Report on switch buffers performance investigation Marcos Portnoi 1/33

Investigation of TCP performance over
different switch buffer sizes

Marcos Portnoi
University of Delaware

mportnoi@udel.edu

1 List of Abbreviations and Acronyms

bps Bits Per Second

csv Comma-Separated Values

cwnd Congestion window

FTP File Transfer Protocol

Gbps Giga (1*10°) Bits Per Second

LAN Local Area Network

MB Mega (1*10°) Bytes

ms Milliseconds

PDU Protocol Data Unit

Pkt Packet

s Seconds

ssthresh Slow-start Threshold

Tcl Tool Command Language

TCP Transmission Control Protocol

WAN Wide Area Network
2 Contents
I O o1 =Tot {1V I U 2
4 Description Of the ProBIEMcoci e e e st e e e e e e s ter e e e e e e eesannreeeeaeeeans 2
5 Description of the t00IS USEAuviiiiiiie ettt e e et e e e e bt e e e e e bae e e sntaeeeenaeeaenes 3
SR o o To] [Y= =3 3

Report on switch buffers performance investigation Marcos Portnoi 2/33

6.1 JLeT 0o] o =4V A0 SRS 4
6.2 oY Yo Lo} =4V A USRIt 4
7 Simulation ReSUItS @nd ANGIYSiS.....cuuiiiiiciiieiiiiiie ettt e s e e st e e e ssbte e e e sbaeeeseataeeesanreeaeaans 5
7.1 Simulation with topology 1: switch 1 Gbps with 1000-packet buffer..........ccccceeiciiieeeiiniinnnen, 5
7.2 Simulation with topology 1: switch 1 Gbps with 1000-packet buffer; concurrent TCP traffic
generator uses 8000-DYLE PACKELS....ciii i e e e e aaee s 7
7.3 Simulation with topology 2: switch 10 Gbps only with 50-packet buffer...........cccccvvvieivienennne. 8
7.4 Simulation with topology 1: switch 1 Gbps with 50-packet buffer..........cccceeeeieiiiiiieeiccieeeee, 9
7.5 Simulation with topology 1: switch 1 Gbps with 10,000-packet buffer.........ccccccevevinreeeieeennnns 11
7.6 Simulation with topology 2: switch 10 Gbps only with 1,000-packet buffer..........cccccceeernnnnis 11
8 Conclusion, commeENts 0N FINAINESccocuiiiiiiiiiie et e et e e e ra e e e e saraeeeenaeee s 13
O REFEIENCES ..ottt et b e bbbt ettt sae e s n e s b e re e eare e 13
Appendix A: Tcl SIMUIGLION SCHPLSvviiiiiiie et e e e e e e s e e e e sbbe e e esabeeeeesabeeeesnses 14

3 Objective

Evaluate TCP performance from the point of view of hosts conducting FTP file transfers, using metrics of
choice, as a means of comparison to two different network topologies for connecting local hosts to a
high-speed Ethernet link to a WAN.

4 Description of the problem

A small local network (LAN) has hosts connected to a WAN through a 10 Gbps Ethernet switch. The
switch has a specific buffer size, where PDUs are queued until the outgoing link is ready for
transmission. Hosts conduct FTP file transfers through this switch and WAN to other hosts located off
site.

Suppose an intermediate 1 Gbps switch is connected between the hosts and the 10 Gbps switch (such
that the hosts are connected to the 1 Gbps switch through a 1 Gbps Ethernet link, and the 1 Gbps switch
is connected to the 10 Gbps switch through a 10 Gbps link). If this 1 Gbps switch has a larger buffer size
compared to the 10 Gbps switch (one or two orders of magnitude larger), how would the TCP
performance, as viewed from the hosts engaged in FTP transfers, compare to the original topology?

The hypothesis is, therefore, that connecting hosts first to a 1 Gbps switch with large buffers, and then
to a 10 Gbps switch with smaller buffers, could present better FTP transfer performance than
connecting the hosts directly to the small-buffer 10 Gbps switch. The choice could be justified by
relevant difference of prices between the 1 Gbps and 10 Gbps switches, such that it could be more
economical to purchase a 1 Gbps switch with large buffers and a cheaper 10 Gbps switch, than to
purchase a 10 Gbps switch with large buffers in order to achieve gains in FTP transfer performance.

In particular, the throughput, as a measure of the quantity of bytes transferred between one FTP client
and its FTP server over time, will be analyzed in this report.

Report on switch buffers performance investigation Marcos Portnoi 3/33

5 Description of the tools used
Experiments will be conducted utilizing the ns-2 network simulator (ns-2 The Network Simulator, 2010).
The Tcl' scripts used to construct the simulations are available in Appendix A.

The scripts periodically record trace information into files. The trace information includes values of TCP
variables, queue statistics, and throughput. All files have CSV format (where the commas are actually
semicolons), but one that is pure text. Table 1 is a reference to these files names and an explanation of
their contents.

Table 1: Trace files generated by the simulations and description of their contents.

File Name Description of Contents

queueAvgStats.csv Records average queue size statistics on source queues, sink
queues, and switch queues.

queueStats.csv Records total of counters from queues, such as arrived number
of packets, throughput in arrival queues, lost packets, and
others.

simParams.txt Contains simulation parameters, such as simulation time, queue

size limits (buffer sizes), and TCP configuration parameters.

tcpVariablesTrace.csv Periodically records values of TCP variables, such as congestion
window (cwnd) and slow-start threshold (ssthresh).

throughputs.csv Contains periodically recorded throughputs as measured in TCP
sinks.

At the end of the simulations, some files were converted to spreadsheets and manipulated with
Microsoft Excel’, which facilitates viewing the data, performing calculations and crafting graphs.

6 Topologies

Two basic topologies were devised to lead the experiments.

! http://en.wikipedia.org/wiki/Tcl
? http://office.microsoft.com/en-us/excel/

Report on switch buffers performance investigation Marcos Portnoi 4/33

TCP Concurrent e
Traffic Source .~ Links

WAN or “\._ 10Gbps, 1 ms

Link
10 Gbps, 10 ms

TCP

Server(0) || TCP Sink(0)

S (R

TCP Sink(1)

Switch

Link ’ Link 10 Gbps
10 Gbps, 1 ms Qi 10 Gbps, 10 ms
Tcp Swinch
Server(2) witc Switch)
1 Gbps 10 Gbps TCP Sink(2)
(with 10 Gbps uplink) (WAN boundary)
TCP .
Server(3) RN
s Links
1 Gbps, 1 ms TCP Concurrent TCP Sink(3)

Traffic Sink

Figure 1: Topology where hosts in the LAN are connected to the WAN through a large-buffer 1 Gbps switch, and then to a 10
Gbps switch (the switches are interconnected through a 10 Gbps link).

All of the topologies contain, in the left edge, four nodes. Attached to each of these nodes, there is an
FTP traffic generator. Each FTP traffic generator produces, therefore, one TCP stream. The TCP streams
are directed to four TCP sinks on the right edge of the topologies, such that each TCP stream connects to
one TCP sink. Two 10 Gbps switches define the WAN boundaries; the link between them is considered
the WAN, or internet. This link bandwidth is 10 Gbps and the propagation delay is set to 10 ms.

