA tree deems
the order of the original data irrelevant. It also guarantees
that each node has two children: if, during the construction
of the tree, an internal node has only one child, it is simply
coalesced into its parent. In our implementation, the internal
nodes represent subnet masks in CIDR notation, and the
leaves denote the original IP addresses.

Let us follow in Figure 2 the construction of a
PATRICIA tree for this given data set: 10.10.0.1, 10.10.0.2,
10.10.0.3, 10.10.0.4. First, all IP addresses are converted
into binary form (the binary addresses appear on the top of
each decimal address). The tree is created with the common
root of all IPv4 addresses: the subnet 0.0.0.0/0. We select
the first IP address in the list, 10.10.0.1, and insert it into the
tree [Figure 2 (a)] as a child of 0.0.0.0/0 (for the root node
alone, the coalescing rule is not followed; it will remain with
only one child for now). In this tree, the original IP
addresses are represented as /32.

The next IP in the list, 10.10.0.2, shares the same binary
prefix with 10.10.0.1 up to the 29th bit. They differ in the
last two bits: for 10.10.0.1, they are „01‟, and for 10.10.0.2,
they are „10‟. By inserting 10.10.0.2 into the tree [Figure 2
(b)], an ancestor or internal node (or parent) is created for
them, containing the common binary prefix for both:
00001010.00001010.00000000.0000000xx, or 10.10.0.0/30.

The address 10.10.0.3 shares the same binary prefix with
10.10.0.2 up to the 31th bit. In Figure 2 (c), we see that a
new branch stems from the previous location of 10.10.0.2. It
now has the node representing the subnet 10.10.0.2/31 and
its two children, 10.10.0.2 and 10.10.0.3.

Finally, in Figure 2 (d), 10.10.0.4 is inserted into the tree.
This addresses shares the first 29 bits of prefix with the other
/32 addresses already in the tree: a new node (10.10.0.0/29)
is created as a parent of 10.10.0.0/30, and 10.10.0.4/32 is
added as a child of that new node.

For its essence and characteristics, the PATRICIA data
structure successfully favors finding the proper, minimal
summarizing nodes (in CIDR notation) for a given set of IP
addresses. It remains to elect, from the final tree, the nodes
what will constitute the summarized result.

C. Selecting Nodes to Summarize

In Figure 2 (d), we have a number of options for nodes to
pick for summarization. Selecting the root, 0.0.0.0/0,
although being a valid summarization, is clearly unwise.
Traversing down the tree, we find a next option, the subnet
10.10.0.0/29, that does comprise all original IP addresses.
Essentially, after choosing a node as a summarizing spot, we
further prune the PATRICIA tree down from that point,
since all IP addresses that lie below are already contained
within the selected summarizing node.

Other options would be to pick the actual host at
10.10.0.4/32 as a summarizing node, and 10.10.0.0/30 to
represent the other three addresses. Alternatively, opt for
10.10.0.4/32 and 10.10.0.1/32, and 10.10.0.2/31 to
summarize the remaining two addresses.

1) The Metrics for Decision: Distance, Density,

Minimum Subnet Mask
The proposed heuristic must decide, without user

intervention, which nodes to pick as summarizing nodes
from the final conceived PATRICIA tree. We elected three
distinct metrics to utilize in the decision procedure:
Mininum Subnet Mask, Distance, and Density.

a) Minimum Subnet Mask

The Minimum Subnet Mask indicates the minimum (not
inclusive) acceptable number of bits in the subnet mask (the
number after the /), below which a node will not be selected
as a summarizing node. It is, therefore, a minimum
threshold, configurable by the administrator, such that nodes
that represent very large subnets (in the view of the
administrator) can be avoided as summarizing points. The
decision over this metric is detached and takes precedence
over the other two metrics. If a node displays a subnet mask
of, e.g., size 7, and the Minimum Subnet Mask is set to 8,
this node will never be selected as summarizing, regardless
of the result of the other two metrics.

b) Distance

The Distance is the difference, in bits, between a child
node‟s mask (the metric is calculated for each child of a node
independently) and its parent‟s mask. Namely:

 . (1)

This metric expresses the notion of how many hosts, or IP
addresses, are being claimed by a node (if it is made a
summarizing node), but do not actually exist in the original
set. In other words, it conveys the number of CIDR subnets
between the current node and the respective child. Since
between the parent and the child there is no original IP
address, if the parent is made a summarizing node, all the
potential IP addresses that can occur between the parent and
the child will generate a miss in a search. It is, therefore,
beneficial to keep this metric reasonably small.

