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Abstract— A distributed, hierarchical information service for 

computer networks might use several service instances, located 

in different layers.  A distributed directory service, for 

example, might be comprised of upper level listings, and local 

directories.  The upper level listings contain a compact version 

of the local directories.  Clients desiring to access the 

information contained in local directories might first access the 

high-level listings, in order to locate the appropriate local 

instance.  One of the keys for the competent operation of such 

service is the ability of properly summarizing the information 

which will be maintained in the upper level directories.  We 

analyze the case of the Lookup Service in the Information 

Services plane of perfSONAR performance monitoring 

distributed architecture, which implements IP address 

summarization in its functions.  We propose an empirical 

method, or heuristic, to perform the summarizations, based on 

the PATRICIA tree.  We further apply the heuristic on a 

simulated distributed test bed and examine the results. 

Keywords- IP, summarization, patricia tree, information 

services, distributed system. 

I.  INTRODUCTION 

Certain distributed computer network information 
services work by dispersing resources and data among 
several instances of the service, in a hierarchical manner.  
One such service can be a distributed, hierarchical directory 
service, where “lower-level” instances maintain local data 
and publish the data to “higher-level” instances.  The higher-
level instances are responsible for keeping a compact listing 
of all the data administrated by lower level instances, and 
must be able to indicate which particular instance maintains 
specific data.  The higher-level instances, therefore, hold a 
summary of all the lower level counterparts. 

For this mechanism to operate efficiently, the lower level 
instances must summarize their data and publish this 
summarization to the upper level layer.  The kind of data 
being summarized might accommodate different techniques 
for this procedure, some of them based on heuristics.  One 
such example is the Lookup Service in the Information 
Services plane used in perfSONAR architecture [1], which 
resembles a distributed directory with two levels.  Its lower 
level instances summarize the controlled data and forward 
the compacted version to the upper layer.  Among the 
published information, there are data descriptors (metadata) 
and IPv4 addresses. 

This paper describes the work done in producing a 
heuristic to generate IPv4 addresses summarizations, and 
utilizes the realm of perfSONAR‟s Information Services 
plane as a motivator.  The document is divided as follows.  
Section II delineates the perfSONAR architecture, the 
Information Services plane, and stimulates the need for IP 
summarization.  Section III demonstrates the heuristic‟s 
mechanism, studying the construction of possible summaries 
and the decision steps.  In Section IV, we employ the 
heuristic on several test sets and analyze the results.  Section 
V brings considerations about other summarization 
techniques and route aggregation algorithms.  Finally, in 
Section VI, we conclude the work and present our final 
thoughts. 

II. INFORMATION SERVICES IN PERFSONAR 

Oriented to network performance monitoring, 
perfSONAR [1] is a distributed, services oriented 
architecture, formulated by a worldwide consortium of 
organizations, and it is comprised by a set of protocols and 
interoperable software packages [8][14].  The purpose of 
perfSONAR is to collect, store, and publish network-
monitoring data, such as latency, topology, utilization, as 
also aid in diagnosing performance issues and anomalies. 

The architecture defines several service types, namely 
Measurement Point (MP) service; Measurement Archive 
(MA) service; Transformation Service (TS); Lookup Service 
(LS); Topology Service (ToS); Authentication Service (AS); 
and Resource Protector Service (RPS) [1].  In particular, the 
LS serves as a registering hub [16] for all participating 
services and the capabilities they furnish.  We will 
concentrate in this service for the purposes of motivating this 
paper. 

The protocols, based on SOAP XML messages [7], 
regulate how the services communicate.  The software 
packages act as middleware between the performance 
measurement tools and applications for diagnostic and 
visualization; they implement the service types and 
guarantee that they work across multiple or multi-domain 
networks. 

A. The Lookup Service 

1) General Operation 
The general operation of the LS in perfSONAR context is 

depicted in Figure 1. 



Essentially, the LS acts as a distributed directory.  
Currently, there are two types of instances (and levels) of 
LSs in commission in the network:  the global Lookup 
Service, or gLS; and the home Lookup Service, or hLS.  The 
instances are typically individual network devices, or 
computers, running the LS service in either gLS or hLS 
mode.  The gLSs compose the upper LS level, and the hLSs 
form the lower level. 

