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ABSTRACT 

We survey, in this work, applications for time-series statistical 
analysis of computer network data, specifically for 
performance and anomaly detection.  In the realm of Quality 
of Service, network agents could control the fair distribution 
of resources based on historical behavior of applications, 
instead of on deterministic algorithms.  Virtual circuits, for 
instance, can be allocated on demand for applications that 
exhibit a past of high utilization.  Furthermore, in a network 
performance monitoring architecture, such as perfSONAR, 
services may benefit from time-series analysis of 
measurement data to trigger events, audit statistical behavior, 
or detect anomalies in the network.  These anomalies might 
indicate performance or security issues.  Finally, time-series 
analysis enables forecasting, that can be employed to predict 
future performance. 

Categories and Subject Descriptors 
G.3 [Probability and Statistics]: Multivariate statistics. 

General Terms 
Management, Measurement, Performance, Security. 

Keywords 
Time-series, anomaly, forecasting, performance, 
measurement, quality of service. 

1. INTRODUCTION 

In a computer network, applications usually compete for 
network resources.  This can often result in applications 
receiving a fair share of the resources, but in the point of view 
of the network, and not necessarily the user. 

Technologies exist to administer guarantees of minimal 
Quality of Service to chosen applications, and/or manage a fair 
usage of the network by applications.  Mainly, these 
guarantees may be established: 

• Previously, by service level agreements; 

• Requested actively by the applications at runtime. 

In our work, we propose allowing the network control the 
assignment of resources.  However, this is achieved based on a 
previous history of the applications’ behavior, in order to 
better capture each application’s requirements. 

Essentially, our system employs a probe, which monitors 
network flows.  A network flow is identified by five attributes:  
Source IP, Source Port, Destination IP, Destination Port, 
Protocol. 

Inside the probe, a Statistical Engine uses Finite Automata 
techniques to detect flow behavior.  When a historical high 
demanding flow appears in the network, the engine 
recognizes it and takes action.  For instance, it might trigger 
the creation of a Virtual Circuit that will transport that specific 
high demanding flow. 

Moreover, time-series analysis may be employed in a network 
performance monitoring architecture, such as perfSONAR, to 
provide services for event triggering, alarming, and statistical 
auditing.  One such application is anomaly detection, which 
can be utilized for performance and security management.  
Forecasting is also a relevant exercise, where the history of 
the network behavior and usage is exploited to predict future 
performance. 
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