Observe that the Distance does not indicate the exact
number of IP addresses that are being claimed by a node (if
made a summarizing node) and do not actually exist: it is a
notion. Below a child in the PATRICIA tree, the subnets
need not be necessarily complete or filled with all possible
addresses.

We use Figure 2 (d) again for an example of Distance
metric. Take the parent 10.10.0.0/29 and its left child
10.10.0.0/30. The Distance is 30 – 29 = 1 bit. This is
effectively the minimum possible number between a parent
and child, indicating that there are no vacant IP addresses
between them. Truly, the 1-bit difference amounts to the
following number of addresses between the parent and child:

 . (2)

This is the child address itself. The division by 2 (or the
subtraction of 1 from the exponent) in the previous equation
is explained by the fact the PATRICIA tree is a binary tree.
Each branch of descendants can have half of the total
number of descendants.

Between 10.10.0.0/29 and its right child 10.10.0.4/32, we
calculate Distance = 32 – 29 = 3 bits. We have:

 (3)

There are, thus, 4 possible addresses in the branch
between 10.10.0.0/29 and 10.10.0.4/32. Subtracting the /32
child, we have 3 vacant IP addresses. The value for the
Distance metric is configurable in the proposed algorithm.

c) Density

The Density is a measure of the number of leaves of the
current node, divided by the maximum possible number of
hosts (IP addresses) below the current node.

 (4)

It is a number between 0 and 1, where 1 is the maximum
density, or an indication that all possible IP addresses of a
subnet are taken. To calculate this metric, the algorithm
keeps track of the number of leaves below a node (i.e., the
number of hosts below a node). The maximum number of
hosts, or leaves, or original IP addresses, which can exist
below the current node, can be computed by subtracting the
current node‟s mask (bits) from the maximum mask (bits),
and using this as the exponent of 2. Two to the power of this
exponent will yield the maximum number of leaves below
the node. The maximum mask depends on the address
system at use: for IPv4, the maximum mask is 32 bits.
Hence, if MaxMask is the maximum mask in bits, and
CurrentNodeMask is the current node‟s mask in bits, we
have:

 (5)

As the PATRICIA tree is constructed, the algorithm
updates the Density metric for each node and stores this
information within the node‟s data structure. Later, this data
will be retrieved in order to decide whether a node is to be
made a summarizing node, or not. We now investigate how
the heuristic operates this decision.

2) Using the Metrics to Decide Summarizing Nodes
The algorithm that implements the heuristic begins by

traversing the PATRICIA tree in order (visit root, navigate
left branch, navigate right branch), recursively. If the node is
a leaf, then make it a summarizing node (since there is
nothing below it) and return. Otherwise, verify whether the
current node‟s mask is smaller than the Minimum Subnet
Mask. If it is, continue traversing the tree in order (i.e., the
current node denotes a subnet that is too large).

Else, calculate the Distance of the current node from
each of its children. If any Distance is greater than an
administrator-defined value, then continue traversing the tree
in order (i.e., summarizing at the current node would
represent too many vacant IP addresses).

Else, retrieve the Density of each of the current node‟s
children. If either is smaller than an administrator-defined
threshold, then continue traversing the tree in order (i.e.,
there are few leaves in the left or right branch, so we attempt

to summarize closer to the leaves in this case). Notice that
the heuristic checks the child‟s Density (and for each child
independently), and not the current node‟s Density. This
procedure conveys a better notion for the case of highly
unbalanced trees, or trees where one branch is dense,
whereas the other branch is comparatively sparse.

Else, make the current node a summarizing node; prune
the tree at this spot, and return.