 

 
Figure 1.  General operation of LS instances in perfSONAR‟s Information 

Services plane. 

New hosts that wish to provide some monitoring service 
to the perfSONAR domain(s) (such as an MA or MP service) 
must register themselves to some hLS.  These new services 
find a hLS by either knowing its URI (Uniform Resource 
Identifier) beforehand, or by performing a discovery query to 
the upper level gLS, which will in turn reply with existing 
hLS instances.  Obviously, the new service must know where 
to find at least one gLS; there is a list of gLSs, the gLS root 
hints file, hosted by well-known servers that provide the 
URIs for available gLSs. 

Each hLS keeps account of the registrations of the 
individual services that registered with this particular hLS.  
Each hLS must periodically register itself with at least one 
upper level gLS, so that the gLSs can update their 
information about current hLS instances.  Finally, the gLSs 
synchronize with other gLSs.  This layered, distributed 
mechanism attains scalability advantages [2].  We examine 
this concept next. 

2) LS:  Keeping and Publishing Information (and 

Motivating Summarization) 
When a new service registers with a hLS, it conveys 

information such as the type of service or metric, and, 
possibly, interfaces where measurements are being 
conducted.  Therefore, among other data, the hLS will have a 
list of IP addresses belonging to the devices that registered 
with it, and IP addresses of the network devices that are 
being monitored and which data can be available. 

A client computer that aspires to obtain measurement 
data will query the LS in order to know where this 
information is available, either in an MA for an already 
stored measurement, or an MP to conduct a new 
measurement.  If it does not yet know which MA or MP is 
responsible for the data, the client can contact the gLS, 
which will respond with a list of hLSs that know about the 
MA/MPs in question.  The client then contacts the hLSs and 
obtains the URI of the MA or MP service. 

For this distributed scheme to operate accordingly, the 
gLSs must periodically synchronize with each other, and 
each hLS must publish the data it controls to the upper level 
gLS.  To understand how this information is exchanged, let 
us consider some cases. 

If one gLS contained the complete information published 
by an hLS, the very purpose of the hLS would be 
diminished.  Instances of gLSs would contain all necessary 
data, and clients could query in one step.  This solution can 
be said to be, however, less scalable [2], and requires that 
individual gLSs possess enough computing resources to 
handle all registering data from all domains monitored by the 
deployed architecture.  A single directory, which is clearly 
feasible only for restricted domain sizes. 

If the gLS were excluded from the picture, clients would 
not have an “abridged” directory to query.  Thus, they would 
need to contact every hLS in order to find the desired 
information.  An obvious problem in this case is how to let a 
client know the list of available hLSs.  One of the solutions 
is utilizing upper level summary directories:  the gLSs.  
Other solution would be to have the list of hLSs (such list 
might become very large) hosted in a web server; the list 
solves the problem of finding the hLSs, but each of them 
would still have to be queried until the desired information 
was found. 

In the distributed solution, the gLS therefore contains a 
summary of the data handled by individual hLSs.  Moreover, 
the local hLS instances must contain enough information to 
facilitate the discovery of what service data is controlled by 
them, but should manage the volume of that information that 
is published into the network; simply publishing the 
complete stored registrations is inefficient.  To achieve this, 
in the distributed Information Services plane in perfSONAR, 
the hLS performs a summary of its data and then publishes it 
to the upper level gLS. 

The complete distributed directory algorithm can be 
realized as having the goal of maintaining sub-directories 
scattered among domains, and having an abridged directory 
in the upper level.  The task of summarizing the complete 
base of information handled by all sub-directories is then 
distributed among instances (the hLSs), and finally the 
summarized pieces are brought together at the higher level 
(the gLSs).  This method permits higher scalability [2] of the 
directory service.  In particular, we focus on the 
summarization applied to the hosts‟ IPv4 addresses. 

3) Summarizing IP Addresses 
IPv4 addresses (henceforth simply “IP” for compactness) 

are constituted by a sequence of binary numbers.  In this 
vision, we could employ summarizations dealing with IP 
addresses “beginning” with a specific sequence of bits.  This 



is essentially the CIDR (Classless InterDomain Routing) 
mechanism (used in IP routing) notation of IP addresses. 