To simulate concurrent WAN traffic, one extra FTP generator is connected to the left side 10 Gbps
switch and its sink lies also on the right edge of the topologies. This link bandwidth is also 10 Gbps and
its propagation delay, 10 ms. All other links have propagation delay of 1 ms.

The particular dissimilarities between the topologies are explored next.

6.1 Topology 1

In Topology 1 (Figure 1), the four FTP traffic generators are connected to the 10 Gbps edge switch
through an intermediate 1 Gbps switch. The 1 Gbps switch is connected to the 10 Gbps switch through
a 10 Gbps link; the other connections between the 1 Gbps switch to the FTP traffic generators occur
through 1 Gbps links. In this topology, the effects on the effective throughput of the FTP traffic will be
measured for diverse buffer sizes in the 1 Gbps switch.

6.2 Topology 2

Topology 2 (Figure 2) represents the elimination of the intermediate 1 Gbps switch; all FTP traffic
generators are directly connected to the 10 Gbps WAN boundary switch through 10 Gbps links. The 10
Gbps WAN boundary switch remains with a small buffer size as compared to the 1 Gbps switch.

Report on switch buffers performance investigation Marcos Portnoi 5/33

TCP Concurrent oo
TcP Traffic Source .~ Links TCP Sink(0)
Server(0) WAN or "\ 10Gbps, 1 ms g
‘ internet

TCP
server(1) Link TCP Sink(1)
10 Gbps, 10 ms
Switch
Link 10 Gbps
10 Gbps, 10 ms
TCP
Server(2) Switch TCP Sink(2)
10.Gbps
(WAN boundary)
TCP

s Links
10 Gbps, 1 ms TCP Concurrent
Traffic Sink

TCP Sink(3)

Figure 2: Topology where hosts in the LAN are connected to the WAN directly through a 10 Gbps switch.

7 Simulation Results and Analysis

7.1 Simulation with topology 1: switch 1 Gbps with 1000-packet buffer

In this experiment, Topology 1 was used. The simulation time was set to 1000 seconds and the buffer
size of the 1 Gbps switch was configured to 1000 IP packets (the switch buffer size is controlled by
means of setting the maximum output queue size of the link; in ns2, the queue size unit is IP packets).
The buffer size for all other switches (including the 10 Gbps one used by the concurrent traffic
generator) was set to 50 packets. The IP packet size is 1000 bytes, and the TCP advertised window size
for the TCP senders is 64000 packets®. The concurrent traffic generator was started at time 0 seconds,
and all FTP traffic generators were started at time 500 seconds. The results for throughput measured at
the respective traffic sinks is in Figure 3.

The throughput displayed by the concurrent traffic generator (tcpConcurTraffic) evidences a gradual,
linear increase until it reaches approximately 2,500 Mbps at 500 seconds. At this time, the FTP
generators are started (in synchronism) and contend for the available bandwidth, causing a sharp drop
in the concurrent traffic throughput. This drop is a result of the TCP congestion avoidance mechanism,
which reduces the congestion window size in order to throttle down the sender’s transmission speed.
After this first drop and as the four FTP generators create traffic, the throughput of the concurrent
traffic generator proceeds unaffected and gradually increasing until the simulation stops at 1000
seconds.

Albeit the concurrent traffic is the sole traffic in the entire topology until time 500 seconds, it never
reaches the full available bandwidth of 10 Gbps due to its slow throughput growth. This can be credited
to a combination of TCP’s congestion avoidance/control algorithm, IP packet size of 1000 bytes, and
buffer size. It appears that, very early after the traffic generation is started, and before being able to

*ltis unclear, from ns2 documentation, whether the simulator’s TCP window size unit is a transport layer PDU, or a
network layer PDU.

Report on switch buffers performance investigation Marcos Portnoi 6/33

reach the full available bandwidth, a packet loss event removes TCP from the slow start phase (where its
throughput would virtually grow exponentially) and triggers the linear-growth algorithm.

Each of the FTP traffic generators is able to reach 1 Gbps of throughput (in Figure 3, all four FTP start
synchronized and follow the same pattern, their lines in the graph overlapped by the generator named
tcpSink(3)); each of them do have a dedicated 1 Gbps link provided by the 1 Gbps switch. They are able
to sustain the 1 Gbps maximum throughput for roughly 18 seconds, after which TCP congestion control
is triggered by packet losses and the transmission speed of each FTP generator is throttled down to
approximately 570 Mbps.

Moreover, as indicated in literature, the large buffer size tends to keep the FTP generator traffics
synchronized.

Throughput (switch 1 Gbps uplink 10 Gbps, 1000
pkt buffer)
2500

e pd - / -~ tepSink(0)
e £CSIN
1500 . pS' K1
Mbps 1000 / - cpSink(1)
c00 / tcpSink(2)
e £C0SNK
0 V tcpSink(3)

0 200 400 600 800 1000 1200 — tcpConcurTraffic
Time (s)

Figure 3: Throughput measured at TCP sinks for Topology 1, 1000-packet buffer size in 1 Gbps switch. The lines for
tcpSink(0), tcpSink(1), and tcpSink(2) are overlapped by the purple line of tcpSink(3) (they are coincident). Maximum
throughput of all sources is 6362 Mbps, and average of 2886 Mbps.

Table 2 shows the throughput values as measured at the arrival queues of the TCP sink nodes (over the
duration of the traffic generation, which was 500 seconds). Basically, these values indicate the effective
throughput achieved by each FTP generator. Roughly, each FTP generator is capable of attaining 85% of
the respective available bandwidth. This can be credited to TCP’s congestion avoidance/control
algorithm which provokes the typical saw tooth behavior (Huston, 2006) as seen in Figure 3. The WAN
available bandwidth of 10 Gbps is never fully utilized during the simulation. Interesting to notice is that,
whereas the concurrent traffic graph displays spikes before packet losses (and subsequent speed
decrease through the congestion control algorithm), the FTP generators graphs show plateaus, where
the maximum throughput of 1 Gbps is sustained for some time before a packet loss triggers congestion
control. This is directly related to the buffer size, which is 50 packets for the concurrent traffic, and
1000 packets for the FTP generators. A larger buffer size tends to smooth out the graph close to the
peak throughput rate.

Report on switch buffers performance investigation Marcos Portnoi 7/33

Table 2: Throughput as measured at the arrival queues of sink nodes (switch 1 Gbps uplink 10 Gbps, 1000 pkt buffer).

Node Queue Throughput (Mbps)
over 500 seconds

TCPSink(0) 857.3466477
TCPSink(1) 857.3466477
TCPSink(2) 857.346631
TCPSink(3) 857.3006214
Average 857.335137
Sum 3429.3405478

7.2 Simulation with topology 1: switch 1 Gbps with 1000-packet buffer;

concurrent TCP traffic generator uses 8000-byte packets
This experiment also uses Topology 1 and shares the same settings as Experiment 7.1, with the
exception that the concurrent traffic generator (tcpConcurTraffic) now generates 8000-byte IP packets,
and the simulation was run for 3000 s to allow for stabilization of traffic. The intent of the large packet
size is to force the concurrent traffic throughput to have faster rise and reach the maximum available
bandwidth for it (10 Gbps) before the FTP generators are started. As a reminder, the switch directly
connected to the concurrent traffic generator has 50-packet buffer size, and the FTP generators still
work with 1000-byte IP packets.