Density and Distance are somewhat related metrics; both
essentially express the size of the set of IP addresses that
could be summarized, and how many vacant addresses
would be summarized altogether. One, however, is more
biased towards the vacant addresses than the other is, and we
have found in our experiments that we can have a stronger
control of the summarization by combining the decision
upon both metrics.

3) Administrator-Defined Configuration: The

Granularity and Minimum Subnet Mask
In the procedure described, the administrator can

configure three values that the heuristic employs to decide
the summarizing nodes. By tuning these values, the
administrator can achieve a coarser summarization (one with
a smaller number of results, or more compression), or a finer
one (with a larger number of results, or less compression).

To simplify this configuration, we have conceived a
single setting, called granularity, which is capable of
regulating both Distance and Density to their appropriate
individual settings. The granularity assumes an integer
value from 0 to 3, where 0 corresponds to the finer, or less
compressed summarization, and 3 implies the coarser, more
compressed summarization. We keep the Minimum Subnet
Mask setting apart, because this threshold is usually less
frequently changed, even among different compression
choices. Administrators can profit in setting this separately.

TABLE I. MAPPING OF THRESHOLD VALUES USED BY GRANULARITY.

Granularity Distance Density

0 4 1e-5
1 8 1e-6
2 12 1e-7
3 16 1e-8

The granularity works by mapping, or converting, its

value to the specific value of Density and Distance (in bits).
We therefore have selected, from each metric, four fixed
values that are able to yield the four different compressions.
Each of those numbers was reached by experimentation on a
test bed, and by our interpretation of reasonable summarizing
results. Table I brings the final mapping.

Figure 3 shows the graph Distance x Granularity. It is
clearly a simple linear relation. Figure 4 depicts the
relationship Density x Granularity, which resembles an
inverse exponential curve. Using regression analysis, we can
appropriately assign an interpolating equation to each metric.
For Distance:

 . (6)

And, for Density:

 . (7)

Where x is the Granularity, and y is the metric.

Figure 3. Graph showing the relationship Distance x Granularity.

The algorithm applies these equations to convert from
current retrieved densities and calculated distances to a
granularity value. Then, it tests the thresholds as explained
in subsection (III.C.2), and decides whether to choose a
summarizing node.

The last step of the algorithm is performed by the higher-
level instances, which is combining the individual
summarized pieces into one abridged list.

IV. EXPERIMENTAL RESULTS

We investigated the proposed heuristic and
implementation employing the simulated distributed
information services test bed portrayed in Figure 5. In this
test bed, there are nine hLSs; each of them receives
registrations from services and stores their IP addresses.
Then, they individually run the algorithm to summarize these
addresses and publish their results to the gLS, which in turn
merge the parts into one list.

Figure 4. Graph showing the relationship Density x Granularity.

Each hLS manages IP addresses extracted from real
networks [12] that utilize the Information Services plane in
the perfSONAR system (there is one duplicate IP address,
located in APAN and ESnet hLSs). The goal is to derive the
performance of the heuristic, in particular how much of each
original subset is compressed by the summarization
technique and the final merged compression. We also verify
the performance when only one hLS contained all subsets,
and then performed one overall summarization. Table II
compiles the results from the nine individual hLSs and the

final merged list of addresses. For each hLS (which are
named according to the real network domain they simulate),
the table displays the original list size each hLS processed in
number of IP addresses, the final summarized size (also in
number of IP addresses) and compression rate (summarized
size divided by original size, or simply the percentage of the
original size that the summarized set represents) for distinct
granularity settings. The Minimum Subnet Mask was always
set to 8 (signifying that nodes with a mask from 8 and below
were not accepted as summarizing nodes) for these tests,
based on our preference that no summarized IP address
comprised subnets larger than the /8 mask.

The last row of Table II indicates the previous statistics
calculated for the “big” list in the gLS, built by merging the
published summarized sub-lists of each hLS.