In CIDR notation, a portion of the beginning (from left to 
right) of the IP address is used as an identifier of the network 
(the network prefix), and the rest of the IP address is used to 
identify a particular host in that network (the suffix).  A 
number, written after the IP address and separated by a slash, 
distinguishes the prefix portion:  this number is the number 
of bits, from the total IP address, reserved for the prefix. 

Consequently, we are able to exploit CIDR notation and 
summarize individual IP addresses into subnets that 
comprise the appropriate range of addresses.  We will see 
that advertising an IP subnet as summary will not necessarily 
mean having possession of the entire set of hosts in that 
subnet, but claiming to have some hosts in that subnet. 

III. HEURISTIC FOR SUMMARIZING IP ADDRESSES 

IP summarization is commonly employed in route 
advertisement [5], in order to lower the resources needed by 
routers.  In this case, the summarization is generally closely 
managed and configured by the network manager; in a 
dynamic information services environment, new services 
(and their IP addresses) may register frequently.  The 
summarization process must then be automatic.  We now 
analyze aspects that must be taken into account in this 
procedure, and how we addressed them by means of a 
heuristic. 

A. Summarization Goals:  the Problem of Balancing 

Compression and Miss Rate 

In the Information Services plane described earlier, IP 
summarization must fulfill two goals:  it must decrease the 
original set of IP addresses by a reasonable amount (i.e., it 
must achieve a good compression rate), but it must not 
summarize so much as to result in claiming many more IP 
addresses than the original set.  If an hLS advertises a 
summarizing IP of /20, it is claiming to have in its directory 
all 212 hosts in the advertised /20 subnet, even if the hLS 
holds actually only a small subset of this range.  Therefore, 
claiming a large subnet for a comparable small number of 
hosts within that subnet poses an extra burden in the search 
process, because a client will believe that the advertiser hLS 
does possess all hosts in that subnet (even if it is not the 
case), and must query the hLS to confirm. 

If the desired IP address is not in the hLS, we have a 
penalty in the form of wasted time and resources to perform 
the query.  This is analogous to a cache miss, and the 
penalty, to a miss penalty.  If the hLS advertises a smaller 
subnet, the precision of the advertisement improves, thus 
lowering the probability of a miss (the miss rate) and 
lowering the miss penalty.  Of course, publishing the 
complete, not-summarized list of IP addresses incurs in miss 
penalty zero (a miss rate or probability of zero), but this does 
not achieve the goal of saving resources in publishing 
information to the gLSs. 

Conversely, advertising the most general summarization, 
which would be the subnet 0.0.0.0/0 that comprises all 
possible IP addresses in the IPv4 address space, achieves a 
maximum compression, but also incurs in the maximum 

miss rate.  In the IP summarization schema, overlapping 
ranges between hLS can be common; using the least general, 
tighter subnet possible in the summarization reduces the 
chances of overlaps, but it also reduces compression. 
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Figure 2.  Systematic construction of a PATRICIA tree. 

It is clear that IP summarization must then balance 
compression and miss rate.  It cannot pursue maximum 
compression, as in a lossless file compression system, since 
that increases the miss probability.  Moreover, it cannot 
focus on minimum miss rate, as that causes low compression 
rates. 

The optimum balance between compression and miss 
rate is susceptible to administrator interpretation.  One might 
prefer less general IP summarizations and reduce the chance 
of overlaps, accepting the higher volume of published data 
and consumed resources.  Other might accommodate more 
general, smaller summarizations and deal with overlaps 
accordingly.  It is unclear, therefore, whether there exists a 
an optimal IP summarization. 

B. Finding Subnets:  the PATRICIA Data Structure 

The key for summarizing a list of IP addresses is finding 
which subnets the IP addresses match.  Then, we pick some 
of these subnets and some original IP addresses, such that all 
original IP addresses are represented by some subnet or by 
themselves, and the final selection fulfills the administrator 
requirement of compression/miss rate balance. 

We attain this process by making use of a special data 
structure called PATRICIA tree [9][10], which is a form of 
trie [6].  The PATRICIA tree, basically, is a binary search 
tree, where the original data is distributed among the leaves 
of the tree, and the internal nodes are common string prefixes 
shared by the respective descendants.  Therefore, each 



internal node of the tree characterizes a whole prefix, and the 
branches designate different suffixes that exist in the original 
data set. 