Throughput (switch 1 Gbps uplink 10 Gbps,
8000-pkt buffer)

11000

10000
9000 f
8000 i
7000 I I
6000
5000
4000
3000

2000
1000

W1 f i
Ay A

0 500 1000 1500 2000 2500 3000 3500
Time (s)

Mbps

[—
\\

e

—

[

e tcpSink(0) ====tcpSink(1) ====tcpSink(2) e===tcpSink(3) == tcpConcurTraffic

Figure 4: Throughput measured at TCP sinks for Topology 1, 1000-packet buffer size in 1 Gbps switch, and packet size set to
8000 bytes. Maximum throughput of all sources from is 9997 Mbps, and average of 4569 Mbps.

From Figure 4, it can be attested that the concurrent traffic generator is able to reach the full available
bandwidth of 10 Gbps faster than the previous simulation 7.1. This 10 Gbps throughput cannot be

Report on switch buffers performance investigation Marcos Portnoi 8/33

sustained, however, as the TCP congestion avoidance mechanism cuts down the transmission speed by
half after packet losses. Again, the TCP saw tooth behavior is witnessed.

As the FTP generators are started at 500 seconds, a more erratic performance is displayed, as compared
to simulation 7.1. The result is that, over the 500 seconds during which the FTP generators are active,
the throughput measured at the arrival queues of the TCP sinks is lower than those of simulation 7.1 by
a factor of approximately 36% (the new throughput is approximately 64% of that in simulation 7.1).
Again, the 1000-packet buffer size in the 1 Gbps switch has a tendency to maintain the FTP traffics
synchronized.

Since the concurrent traffic generator is now effectively using more bandwidth, this creates more
contention with the FTP generators; the traffic pattern does not seem to stabilize but near 1500 s of
simulation.

Table 3: Throughput as measured at the arrival queues of sink nodes (switch 1 Gbps uplink 10 Gbps, 1000-pkt buffer, Concur
8000-byte packet size).

Node Queue Throughput (Mbps)
over 500 seconds

TCPSink(0) 553.6858963
TCPSink(1) 544.0242065
TCPSink(2) 559.1622102
TCPSink(3) 543.6314026
Average 550.1259289
Sum 2200.5037156

Maximum throughput of all sources from Figure 4 was 9997 Mbps, and average of 5578 Mbps. As
compared to simulation 7.1, clearly the concurrent traffic generator was responsible for elevating the
overall maximum and average throughput statistics; the FTP generators average was lower in this
simulation, however, as may be verified in Table 3.

7.3 Simulation with topology 2: switch 10 Gbps only with 50-packet buffer
This simulation uses topology 2, where the 1 Gbps switch is eliminated and all FTP traffic generators are
directly connected to a 10 Gbps switch (thus, each FTP generator has a dedicated 10 Gbps link to the
switch).

All switches have 50-packet buffers. The IP packet size is 1000 bytes. The simulation lasts 1000 seconds;
the concurrent traffic generator starts at time 0 s, and the FTP generators activate at time 500 s.

From the analysis of Figure 5, the FTP generators now lack synchronization, even though they do start at
the same time. The saw tooth peaks did not exceed 2,500 Mbps for the FTP generators during the
simulation, and there are no plateaus of sustained throughput as observed in simulation 7.1. The
concurrent traffic is significantly impacted by the contending FTP generators in this simulation; after the
FTP generators are activated, the concurrent traffic throughput is never allowed to go beyond 500 Mbps
approximately.

By contrasting the numbers in Table 2, Table 3, and This result may be an indication that the slower 1
Gbps switch outperformed the faster 10 Gbps switch due to the former’s larger buffer size.

Table 4, the configuration used in simulation 7.1 presents better throughput performance for the FTP
generators. Despite the fact that, in this simulation 7.3, each FTP generator could develop transmission

Report on switch buffers performance investigation

Marcos Portnoi

9/33

speeds superior to 1 Gbps (since they were directly connected to a 10 Gbps switch), their throughput in
average were worse than those achieved in simulation 7.1 (857 Mbps for the latter, and 689 Mbps for

the former).

3000

2500

2000

Mbps 1500

1000

500

Throughput (switch 10 Gbps, 50-pkt buffer)

e tCSink(0)

0 200 400 600 800 1000 1200
Time (s)

tcpSink(1)
e tCPSink(2)
e tcpSink(3)

= tcpConcurTraffic

Figure 5: Throughput measured at TCP sinks for Topology 2, 50-packet buffer size in all switches, and packet size set to 1000

bytes. Maximum throughput of all sources is 7141 Mbps, and average of 2082 Mbps.

This result may be an indication that the slower 1 Gbps switch outperformed the faster 10 Gbps switch
due to the former’s larger buffer size.

Table 4: Throughput as measured at the arrival queues of sink nodes (switch 10 Gbps only, 50-packet buffer).

Node Que

ue Throughput (Mbps)
over 500 seconds

TCPSink(0) 877.4849248
TCPSink(1) 745.1676218
TCPSink(2) 631.2969069
TCPSink(3) 502.6122323
Average 689.1404215
Sum 2756.5616858

7.4 Simulation with topology 1: switch 1 Gbps with 50-packet buffer
This essay shares all attributes and settings of simulation 7.1, but now all buffers are of size 50 packets.
Figure 6 contains the throughput graphs, and Table 5 summarizes the measured throughput of the TCP

sinks only.

Report on switch buffers performance investigation Marcos Portnoi 10/33

With smaller buffer sizes, all traffic graphs now show spikes and no plateaus of sustained throughput.
The addition of the intermediate 1 Gbps, 50-packet buffer switch does, however, increase the total
buffer size in the path between one FTP generator and its TCP sink, as compared to essay 7.3, where this
intermediate switch did not exist, and all FTP generators were directly connected to a 10 Gbps switch
with 50-packet buffer size. This might account for the synchronization observed among all FTP
generators (Figure 6) and the better throughput performance evidenced in Table 5, as compared to
simulation 7.3 (see This result may be an indication that the slower 1 Gbps switch outperformed the
faster 10 Gbps switch due to the former’s larger buffer size.

Table 4). In summary, with an intermediate, 50-packet buffer 1 Gbps switch, average throughput
measured for the FTP generators at their sinks was 718 Mbps. Without the 1 Gbps, with a direct
connection to a 10 Gbps, 50-packet buffer switch, the measured average throughput was 689 Mbps.

Throughput (switch 1 Gbps uplink 10 Gbps, 50-
pkt buffer)

2000 / /
1500 / / —— tcpSink(0)
Mbps 1000 / / e tCpSink(1)
/ MWW tepsink(2)
500
e tcpSink(3)
0)/

=== tcpConcurTraffic
0 200 400 600 800 1000 1200
Time (s)

2500

Figure 6: Throughput measured at TCP sinks for Topology 1, 50-packet buffer size in all switches. The lines for tcpSink(0),
tcpSink(1), and tcpSink(2) are overlapped by the purple line of tcpSink(3) (they are coincident). Maximum throughput of all
sources is 6259 Mbps, and average of 2612 Mbps.