A. Analysis

The results demonstrate that the summarization
performance is dependent on the input data set. Some hLSs,
for example, summarized to the same compression rate
regardless of the selected granularity mode. Data sets might
exhibit a particular configuration or allotment of IP addresses
that hurts the flexibility of the choice of summarizing nodes.
This feature of some data sets may account for the behavior
displayed by some hLSs in the test bed, which summarized
similarly for different granularities.

The hLS responsible for the larger data set, ESnet, could
summarize it to less than 10% of its original size. The
granularity setting is capable of changing the compression
rate accordingly; the amount of this change, however, is
dependent on the conformation of the data set, as explained
earlier.

Overall, the compression rate on the experimental test
bed ranged below 30% (the lower the number, higher the
compression is). Roughly, a compression rate of 30% on the
list of IP addresses, for our distributed IP summarization
algorithm, means that a higher-level directory may contain
only 30% of the original IP address list size, and still carry
comparable (within certain precision) information for the
purposes of the distributed, hierarchical directory in the
Information Services.

The last row of Table II shows the results from the point
of view of the higher-level gLS. Again, this gLS did not
summarize; it received the already summarized pieces from
the hLSs and merged them. For this gLS, the overall
compression rate ranged from 13% for granularity 0, to 6.9%
for granularity 3.

The final experiment consisted of adjusting the test bed
such that a single hLS received all registrations from all
services. Thus, this hLS contained all the IP addresses from
all domains combined. It summarized this unique, combined
list and published to the gLS. Table III tabulates the results;
the distributed row copies the last row of Table II having the
final summarization results from the algorithm running in the
distributed environment, as viewed from the gLS. The single
row illustrates the outcome when a single instance of the hLS
now summarizes all the existing IP addresses as one
combined input. The decrease row informs the reduction in
the summarized set size, per granularity, from the single to

y = 4x + 4

0

5

10

15

20

0 1 2 3 4

D
is

ta
n

ce

Granularity

y = 1E-05e-2.303x

-2.00E-06
0.00E+00
2.00E-06
4.00E-06
6.00E-06
8.00E-06
1.00E-05
1.20E-05

0 2 4

D
e

n
si

ty

Granularity

the distributed operation (1 – [single final size/distributed
final size]).

hLS

hLS

gLS

hLS hLS

registrations

hLS

hLS hLS hLS

hLS

publishes

summarization

GARRIndianaESnet

APAN

SWITCH

Internet2

FCCN

GÉANT

PIONIER

Figure 5. Simulated distributed test bed for validating the summarization

algorithm.

According to Table III, in the single operation the gLS
now sees a more compressed list of addresses as compared to
the distributed test bed, given the same input of IP addresses.
Although smaller, this new list loses precision in contrast
with the one generated by the distributed instances of the
algorithm running in the hLSs. The heuristic is attempting to
summarize a large set made of subsets, where each subset
has a particular pattern of IP addresses (i.e., enclose
particular subnets), and is then selecting summarizing IP
addresses that represent larger portions of these subnets.
Obviously, not pondering scalability issues, if the single hLS
could divide the combined set into the same original subsets
from the distributed test bed, and employed the heuristic
individually in each subnet, the result would be the same as
the distributed operation.

V. OTHER SUMMARIZATION TECHNIQUES AND ROUTE

AGGREGATION ALGORITHMS

Currently, the LS incorporates an algorithm to perform IP
summarization that relies on a voting scheme in order to
identify the subnets that represent most of the original IP
addresses [12]. For each original address, that algorithm
expands all subnets comprising the address, storing them into
a list. If a subnet was already expanded by a previous
address, its vote counter is incremented. The algorithm then
selects candidates for summarizing addresses by picking
subnets that have at least one original, /32 IP address child.
The user cannot influence this decision, and the final
summarizing subnets might be of any size. Distinctively, our
heuristic allows for control of the compression level of the

summarization, and also implements mechanisms to avoid
selecting summarizing subnets that might be deemed very
large.

We have also surveyed a number of route aggregation
algorithms, notably [4][5][11][13][15]. While they are
related, a direct comparison between our heuristic and those
references is not possible. The main objective of those
efforts is IP lookup performance improvement for routing,
and they utilize the “next hop” information in decision
making. Our algorithm is not intended to be used for
routing, and in fact the “next hop” information is not
available as an input for the purposes of the summarization.