The algorithm for generating a PATRICIA tree deems 
the order of the original data irrelevant.  It also guarantees 
that each node has two children:  if, during the construction 
of the tree, an internal node has only one child, it is simply 
coalesced into its parent.  In our implementation, the internal 
nodes represent subnet masks in CIDR notation, and the 
leaves denote the original IP addresses. 

Let us follow in Figure 2 the construction of a 
PATRICIA tree for this given data set:  10.10.0.1, 10.10.0.2, 
10.10.0.3, 10.10.0.4.  First, all IP addresses are converted 
into binary form (the binary addresses appear on the top of 
each decimal address).  The tree is created with the common 
root of all IPv4 addresses:  the subnet 0.0.0.0/0.  We select 
the first IP address in the list, 10.10.0.1, and insert it into the 
tree [Figure 2 (a)] as a child of 0.0.0.0/0 (for the root node 
alone, the coalescing rule is not followed; it will remain with 
only one child for now).  In this tree, the original IP 
addresses are represented as /32. 

The next IP in the list, 10.10.0.2, shares the same binary 
prefix with 10.10.0.1 up to the 29th bit.  They differ in the 
last two bits:  for 10.10.0.1, they are „01‟, and for 10.10.0.2, 
they are „10‟.  By inserting 10.10.0.2 into the tree [Figure 2 
(b)], an ancestor or internal node (or parent) is created for 
them, containing the common binary prefix for both:  
00001010.00001010.00000000.0000000xx, or 10.10.0.0/30. 

The address 10.10.0.3 shares the same binary prefix with 
10.10.0.2 up to the 31th bit.  In Figure 2 (c), we see that a 
new branch stems from the previous location of 10.10.0.2.  It 
now has the node representing the subnet 10.10.0.2/31 and 
its two children, 10.10.0.2 and 10.10.0.3. 

Finally, in Figure 2 (d), 10.10.0.4 is inserted into the tree.  
This addresses shares the first 29 bits of prefix with the other 
/32 addresses already in the tree:  a new node (10.10.0.0/29) 
is created as a parent of 10.10.0.0/30, and 10.10.0.4/32 is 
added as a child of that new node. 

For its essence and characteristics, the PATRICIA data 
structure successfully favors finding the proper, minimal 
summarizing nodes (in CIDR notation) for a given set of IP 
addresses.  It remains to elect, from the final tree, the nodes 
what will constitute the summarized result. 

C. Selecting Nodes to Summarize 

In Figure 2 (d), we have a number of options for nodes to 
pick for summarization.  Selecting the root, 0.0.0.0/0, 
although being a valid summarization, is clearly unwise.  
Traversing down the tree, we find a next option, the subnet 
10.10.0.0/29, that does comprise all original IP addresses.  
Essentially, after choosing a node as a summarizing spot, we 
further prune the PATRICIA tree down from that point, 
since all IP addresses that lie below are already contained 
within the selected summarizing node. 

Other options would be to pick the actual host at 
10.10.0.4/32 as a summarizing node, and 10.10.0.0/30 to 
represent the other three addresses.  Alternatively, opt for 
10.10.0.4/32 and 10.10.0.1/32, and 10.10.0.2/31 to 
summarize the remaining two addresses. 

1) The Metrics for Decision:  Distance, Density, 

Minimum Subnet Mask 
The proposed heuristic must decide, without user 

intervention, which nodes to pick as summarizing nodes 
from the final conceived PATRICIA tree.  We elected three 
distinct metrics to utilize in the decision procedure:  
Mininum Subnet Mask, Distance, and Density. 

a) Minimum Subnet Mask 

The Minimum Subnet Mask indicates the minimum (not 
inclusive) acceptable number of bits in the subnet mask (the 
number after the /), below which a node will not be selected 
as a summarizing node.  It is, therefore, a minimum 
threshold, configurable by the administrator, such that nodes 
that represent very large subnets (in the view of the 
administrator) can be avoided as summarizing points.  The 
decision over this metric is detached and takes precedence 
over the other two metrics.  If a node displays a subnet mask 
of, e.g., size 7, and the Minimum Subnet Mask is set to 8, 
this node will never be selected as summarizing, regardless 
of the result of the other two metrics. 

b) Distance 

The Distance is the difference, in bits, between a child 
node‟s mask (the metric is calculated for each child of a node 
independently) and its parent‟s mask.  Namely: 

                              . (1) 

This metric expresses the notion of how many hosts, or IP 
addresses, are being claimed by a node (if it is made a 
summarizing node), but do not actually exist in the original 
set.  In other words, it conveys the number of CIDR subnets 
between the current node and the respective child.  Since 
between the parent and the child there is no original IP 
address, if the parent is made a summarizing node, all the 
potential IP addresses that can occur between the parent and 
the child will generate a miss in a search.  It is, therefore, 
beneficial to keep this metric reasonably small. 