It can be seen that, in regards to throughput, the FTP generators benefit from having a 1 Gbps switch
with larger buffer size between their connection to the edge 10 Gbps switch with small buffer size.

Table 5: Throughput as measured at the arrival queues of sink nodes (switch 1 Gbps, 50-packet buffer).

Node Queue Throughput (Mbps)
over 500 seconds

TCPSink(0) 718.8000275
TCPSink(1) 718.8000275
TCPSink(2) 718.8000275
TCPSink(3) 718.8000109
Average 718.8000234
Sum 2875.2000934

It is interesting to perform two additional simulations in order to verify the extent of benefit that the
buffer size can pose to the throughput of the FTP generators. The next two essays fulfill this interest.

Report on switch buffers performance investigation Marcos Portnoi 11/33

7.5 Simulation with topology 1: switch 1 Gbps with 10,000-packet buffer
This simulation copies all parameters for simulation 7.1, but the buffer size for the 1 Gbps switch was set
to 10,000 packets, or one order of magnitude higher than the former.

Throughput (switch 1 Gbps uplink 10 Gbps,
10000 pkt buffer)

2500

2000 / /
1500 / / e tcpSink(0)
Mbps / / e tCpSink(1)
1000 tcpSink(2)
500 / / / == tcpSink(3)
o / == tcpConcurTraffic

0 200 400 600 800 1000 1200
Time (s)

Figure 7: Throughput measured at TCP sinks for Topology 1, 10,000-packet buffer size in 1 Gbps switch, 50 packets for the
rest. The lines for tcpSink(0), tcpSink(1), and tcpSink(2) are overlapped by the purple line of tcpSink(3) (they are coincident).
Maximum throughput of all sources is 6361 Mbps, and average of 3017 Mbps.

Clearly, the larger buffer size of the 1 Gbps switch results in a throughput, for the FTP generators, that
approach the maximum available (Table 6), and it tends to be sustained (Figure 7). As the concurrent
traffic grows and eventually the sum of all traffic in the 10 Gbps link reaches this limit, packet losses will
occur and congestion control will likely trigger a decrease of transmission speeds on all traffic
generators. This will occur sometime beyond 1000 s, the end of this simulation, and is therefore not
shown in the graph in Figure 7.

Table 6: Throughput as measured at the arrival queues of sink nodes (switch 1 Gbps, 10,000-packet buffer).

Node Queue Throughput (Mbps)
over 500 seconds

TCPSink(0) 923.3922221
TCPSink(1) 923.3922054
TCPSink(2) 923.3921888
TCPSink(3) 923.3459296
Average 923.3806365
Sum 3693.5225459

7.6 Simulation with topology 2: switch 10 Gbps only with 1,000-packet
buffer

This essay mirrors all settings in simulation 7.3, but the 10 Gbps switch now has a buffer size of 1,000

packets.

Report on switch buffers performance investigation

Marcos Portnoi

12/33

4500
4000
3500
3000
2500
Mbps
2000
1500
1000

500

FTP generators)

/

/

/

/

Throughput (switch 10 Gbps, 1000-pkt buffer for

e tcpSink(0)
e tcpSink(1)

tcpSink(2)
e tcpSink(3)

£

0

200

400

Time (s)

600

800

1000

1200

tcpConcurTraffic

Figure 8: Throughput measured at TCP sinks for Topology 2, 1000-packet buffer size in all switches, and packet size set to
1000 bytes. Maximum throughput of all sources is 10,000 Mbps, and average of 4413 Mbps.

Figure 8 indicates that the buffer size is insufficient to cause synchronization of the FTP traffic, but their
throughput measurements are significantly improved when compared to those in simulation 7.3, as

seen in Table 7.

Most notably, with a 1 Gbps switch, a large buffer size can only make the throughput of the FTP
generators reach the maximum available bandwidth of 1 Gbps for each generator. With a 10 Gbps
switch, using a 1,000-packet buffer size allows the FTP generators to develop higher transmission speeds
that outperform those of the 1 Gbps switch. Table 7 tells that each FTP generator was able to transmit
on average at speeds beyond 1 Gbps.

Table 7: Throughput as measured at the arrival queues of sink nodes (switch 10 Gbps only, 1000-packet buffer).

Node Queue Throughput (Mbps)
over 500 seconds
TCPSink(0) 2214.591276
TCPSink(1) 1779.878132
TCPSink(2) 1340.549451
TCPSink(3) 2102.94666
Average 1859.49138
Sum 7437.965519

Report on switch buffers performance investigation Marcos Portnoi 13/33

8 Conclusion, comments on findings

This document reports several simulations intended to investigate the throughput performance of four
FTP traffic generators in two topologies. In one topology, the FTP generators are connected to a 1 Gbps
switch, then to a 10 Gbps switch through a 10 Gbps link, then to a WAN and finally to their FTP sources
(the WAN is represented by a 10 Gbps link with 10 ms propagation delay). In the other topology, the 1
Gbps switch is eliminated, and the FTP generators are directly connected to the 10 Gbps switch before
the WAN.

The hypothesis to investigate is whether using an intermediate 1 Gbps switch with large buffers will
yield better throughput performance measured on the FTP generators when compared to directly
connecting them to a 10 Gbps switch with considerably smaller buffer size (specifically, 50 packets).

The simulations conducted show that, when the 10 Gbps has a small, 50-packet buffer size, there is
benefit from using an intermediate 1 Gbps switch, even if that switch also has a small buffer size of 50
packets (because its buffer adds to the total path buffer size). However, when the 10 Gbps switch is
equipped with a larger buffer size (in this study, a 1,000-packet buffer size, which represents
approximately 1 MB), it easy outperforms* a topology with the intermediate 1 Gbps switch, no matter
what buffer size the latter holds.

Therefore, the use of an intermediate 1 Gbps switch is justified only if the 10 Gbps switch has small
buffers, in the order of 50 packets.

Note: It is important to observe that the simulations focus on long-duration FTP transfers. For short
durations, the results may vary.

9 References
ns-2 The Network Simulator. (2010). ns-2 The Network Simulator.

Huston, G. (2006). Gigabit TCP. The Internet Protocol Journal (IPJ), 9(2), 2-26.

Kurose, J. F., & Ross, K. W. (2009). Computer Networking: A Top-Down Approach (5th ed.). Addison-
Wesley Publishing Company.

Tanenbaum, A. (2002). Computer Networks. Prentice Hall Professional Technical Reference.

* performance, here, is throughput as measured in the TCP sinks for the FTP generators.

Report on switch buffers performance investigation Marcos Portnoi 14/33

Appendix A: Tcl simulation scripts

Presented here are the two main simulation scripts, written in Tcl. For the different simulations, a few
parameters were modified. Refer to each simulation report.

Table 8: Tcl script for topology 1 (with intermediate 1 Gbps switch).

#This simulation investigation intends to observe the behavior of a number of
TCP flows

#when traversing through switches of different bandwidths and different
buffer sizes.