VI. CONCLUSION

We have demonstrated, in this paper, a heuristic applied
in a distributed Information Services architecture to construct
a summarized set from original sets of IPv4 addresses.
These addresses can be typically services registering to a
hierarchical, distributed directory service.

As motivators, we outlined the needs of the Information
Services plane adopted in perfSONAR, a performance
monitoring architecture. This Information Services plane
includes a distributed directory service, where other services
register to and clients perform queries to find other services
and performance data. To operate adequately, the service
relies on lower level instances, which publish a summary of
their controlled information to the upper level instance layer.
By employing summarization, the service administers the
volume of information that is published into the network.
Moreover, resources, such as memory and storage, can be
constrained.

We further described the mechanics of IP summarization
and the techniques utilized by our proposed heuristic to
obtain a final summarization. Essentially, our heuristic
assembles a special data structure, called a PATRICIA tree;
then, it selects nodes from this tree based on specific metrics
and configured thresholds. Namely, we use distance,
density, and minimum subnet mask. This selection follows
particular interpretations of appropriate summarizations.
Then, distributed sets of summarized addresses are
assembled into one abridged set.

The heuristic was applied in a simulated distributed
information services test bed, comprised of instances of
directory services. The instances received registrations of IP
addresses collected from real networks that adopt
perfSONAR architecture, and published their outputs to a
higher instance that merged them. The results illustrate
compressions rates below 30% (the smaller, the more
compressed) and the capability of adjusting the compression
rate by means of a granularity setting. The advantage of a
compressed set is that less resources are required to store and
transmit it, yet the set still conveys comparable information
(within adjustable bounds) to the original set. It was also
verified that the heuristic performance is evidently dependent
on the arrangement of IP addresses in the original data set.

TABLE II. RESULTS OF SIMULATED DISTRIBUTED INFORMATION SERVICES RUNNING THE IP SUMMARIZATION HEURISTIC.

set Final Size Comp. Rate Final Size Comp. Rate Final Size Comp. Rate Final Size Comp. Rate

APAN 104 19 0,1826923 17 0,1634615 17 0,1634615 13 0,125

ESnet 618 58 0,0938511 28 0,0453074 20 0,0323625 20 0,0323625

FCCN 43 4 0,0930233 4 0,0930233 4 0,0930233 3 0,0697674

GARR 163 2 0,0122699 2 0,0122699 2 0,0122699 2 0,0122699

GÉANT 30 5 0,1666667 5 0,1666667 5 0,1666667 5 0,1666667

Internet2 282 86 0,3049645 54 0,1914894 44 0,1560284 42 0,1489362

Indiana 79 14 0,1772152 12 0,1518987 12 0,1518987 10 0,1265823

PIONIER 27 5 0,1851852 5 0,1851852 5 0,1851852 3 0,1111111

SWITCH 214 15 0,0700935 12 0,0560748 10 0,046729 10 0,046729

Final 1560 208 0,1333333 139 0,0891026 119 0,0762821 108 0,0692308

*Comp. Rate = Compression Rate = summarized / original (lower is more compressed); **Minimum Subnet Mask = 8

Original Set

Size (IP

addresses)

Summarized Size and Compression Rate

Granularity 0 Granularity 1 Granularity 2 Granularity 3

TABLE III. RESULTS OF SIMULATED DISTRIBUTED INFORMATION SERVICES RUNNING THE IP SUMMARIZATION HEURISTIC IN DISTRIBUTED MODE, AND SINGLE

MODE.

hLS Final Size Comp. Rate Final Size Comp. Rate Final Size Comp. Rate Final Size Comp. Rate

Distributed 1560 208 0,1333333 139 0,0891026 119 0,0762821 108 0,0692308

Single 1560 180 0,1153846 102 0,0653846 83 0,0532051 76 0,0487179

13,46% 26,62% 30,25% 29,63%

*Comp. Rate = Compression Rate = summarized / original (lower is more compressed); **Minimum Subnet Mask = 8

***Decrease = 1 - (single/distributed final size)

Decrease

Original Set

Size (IP

addresses)

Summarized Size and Compression Rate

Granularity 0 Granularity 1 Granularity 2 Granularity 3

REFERENCES

[1] (2010), 'perfSONAR', http://www.perfsonar.net.