Observe that the Distance does not indicate the exact 
number of IP addresses that are being claimed by a node (if 
made a summarizing node) and do not actually exist:  it is a 
notion.  Below a child in the PATRICIA tree, the subnets 
need not be necessarily complete or filled with all possible 
addresses. 

We use Figure 2 (d) again for an example of Distance 
metric.  Take the parent 10.10.0.0/29 and its left child 
10.10.0.0/30.  The Distance is 30 – 29 = 1 bit.  This is 
effectively the minimum possible number between a parent 
and child, indicating that there are no vacant IP addresses 
between them.  Truly, the 1-bit difference amounts to the 
following number of addresses between the parent and child: 

          

 
                 . (2) 

This is the child address itself.  The division by 2 (or the 
subtraction of 1 from the exponent) in the previous equation 
is explained by the fact the PATRICIA tree is a binary tree.  
Each branch of descendants can have half of the total 
number of descendants.  



Between 10.10.0.0/29 and its right child 10.10.0.4/32, we 
calculate Distance = 32 – 29 = 3 bits.  We have: 

          

 
                   (3) 

There are, thus, 4 possible addresses in the branch 
between 10.10.0.0/29 and 10.10.0.4/32.  Subtracting the /32 
child, we have 3 vacant IP addresses.  The value for the 
Distance metric is configurable in the proposed algorithm. 

c) Density 

The Density is a measure of the number of leaves of the 
current node, divided by the maximum possible number of 
hosts (IP addresses) below the current node. 

 
         

                       

                           
  (4) 

It is a number between 0 and 1, where 1 is the maximum 
density, or an indication that all possible IP addresses of a 
subnet are taken.  To calculate this metric, the algorithm 
keeps track of the number of leaves below a node (i.e., the 
number of hosts below a node).  The maximum number of 
hosts, or leaves, or original IP addresses, which can exist 
below the current node, can be computed by subtracting the 
current node‟s mask (bits) from the maximum mask (bits), 
and using this as the exponent of 2.  Two to the power of this 
exponent will yield the maximum number of leaves below 
the node.  The maximum mask depends on the address 
system at use:  for IPv4, the maximum mask is 32 bits.  
Hence, if MaxMask is the maximum mask in bits, and 
CurrentNodeMask is the current node‟s mask in bits, we 
have: 

 
        

                       

                        
  (5) 

As the PATRICIA tree is constructed, the algorithm 
updates the Density metric for each node and stores this 
information within the node‟s data structure.  Later, this data 
will be retrieved in order to decide whether a node is to be 
made a summarizing node, or not.  We now investigate how 
the heuristic operates this decision. 

2) Using the Metrics to Decide Summarizing Nodes 
The algorithm that implements the heuristic begins by 

traversing the PATRICIA tree in order (visit root, navigate 
left branch, navigate right branch), recursively.  If the node is 
a leaf, then make it a summarizing node (since there is 
nothing below it) and return.  Otherwise, verify whether the 
current node‟s mask is smaller than the Minimum Subnet 
Mask.  If it is, continue traversing the tree in order (i.e., the 
current node denotes a subnet that is too large). 

Else, calculate the Distance of the current node from 
each of its children.  If any Distance is greater than an 
administrator-defined value, then continue traversing the tree 
in order (i.e., summarizing at the current node would 
represent too many vacant IP addresses). 

Else, retrieve the Density of each of the current node‟s 
children.  If either is smaller than an administrator-defined 
threshold, then continue traversing the tree in order (i.e., 
there are few leaves in the left or right branch, so we attempt 

to summarize closer to the leaves in this case).  Notice that 
the heuristic checks the child‟s Density (and for each child 
independently), and not the current node‟s Density.  This 
procedure conveys a better notion for the case of highly 
unbalanced trees, or trees where one branch is dense, 
whereas the other branch is comparatively sparse. 