#

#The question is: is TCP performance better when going through a slower
switch, but with

#larger buffers, then through a higher-speed switch with small buffers, or is
TCP

#performance better when going through a higher speed switch only with small
buffers?

#

#In this simulation, we will use a 1 Gbps switch and a 10 Gbps switch.
Buffer sizes of

#each will be modified.

#

#0bserve an important comment about ns behavior regarding the TCP variables
cwnd_ and

#window_, in the TCP source creation section further below.

#

August 2010 Marcos Portnoi.

--- Random Numbers and Seed

#Seed default random number generator with current time
global defaultRNG

$defaul tRNG seed 0O

#Number of TCP traffic sources (used to create traffic generators, nodes,
etc.)
set tcpGenerators 4

#Turn tracing on=1 or off=0

#be careful: ns can generate enormous trace files
set traceAll O

set traceQueue 1

#Queue size limits; ns default is 50
set tcpSourceQueueLimit 1000

set tcpConcurTrafficQueuelLimit 50
set switchlGbpsQueuelLimit 1000

set switchl0GbpsQueuelLimit 50

#Create simulator object

set ns [new Simulator]

set MAX_TIME 500.0; #set maximum simulation time; use at least a decimal to
prevent this constant being interpreted as a integer

—--- Define color index (class color)
list of colors available at ~ns/man/mann/colors.n

Report on switch buffers performance investigation Marcos Portnoi 15/33

$ns color 0 red

$ns color 1 blue

$ns color 2 chocolate
$ns color 3 yellow
$ns color 4 green

$ns color 5 tan

$ns color 6 gold

$ns color 7 black
$ns color 8 white

$ns color 9 darkblue

$ns color 10 cyan

$ns color 11 magenta

$ns color 12 orange

$ns color 13 bisque

$ns color 14 purple

$ns color 15 coral

$ns color 16 grey

$ns color 17 khaki

$ns color 18 AntiqueWhite
$ns color 19 aquamarine
$ns color 20 azure

$ns color 21 DarkSalmon
$ns color 22 DarkSeaGreen
$ns color 23 Ffirebrick

#Use dinamic routing
#$ns rtproto DV

#0pen files for trace if corresponding flags are set
if {$StraceAll} {

set nf [open out.nam w]

set tr [open out.tr w]

$ns namtrace-all $nf

$ns trace-all $tr

}
if {$traceQueue} {
set queueStats [open queueStats.csv w]
set queueAvgStats [open queueAvgStats.csv w]

}

set throughputs [open throughputs.csv w]
set tcpVariablesTrace [open tcpVariablesTrace.csv w]
set simParams [open simParams.txt w]

#Create nodes

#create main TCP sources and sinks

for {set i 0} {$i < $tcpGenerators} {incr i} {
set source($i) [$ns node]
set sink($i) [$ns node]

}

set switchlGbps [$ns node]

set switchlOGbps [$ns node]
set switchlOGbpsOut [$ns node]
#Concurrent traffic

set concurTraffic [$ns node]

Report on switch buffers performance investigation Marcos Portnoi 16/33

set sinkConcurTraffic [$ns node]

#Connect nodes
#default queue size limit is 50
for {set i 0} {$i1 < $tcpGenerators} {incr i} {
$ns duplex-link $source($1) $switchlGbps 1000Mb 1ms DropTail
$ns queue-limit $source($i) $switchlGbps $tcpSourceQueuelLimit
$ns duplex-link $switchl0GbpsOut $sink($i) 10000Mb 1ms DropTail
$ns queue-limit $switchl0GbpsOut $sink($i) $switchlOGbpsQueuelLimit

}

$ns duplex-link $switchlGbps $switchl0Gbps 1000Mb 1ms DropTail

$ns queue-limit $switchlGbps $switchlO0Gbps $switchlGbpsQueueLimit

$ns duplex-link $switchl0Gbps $switchl0GbpsOut 10000Mb 10ms DropTail

$ns queue-limit $switchl0Gbps $switchlOGbpsOut $switchl0GbpsQueuelLimit

$ns duplex-link $concurTraffic $switchl0Gbps 10000Mb 10ms DropTail

$ns queue-limit $concurTraffic $switchlOGbps $tcpConcurTrafficQueueLimit
$ns duplex-link $switchl0GbpsOut $sinkConcurTraffic 10000Mb 1ms DropTail
$ns queue-limit $switchl0GbpsOut $sinkConcurTraffic $switchlOGbpsQueuelLimit

#Set visual orientation for nam
for {set i1 0} {$1 < $tcpGenerators} {incr i} {
$ns duplex-link-op $source($i) $switchlGbps queuePos 0.5
$ns duplex-link-op $switchl0GbpsOut $sink($i) queuePos 0.5
}
$ns duplex-link-op $switchlGbps $switchl0Gbps queuePos 0.5
$ns duplex-link-op $switchlOGbps $switchl0GbpsOut queuePos 0.5
$ns duplex-link-op $concurTraffic $switchl0Gbps queuePos 0.5
$ns duplex-link-op $switchl0GbpsOut $sinkConcurTraffic queuePos 0.0

#modify here for automatic placement of n tcp sources

$ns duplex-link-op $source(0) $switchlGbps orient 1.67

$ns duplex-link-op $source(l) $switchlGbps orient 1.83

$ns duplex-link-op $source(2) $switchlGbps orient 0.17

$ns duplex-link-op $source(3) $switchlGbps orient 0.33

$ns duplex-link-op $switchlGbps $switchl0Gbps orient 0.0

$ns duplex-link-op $switchlOGbps $switchl0GbpsOut orient 0.0
#modify here for automatic placement of n tcp sinks

$ns duplex-link-op $switchl0GbpsOut $sink(0) orient 0.33

$ns duplex-link-op $switchl0GbpsOut $sink(l) orient 0.17

$ns duplex-link-op $switchl0GbpsOut $sink(2) orient 1.83

$ns duplex-link-op $switchl0GbpsOut $sink(3) orient 1.67

$ns duplex-link-op $concurTraffic $switchl0Gbps orient 1.5
$ns duplex-link-op $switchl0GbpsOut $sinkConcurTraffic orient 1.5

o
T

#Create TCP agents and TCPSinks, attach them to nodes and link them

#

#Also, set here the maximum window_ size (cwnd_ or congestion window) for TCP
#Here is the catch: ns allows TCP algorithm to grow cnwd accordingly if
there is no congestion. The

#TCP variables trace file can demonstrate that. However, the maximum burst
of TCP PDUs (segments) is

#limited to the maximum (advertised) window_size, regardless whether cwnd_
is larger. Thus, if in a specific moment,

#cwnd_ value is 2000 and window_ is set to 1000, TCP will send a burst of

Report on switch buffers performance investigation Marcos Portnoi 17/33

only 1000 PDUs and then wait for
#the corresponding ACKs (since the max advertised window_ size is 1000).
#
for {set i 0} {$1 < $tcpGenerators} {incr i} {

set connection_list [$ns create-connection-list TCP/Reno $source($i)
TCPSink $sink($i) $i]

set tcpSource($i) [lindex $connection_ list 0]

set tcpSink($i) [lindex $connection_list 1]