[2] Bondi, A. B. (2000). „Characteristics of scalability and their impact
on performance‟, WOSP '00: Proceedings of the 2nd international
workshop on Software and performance, ACM, pp. 195-203.

[3] Brown, A.; Lake, A.; Chaniotakis, E.; Zurawski, J.; Boote, J.; Portnoi,
M. & Swany, M. (2010), 'Unified Network Information Services for
network performance Monitoring - Use Cases', Internet2 -
Information Services Working Group,
https://spaces.internet2.edu/display/ISWG/Use+Cases.

[4] Degermark, M., Brodnik, A., Carlsson, S., & Pink, S. (1997). Small
forwarding tables for fast routing lookups. SIGCOMM Computer
Communication Review, 27, 3-14.

[5] Draves, R.; King, C.; Venkatachary, S. & Zill, B. (1999),
„Constructing optimal IP routing tables‟, in 'INFOCOM '99.
Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE', pp. 88 -97 vol.1.

[6] Fredkin, E. (1960), 'Trie memory', Communications of the ACM
3(9), 490--499.

[7] Gudgin, M.; Hadley, M.; Mendelsohn, N.; Moreau, J.-J.; Nielsen, H.
F.; Karmarkar, A. & Lafon, Y. (2007), 'SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition)', W3C,
http://www.w3.org/TR/soap12.

[8] Hanemann, A.; Boote, J.; Boyd, E.; Durand, J.; Kudarimoti, L.;
Lapacz, R.; Swany, M.; Trocha, S. & Zurawski, J. (2005),
„PerfSONAR: a service oriented architecture for multi-domain

network monitoring‟, in 'In Proceedings of the Third International
Conference on Service Oriented Computing (ICSOC 2005). ACM
Sigsoft and Sigweb', pp. 241--254.

[9] Knuth, D. E. (1973), „The art of computer programming: sorting and
searching‟, Vol. 3, Addison-Wesley, Reading, Massachusetts.

[10] Morrison, D. R. (1968), 'PATRICIA–practical algorithm to retrieve
information coded in alphanumeric', Journal of the ACM 15(4), 514-
534.

[11] Nilsson, S., & Karlsson, G. (1998). Fast address look-up for internet
routers. (pp. 11-22). Chapman \& Hall, Ltd.

[12] Portnoi, M. (2009), 'IP summarization wiki page',
http://code.google.com/p/perfsonar-ps/wiki/IPSummarization.

[13] Srinivasan, V., & Varghese, G. (1998). Faster IP lookups using
controlled prefix expansion. SIGMETRICS Performance Evaluation
Review, 26, 1-10.

[14] Tierney, B.; Boote, J.; Boyd, E.; Brown, A.; Grigoriev, M.; Metzger,
J.; Swany, M.; Li, M. Z. Y.-T. & Zurawski, J. (2009), 'Instantiating a
global network measurement framework'(LBNL-1452E), Technical
report, LBNL Technical Report LBNL-1452E.

[15] Waldvogel, M., Varghese, G., Turner, J., & Plattner, B. (1997).
„Scalable high speed IP routing lookups‟. SIGCOMM Computer
Communication Review, 27, 25-36.

[16] Zurawski, J.; Boote, J.; Boyd, E.; Glowiak, M.; Hanemann, A.;
Swany, M. ; Trocha, S. (2007), „Hierarchically federated registration
and lookup within the perfsonar framework‟, in Integrated Network
Management, 2007. IM '07. 10th IFIP/IEEE International Symposium
on, pp. 705 -708.

http://www.perfsonar.net/
https://spaces.internet2.edu/display/ISWG/Use+Cases
http://www.w3.org/TR/soap12
http://code.google.com/p/perfsonar-ps/wiki/IPSummarization