Else, make the current node a summarizing node; prune 
the tree at this spot, and return. 

Density and Distance are somewhat related metrics; both 
essentially express the size of the set of IP addresses that 
could be summarized, and how many vacant addresses 
would be summarized altogether.  One, however, is more 
biased towards the vacant addresses than the other is, and we 
have found in our experiments that we can have a stronger 
control of the summarization by combining the decision 
upon both metrics. 

3) Administrator-Defined Configuration:  The 

Granularity and Minimum Subnet Mask 
In the procedure described, the administrator can 

configure three values that the heuristic employs to decide 
the summarizing nodes.  By tuning these values, the 
administrator can achieve a coarser summarization (one with 
a smaller number of results, or more compression), or a finer 
one (with a larger number of results, or less compression). 

To simplify this configuration, we have conceived a 
single setting, called granularity, which is capable of 
regulating both Distance and Density to their appropriate 
individual settings.  The granularity assumes an integer 
value from 0 to 3, where 0 corresponds to the finer, or less 
compressed summarization, and 3 implies the coarser, more 
compressed summarization.  We keep the Minimum Subnet 
Mask setting apart, because this threshold is usually less 
frequently changed, even among different compression 
choices.  Administrators can profit in setting this separately. 

TABLE I. MAPPING OF THRESHOLD VALUES USED BY GRANULARITY. 

Granularity Distance Density 

0 4 1e-5 
1 8 1e-6 
2 12 1e-7 
3 16 1e-8 

 
The granularity works by mapping, or converting, its 

value to the specific value of Density and Distance (in bits).  
We therefore have selected, from each metric, four fixed 
values that are able to yield the four different compressions.  
Each of those numbers was reached by experimentation on a 
test bed, and by our interpretation of reasonable summarizing 
results.  Table I brings the final mapping. 

Figure 3 shows the graph Distance x Granularity.  It is 
clearly a simple linear relation.  Figure 4 depicts the 
relationship Density x Granularity, which resembles an 
inverse exponential curve.  Using regression analysis, we can 
appropriately assign an interpolating equation to each metric.  
For Distance: 

       . (6) 

And, for Density: 



               . (7) 

Where x is the Granularity, and y is the metric. 
 

 
Figure 3.  Graph showing the relationship Distance x Granularity. 

The algorithm applies these equations to convert from 
current retrieved densities and calculated distances to a 
granularity value.  Then, it tests the thresholds as explained 
in subsection (III.C.2), and decides whether to choose a 
summarizing node. 

The last step of the algorithm is performed by the higher-
level instances, which is combining the individual 
summarized pieces into one abridged list. 

IV. EXPERIMENTAL RESULTS 

We investigated the proposed heuristic and 
implementation employing the simulated distributed 
information services test bed portrayed in Figure 5.  In this 
test bed, there are nine hLSs; each of them receives 
registrations from services and stores their IP addresses.  
Then, they individually run the algorithm to summarize these 
addresses and publish their results to the gLS, which in turn 
merge the parts into one list. 

 

 

Figure 4.  Graph showing the relationship Density x Granularity. 

Each hLS manages IP addresses extracted from real 
networks [12] that utilize the Information Services plane in 
the perfSONAR system (there is one duplicate IP address, 
located in APAN and ESnet hLSs).  The goal is to derive the 
performance of the heuristic, in particular how much of each 
original subset is compressed by the summarization 
technique and the final merged compression.  We also verify 
the performance when only one hLS contained all subsets, 
and then performed one overall summarization.  Table II 
compiles the results from the nine individual hLSs and the 

final merged list of addresses.  For each hLS (which are 
named according to the real network domain they simulate), 
the table displays the original list size each hLS processed in 
number of IP addresses, the final summarized size (also in 
number of IP addresses) and compression rate (summarized 
size divided by original size, or simply the percentage of the 
original size that the summarized set represents) for distinct 
granularity settings.  The Minimum Subnet Mask was always 
set to 8 (signifying that nodes with a mask from 8 and below 
were not accepted as summarizing nodes) for these tests, 
based on our preference that no summarized IP address 
comprised subnets larger than the /8 mask. 