$tcepSource($i) set fid_ $i

$tepSink($i) set fid_ $i

$tcpSource($i) set window_ 64000

#$tcpSource($i) set windowlnit_ 64000

#$tcpSource($i) set packetSize_ 8000

$tcpSource($i) set maxburst_ 64000

$tepSink($i) set window_ 64000

#FlowlD for Concurrent traffic

set concurld 100

set connection_list [$ns create-connection-list TCP/Reno $concurTraffic
TCPSink $sinkConcurTraffic $concurld]

set tcpConcurTraffic [lindex $connection_list 0]

set tcpSinkConcurTraffic [lindex $connection_list 1]
$tcpConcurTraffic set fid_ $concurld
$tcpSinkConcurTraffic set fid_ $concurld
$tcpConcurTraffic set window_ 64000
#$tcpConcurTraffic set windowlnit_ 64000
#$tcpConcurTraffic set packetSize_ 8000
$tcpConcurTraffic set maxburst_ 64000
$tepSinkConcurTraffic set window_ 64000

#Create FTP applications and attach them to agents
for {set i 0} {$i < $tcpGenerators} {incr i} {

set Ftp($i1) [new Application/FTP]

$Ftp($i) attach-agent $tcpSource($i)

}
set ftpConcur [new Application/FTP]
$ftpConcur attach-agent $tcpConcurTraffic

#Create queue monitors if corresponding trace flag is set
ifT {$traceQueue} {
for {set i 0} {$i < $tcpGenerators} {incr i} {
set gmonSource($i) [$ns monitor-queue $source($i) $switchlGhps 1]
set gmonSink($i) [$ns monitor-queue $switchlOGbpsOut $sink($i) "]
}
set gmonSwitchl_10 [$ns monitor-queue $switchlGbps $switchl0Gbps ']
set gmonSwitchl0_out [$ns monitor-queue $switchlOGbps $switchl0GbpsOut

"]

"1
set gmonSwitchl0_SinkConcur [$ns monitor-queue $switchl0GbpsOut
$sinkConcurTraffic "]

}

#Create statistics record procedure
proc record {time} {
global tcpSource tcpConcurTraffic tcpSink tcpSinkConcurTraffic

set gmonConcur_Switchl0 [$ns monitor-queue $concurTraffic $switchlOGbps

Report on switch buffers performance investigation Marcos Portnoi 18/33

throughputs tcpGenerators tcpVariablesTrace
#Get instance of simulator
set ns [Simulator instance]

#Get current time
set now [$ns now]
puts "Recording at $now s..."

#print header only once to sink throughputs file

if {Snow == 0} {
puts $throughputs "Throughput MBps"
puts -nonewline $throughputs "time;"
#tcpSources
for {set i 0} {$1 < $tcpGenerators} {incr i} {

puts -nonewline $throughputs *"tcpSink($i);"

}

#concurrent traffic sink
puts $throughputs "tcpSinkConcurTraffic"

}
#How many bytes have been received by traffic sinks?
Problem here is that bytes i1n tcp-sink.cc is a INT value... max is

2147483647, and this is easily surpassed in gigabit links; bytes then WRAPS

To avoid this for 10Gbps of throughput, we can use the relation:

time = max_int_bytes / throughput

where time is the time step or resolution where bytes should be read
from TCPSink, and then set to zero again.

Thus, for the usual max_int, we have:

time = 2147483647 / 10,000,000,000 * 8 (multiply by 8 to equalize the
units to bytes) = 1.7179 s

Anything below that value should work accordingly, without integer
wrapping.

for {set i 0} {$i < $tcpGenerators} {incr i} {

set bw($i) [$tcpSink($i) set bytes]

set bwConcur [$tcpSinkConcurTraffic set bytes]

#Calculate bandwidth (MBit/s) and write to file

puts -nonewline $throughputs "$now;"

puts -nonewline "$now "

for {set i 0} {$i1 < $tcpGenerators} {incr i} {
puts -nonewline $throughputs "[expr $bw($i)/$time*8.0/1000000.0];"
puts -nonewline "[expr $bw($i)/$time*8.0/1000000.0];"

}

#concurrent traffic bandwidth (MBit/s)

puts $throughputs "[expr $bwConcur/$time*8.0/1000000.0]"

puts “[expr $bwConcur/$time*8.0/1000000.0]"

#Reset bytes values on traffic sinks

for {set i 0} {$i1 < $tcpGenerators} {incr i} {
$tcpSink($i) set bytes_ 0

}

$tcpSinkConcurTraffic set bytes 0
#record TCP variables

#print header only once to tcpVariablesTrace file
if {$now == 0} {

Report on switch buffers performance investigation Marcos Portnoi 19/33

puts $tcpVariablesTrace
""node;time;awnd_ ;rttvar_;backoff ;cwnd ;ssthresh_;rtt ;srtt "
}
#tcpSources
for {set i 0} {$i1 < $tcpGenerators} {incr i} {
puts $tcpVariablesTrace 'tcpSource($i);$now; [$tcpSource($i) set
awnd_7];[$tcpSource($i) set rttvar_];[$tcpSource($i) set
backoff_];[$tcpSource($i) set cwnd_];[$tcpSource($i) set
ssthresh_];[$tcpSource($i) set rtt_];[$tcpSource($i) set srtt "
}
#tcp concurrent traffic
puts $tcpVariablesTrace "tcpConcurTraffic;$now; [$tcpConcurTraffic set
awnd_7]; [$tcpConcurTraffic set rttvar_];[$tcpConcurTraffic set
backoff_];[$tcpConcurTraffic set cwnd_];[$tcpConcurTraffic set
ssthresh_]; [$tcpConcurTraffic set rtt_];[$tcpConcurTraffic set srtt_]"

#Re-schedule procedure
$ns at [expr $now+$time] *‘record $time"

3

#Schedule

$ns at “record 1.5"

$ns at "puts \"Starting simulation...\""

#ftp generators start synchronized!

for {set i 0} {$i1 < $tcpGenerators} {incr i} {
#$ns at [expr 0.0 + $i] "$Fftp($i) start”
$ns at "$ftp($i) start”

3

$ns at "$ftpConcur start"

for {set i 0} {$i1 < $tcpGenerators} {incr i} {
$ns at SMAX_TIME "$Ftp($i) stop”

3

$ns at SMAX_TIME "$FtpConcur stop"
$ns at SMAX TIME "Finish"

#Finish procedure
proc finish {} {
global ns nf tr throughputs tcpGenerators queueStats queueAvgStats
tcpSource tcpConcurTraffic simParams
global gmonSource gmonSink
global gmonSwitchl 10 gmonSwitchl0_out gmonConcur_Switchl0
gmonSwitchl10_SinkConcur
global tcpSourceQueueLimit tcpConcurTrafficQueueLimit
switchlGbpsQueueLimit switchl0GbpsQueueLimit
global MAX_TIME traceAll traceQueue
it {$traceAll} {
$ns flush-trace
#close trace files
close $nf
close $tr

close $throughputs
puts "Ending simulation. Simulation time: $MAX_TIME s"

pUtS =—====

Report on switch buffers performance investigation Marcos Portnoi 20/33

#outputting queue stats to screen, if trace flag is set
#queue sums stats
if {$traceQueue} {

puts '"\nStatistics:"

puts " Arrived
Lost Departed"

puts " Packets Bytes Throughput(Mbps)
Packets Bytes Packets Bytes Throughput(Mbps)*™

puts "--————

#sources

for {set i 0} {$i < $tcpGenerators} {incr i} {

puts -nonewline [format "Queue gmonSource($i): %7d %10d

%10F" [eval $gmonSource($i) set parrivals_] [eval $gmonSource($i) set
barrivals_] [expr [$gmonSource($i) set barrivals J/$MAX TIME*8.0/1000000.07]
puts -nonewline [format " %7d %10f" [eval $gmonSource($i) set
pdrops_] [eval $gmonSource($i) set bdrops_]]
puts [format " %7d %10d %10F'" [eval $gmonSource($i) set
pdepartures_] [eval $gmonSource($i) set bdepartures] [expr [$gmonSource($i)
set bdepartures_]/$MAX TIME*8.0/1000000.07]
¥
#sinks
for {set i 0} {$i < $tcpGenerators} {incr i} {
puts -nonewline [format "Queue gmonSink($i): %7d %10d %10F"
[eval $gmonSink($i1) set parrivals_] [eval $SgmonSink($i) set barrivals_] [expr
[$gmonSink($i) set barrivals_]/$VMAX_TIME*8.0/1000000.07]
puts -nonewline [format " %7d %10d" [eval $gmonSink($i) set
pdrops_] [eval $gmonSink($i) set bdrops_]]
puts [format " %7d %10d %10F" [eval $gmonSink($i) set
pdepartures_] [eval $gmonSink($i) set bdepartures] [expr [$gmonSink($i) set
bdepartures_]/3VMAX_TIME*8.0/1000000.0]]
¥
#others
set j O
foreach 1 {$gmonSwitchl 10 $gmonSwitchl0 out $gmonConcur_Switchl0
$gmonSwitch10_SinkConcur} {
puts -nonewline [format "Queue $i: %7d %10d %10F" [eval $i
set parrivals_] [eval $i set barrivals_] [expr [eval $i set
barrivals_]/$VMAX_ TIME*8.0/1000000.07]
puts -nonewline [format " %7d %10d" [eval $i set pdrops]
[eval $i set bdrops_]]
puts [format " %7d %10d %10F" [eval $i set pdepartures_]
[eval $i set bdepartures_] [expr [eval $i set
bdepartures_]/$MAX_TIME*8.0/1000000.0]]

}

#average queue sizes

puts ""\nAverage Queue Size: Packets Bytes sum_
(pkts)

puts M--mm

#sources

for {set i 0} {$i1 < $tcpGenerators} {incr i} {
set bytesInt($i) [eval $SgmonSource($i) get-bytes-integrator]
set pktsInt($i) [eval $gmonSource($i) get-pkts-integrator]

Report on switch buffers performance investigation Marcos Portnoi 21/33

set avg_queue_b($i1) [expr [$bytesIint($i) set sum_J/SMAX_TIME]
set avg_queue p($i) [expr [$pktsint($i) set sum_J/SVMAX TIME]
puts [format "Queue Source($i): %5.2F %8.2F
[$pktsInt($i) set sum_]" $Savg queue p($i) $avg queue b($i)]
}

#sinks

for {set i 0} {$1 < $tcpGenerators} {incr i} {
set bytesInt($i) [eval $gmonSink($i) get-bytes-integrator]
set pktsInt($i) [eval $gmonSink($i) get-pkts-integrator]
set avg_queue_b($i1) [expr [$bytesInt($i) set sum_J/$MAX_TIME]
set avg_queue_p($i) [expr [$pktsInt($i) set sum_J/SMAX_TIME]
puts [format ""Queue Sink($i): %5.2F %8.2F

[SpktsInt($i) set sum_]" $avg queue p($i) $avg queue b($i)]
}

#others
set j O
foreach 1 {$gmonSwitchl 10 $gmonSwitchl0 out $gmonConcur_Switchl0
$gmonSwitch10_SinkConcur} {
incr j
set bytesInt($j) [eval $i get-bytes-integrator]
set pktsInt($j) [eval $i get-pkts-integrator]
set avg_queue_b($)) [expr [$bytesIint($)) set sum_J/SMAX_TIME]
set avg_queue p($)) [expr [$pktsint($)) set sum_J/SVMAX TIME]
puts [format ""Queue $i: %5.2F %8.2F
[$pktsInt($)) set sum_]" S$avg queue p($j) $avg queue b($j)]

#outputting to csv files

#queue sums stats

puts $queueStats "Simulation time;$MAX_TIME"

puts $queueStats
""node;arrived_packets;arrived bytes;arrived_throughputMbps;lost packets;lost_
bytes;departed_packets;departed_bytes;departed throughputMbps"

#sources
for {set i 0} {$1 < $tcpGenerators} {incr i} {
puts $queueStats "gmonSource($i);[eval $gmonSource($i) set

parrivals_];[eval $gmonSource($i) set barrivals_];[expr [$gmonSource($i) set
barrivals_]/$MAX_TIME*8.0/1000000.0]; [eval $gmonSource($i) set pdrops_];[eval
$gmonSource($i) set bdrops_];[eval $gmonSource($i) set pdepartures_];[eval
$gmonSource($i) set bdepartures_];[expr [$gmonSource($i) set
bdepartures_]/$MAX_TIME*8.0/1000000.0]"

}

#sinks

for {set i 0} {$i < $tcpGenerators} {incr i} {

puts $queueStats "gmonSink($i);[eval $qgmonSink($i) set

parrivals_];[eval $gmonSink($i) set barrivals_];[expr [$gmonSink($i) set
barrivals_]/$MAX_TIME*8.0/1000000.0];[eval $gmonSink($i) set pdrops_];[eval
$gmonSink($i) set bdrops_];[eval $gmonSink($i) set pdepartures_];[eval
$gmonSink($i) set bdepartures_];[expr [$gmonSink($i) set
bdepartures_]/$MAX_TIME*8.0/1000000.0]"

}

#others

set j O

Report on switch buffers performance investigation Marcos Portnoi 22/33

foreach 1 {$gmonSwitchl 10 $gmonSwitchl0 out $gmonConcur_Switchl0
$gmonSwitchl10_SinkConcur} {
puts $queueStats "$i;[eval $i set parrivals_];[eval $i set
barrivals_];[expr [eval $i set barrivals_]/$MAX_TIME*8.0/1000000.0]; [eval $i
set pdrops_]:[eval $i set bdrops_];[eval $i set pdepartures_];[eval $i set
bdepartures_];[expr [eval $i set bdepartures_]/$MAX_TIME*8.0/1000000.0]"
}

#average queue sizes
puts $queueAvgStats
'"queue;average queue_size packets;average queue_size bytes;sum_pkts"

#sources

for {set i 0} {$i < $tcpGenerators} {incr i} {
set bytesInt($i) [eval $gmonSource($i) get-bytes-integrator]
set pktsInt($i) [eval $gmonSource($i) get-pkts-integrator]
set avg_queue_b($i1) [expr [$bytesIint($i) set sum_J/SMAX_TIME]
set avg_queue p($i) [expr [$pktsint($i) set sum_J/SVMAX TIME]
puts $queueAvgStats