The last row of Table II indicates the previous statistics 
calculated for the “big” list in the gLS, built by merging the 
published summarized sub-lists of each hLS. 

A. Analysis 

The results demonstrate that the summarization 
performance is dependent on the input data set.  Some hLSs, 
for example, summarized to the same compression rate 
regardless of the selected granularity mode.  Data sets might 
exhibit a particular configuration or allotment of IP addresses 
that hurts the flexibility of the choice of summarizing nodes.  
This feature of some data sets may account for the behavior 
displayed by some hLSs in the test bed, which summarized 
similarly for different granularities. 

The hLS responsible for the larger data set, ESnet, could 
summarize it to less than 10% of its original size.  The 
granularity setting is capable of changing the compression 
rate accordingly; the amount of this change, however, is 
dependent on the conformation of the data set, as explained 
earlier.  

Overall, the compression rate on the experimental test 
bed ranged below 30% (the lower the number, higher the 
compression is).  Roughly, a compression rate of 30% on the 
list of IP addresses, for our distributed IP summarization 
algorithm, means that a higher-level directory may contain 
only 30% of the original IP address list size, and still carry 
comparable (within certain precision) information for the 
purposes of the distributed, hierarchical directory in the 
Information Services. 

The last row of Table II shows the results from the point 
of view of the higher-level gLS.  Again, this gLS did not 
summarize; it received the already summarized pieces from 
the hLSs and merged them.  For this gLS, the overall 
compression rate ranged from 13% for granularity 0, to 6.9% 
for granularity 3. 

The final experiment consisted of adjusting the test bed 
such that a single hLS received all registrations from all 
services.  Thus, this hLS contained all the IP addresses from 
all domains combined.  It summarized this unique, combined 
list and published to the gLS.  Table III tabulates the results; 
the distributed row copies the last row of Table II having the 
final summarization results from the algorithm running in the 
distributed environment, as viewed from the gLS.  The single 
row illustrates the outcome when a single instance of the hLS 
now summarizes all the existing IP addresses as one 
combined input.  The decrease row informs the reduction in 
the summarized set size, per granularity, from the single to 
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the distributed operation (1 – [single final size/distributed 
final size]). 
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Figure 5.  Simulated distributed test bed for validating the summarization 

algorithm. 

According to Table III, in the single operation the gLS 
now sees a more compressed list of addresses as compared to 
the distributed test bed, given the same input of IP addresses.  
Although smaller, this new list loses precision in contrast 
with the one generated by the distributed instances of the 
algorithm running in the hLSs.  The heuristic is attempting to 
summarize a large set made of subsets, where each subset 
has a particular pattern of IP addresses (i.e., enclose 
particular subnets), and is then selecting summarizing IP 
addresses that represent larger portions of these subnets.  
Obviously, not pondering scalability issues, if the single hLS 
could divide the combined set into the same original subsets 
from the distributed test bed, and employed the heuristic 
individually in each subnet, the result would be the same as 
the distributed operation. 

V. OTHER SUMMARIZATION TECHNIQUES AND ROUTE 

AGGREGATION ALGORITHMS 

Currently, the LS incorporates an algorithm to perform IP 
summarization that relies on a voting scheme in order to 
identify the subnets that represent most of the original IP 
addresses [12].  For each original address, that algorithm 
expands all subnets comprising the address, storing them into 
a list.  If a subnet was already expanded by a previous 
address, its vote counter is incremented.  The algorithm then 
selects candidates for summarizing addresses by picking 
subnets that have at least one original, /32 IP address child.  
The user cannot influence this decision, and the final 
summarizing subnets might be of any size.  Distinctively, our 
heuristic allows for control of the compression level of the 

summarization, and also implements mechanisms to avoid 
selecting summarizing subnets that might be deemed very 
large. 

We have also surveyed a number of route aggregation 
algorithms, notably [4][5][11][13][15].  While they are 
related, a direct comparison between our heuristic and those 
references is not possible.  The main objective of those 
efforts is IP lookup performance improvement for routing, 
and they utilize the “next hop” information in decision 
making.  Our algorithm is not intended to be used for 
routing, and in fact the “next hop” information is not 
available as an input for the purposes of the summarization. 

VI. CONCLUSION 

We have demonstrated, in this paper, a heuristic applied 
in a distributed Information Services architecture to construct 
a summarized set from original sets of IPv4 addresses.  
These addresses can be typically services registering to a 
hierarchical, distributed directory service. 

As motivators, we outlined the needs of the Information 
Services plane adopted in perfSONAR, a performance 
monitoring architecture.  This Information Services plane 
includes a distributed directory service, where other services 
register to and clients perform queries to find other services 
and performance data.  To operate adequately, the service 
relies on lower level instances, which publish a summary of 
their controlled information to the upper level instance layer.  
By employing summarization, the service administers the 
volume of information that is published into the network.  
Moreover, resources, such as memory and storage, can be 
constrained. 

We further described the mechanics of IP summarization 
and the techniques utilized by our proposed heuristic to 
obtain a final summarization.  Essentially, our heuristic 
assembles a special data structure, called a PATRICIA tree; 
then, it selects nodes from this tree based on specific metrics 
and configured thresholds.  Namely, we use distance, 
density, and minimum subnet mask.  This selection follows 
particular interpretations of appropriate summarizations.  
Then, distributed sets of summarized addresses are 
assembled into one abridged set. 

The heuristic was applied in a simulated distributed 
information services test bed, comprised of instances of 
directory services.  The instances received registrations of IP 
addresses collected from real networks that adopt 
perfSONAR architecture, and published their outputs to a 
higher instance that merged them.  The results illustrate 
compressions rates below 30% (the smaller, the more 
compressed) and the capability of adjusting the compression 
rate by means of a granularity setting.  The advantage of a 
compressed set is that less resources are required to store and 
transmit it, yet the set still conveys comparable information 
(within adjustable bounds) to the original set.  It was also 
verified that the heuristic performance is evidently dependent 
on the arrangement of IP addresses in the original data set. 

 



TABLE II. RESULTS OF SIMULATED DISTRIBUTED INFORMATION SERVICES RUNNING THE IP SUMMARIZATION HEURISTIC. 

set Final Size Comp. Rate Final Size Comp. Rate Final Size Comp. Rate Final Size Comp. Rate

APAN 104 19 0,1826923 17 0,1634615 17 0,1634615 13 0,125

ESnet 618 58 0,0938511 28 0,0453074 20 0,0323625 20 0,0323625

FCCN 43 4 0,0930233 4 0,0930233 4 0,0930233 3 0,0697674

GARR 163 2 0,0122699 2 0,0122699 2 0,0122699 2 0,0122699

GÉANT 30 5 0,1666667 5 0,1666667 5 0,1666667 5 0,1666667

Internet2 282 86 0,3049645 54 0,1914894 44 0,1560284 42 0,1489362

Indiana 79 14 0,1772152 12 0,1518987 12 0,1518987 10 0,1265823

PIONIER 27 5 0,1851852 5 0,1851852 5 0,1851852 3 0,1111111

SWITCH 214 15 0,0700935 12 0,0560748 10 0,046729 10 0,046729

Final 1560 208 0,1333333 139 0,0891026 119 0,0762821 108 0,0692308

*Comp. Rate = Compression Rate = summarized / original (lower is more compressed); **Minimum Subnet Mask = 8

Original Set 

Size (IP 

addresses)

Summarized Size and Compression Rate

Granularity 0 Granularity 1 Granularity 2 Granularity 3

 

TABLE III. RESULTS OF SIMULATED DISTRIBUTED INFORMATION SERVICES RUNNING THE IP SUMMARIZATION HEURISTIC IN DISTRIBUTED MODE, AND SINGLE 

MODE. 

hLS Final Size Comp. Rate Final Size Comp. Rate Final Size Comp. Rate Final Size Comp. Rate

Distributed 1560 208 0,1333333 139 0,0891026 119 0,0762821 108 0,0692308

Single 1560 180 0,1153846 102 0,0653846 83 0,0532051 76 0,0487179

13,46% 26,62% 30,25% 29,63%

*Comp. Rate = Compression Rate = summarized / original (lower is more compressed); **Minimum Subnet Mask = 8

***Decrease = 1 - (single/distributed final size)

Decrease

Original Set 

Size (IP 

addresses)

Summarized Size and Compression Rate

Granularity 0 Granularity 1 Granularity 2 Granularity 3
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