“Source($i);$avg_queue p($i);$avg queue b($i);[$pktsInt($i) set sum_]"
}

#sinks

for {set i 0} {$1 < $tcpGenerators} {incr i} {
set bytesInt($i) [eval $gmonSink($i) get-bytes-integrator]
set pktsInt($i) [eval $gmonSink($i) get-pkts-integrator]
set avg_queue_b($i1) [expr [$bytesIint($i) set sum_J/$MAX_TIME]
set avg_queue_p($i) [expr [$pktsInt($i) set sum_J/SMAX_TIME]
puts $queueAvgStats

"Sink($i1);$avg_queue_p($i);Pavg_queue_ b($i); [$pktsint($i) set sum_]"
}

#others
set j O
foreach 1 {$gmonSwitchl 10 $gmonSwitchl0 out $gmonConcur_Switchl0
$gmonSwitch10_SinkConcur} {
incr j
set bytesInt($j) [eval $i get-bytes-integrator]
set pktsInt($j) [eval $i get-pkts-integrator]
set avg_queue_b($)) [expr [$bytesIint($)) set sum_J/SMAX_TIME]
set avg_queue p($)) [expr [$pktsint($)) set sum_J/SVMAX TIME]
puts $queueAvgStats
"$i1;%avg_queue_p($j);;$avg_queue_b($)); [$pktsint($j) set sum_]"

}

e
}
#——— end of queue statistics generation —--—————————————————
H———— Print simulation parameters ------—-

#print simulation time
puts $simParams "Simulation time: $MAX_TIME s\n"

#print queue limits

puts $simParams "Queue Limits:"

puts $simParams '"Queue Limit (packets)"
puts $simParams "---———————— - "

Report on switch buffers performance investigation Marcos Portnoi 23/33

foreach 1 {$tcpSourceQueueLimit $tcpConcurTrafficQueuelLimit
$switchlGbpsQueueLimit $switchlOGbpsQueueLimit} {
puts $simParams [format "'%-28s: %5d" $i1 [expr $i]]
}

#print TCP sources configuration parameters

puts $simParams "\n\nTCP Configuration Parameters:"

puts $simParams '‘node window_ windowlnit_ packetSize_
tepTick . maxburst_ maxcwnd_*"

puts $simParams "----————mm
for {set i 0} {$i < $tcpGenerators} {incr i} {
puts $simParams [format "tcpSource($i): %5d %5d
%5d %5.3F %6d %6d" [$tcpSource($i) set window]
[$tcpSource($i1) set windowlnit_] [$tcpSource($i) set packetSize]
[$tcpSource($i) set tcpTick] [$tcpSource($i) set maxburst] [$tcpSource($i)
set maxcwnd_7]

}
puts $simParams [format "tcpConcurTraffic: %6d %5d %5d
%5.3F %6d %6d" [$tcpConcurTraffic set window] [$tcpConcurTraffic

set windowlnit_] [$tcpConcurTraffic set packetSize]| [$tcpConcurTraffic set
tepTick] [$tepConcurTraffic set maxburst_] [$tcpConcurTraffic set maxcwnd_]]

H-———— end of printing simulation parameters ------

if {$StraceAll} {
puts "Generating nam..."
exec nam out.nam &
#puts "Generating xgraph..."
#exec xgraph throughputs.csv -geometry 800x600 &

b
exit O
b
$ns run

Table 9: Tcl script for topology 2 (without intermediate 1 Gbps switch).

#This simulation investigation intends to observe the behavior of a number of
TCP flows

#when traversing through switches of different bandwidths and different
buffer sizes.

#

#The question is: is TCP performance better when going through a slower
switch, but with

#larger buffers, then through a higher-speed switch with small buffers, or is
TCP

#performance better when going through a higher speed switch only with small
buffers?

#

#In this simulation, we will use 10 Gbps switches only. Buffer sizes of
#each will be modified.

#

#0bserve an important comment about ns behavior regarding the TCP variables
cwnd_ and

Report on switch buffers performance investigation Marcos Portnoi 24/33

#window_, in the TCP source creation section further below.
#
August 2010 Marcos Portnoi.

—--- Random Numbers and Seed

#Seed default random number generator with current time
global defaultRNG

$defaul tRNG seed 0

#Number of TCP traffic sources (used to create traffic generators, nodes,
etc.)
set tcpGenerators 4

#Turn tracing on=1 or off=0

#be careful: ns can generate enormous trace files
set traceAll 0O

set traceQueue 1

#Queue size limits; ns default is 50
set tcpSourceQueuelLimit 50

set tcpConcurTrafficQueueLimit 50
set switchlOGbpsQueueLimit 50

#set switchlGbpsQueueLimit 1000

#Create simulator object

set ns [new Simulator]

set MAX_TIME 500.0; #set maximum simulation time; use at least a decimal to
prevent this constant being interpreted as a integer

—--- Define color index (class color)

list of colors available at ~ns/man/mann/colors.n
$ns color O red

$ns color 1 blue

$ns color 2 chocolate
$ns color 3 yellow
$ns color 4 green

$ns color 5 tan

$ns color 6 gold

$ns color 7 black
$ns color 8 white

$ns color 9 darkblue

$ns color 10 cyan

$ns color 11 magenta

$ns color 12 orange

$ns color 13 bisque

$ns color 14 purple

$ns color 15 coral

$ns color 16 grey

$ns color 17 khaki

$ns color 18 AntiqueWhite
$ns color 19 aquamarine
$ns color 20 azure

$ns color 21 DarkSalmon
$ns color 22 DarkSeaGreen
$ns color 23 firebrick

#Use dinamic routing

Report on switch buffers performance investigation Marcos Portnoi 25/33

#$ns rtproto DV

#0pen files for trace if corresponding flags are set
ifT {$traceAll} {

set nf [open out.nam w]

set tr [open out.tr w]

$ns namtrace-all $nf

$ns trace-all $tr

}
ifT {$traceQueue} {
set queueStats [open queueStats.csv w]
set queueAvgStats [open queueAvgStats.csv w]

}

set throughputs [open throughputs.csv w]
set tcpVariablesTrace [open tcpVariablesTrace.csv w]
set simParams [open simParams.txt w]

#Create nodes

#create main TCP sources and sinks

for {set i1 0} {$i < $tcpGenerators} {incr i} {
set source($1) [$ns node]
set sink($i) [$ns node]

}

#set switchlGbps [$ns node]

set switchl0Gbps [$ns node]

set switchlOGbpsOut [$ns node]
#Concurrent traffic

set concurTraffic [$ns node]

set sinkConcurTraffic [$ns node]

#Connect nodes
#default queue size limit is 50
for {set i 0} {$i1 < $tcpGenerators} {incr i} {
$ns duplex-link $source($i) $switchl0Gbps 10000Mb 1ms DropTail
$ns queue-limit $source($i) $switchlOGbps $tcpSourceQueuelLimit
$ns duplex-link $switchl0GbpsOut $sink($i) 10000Mb 1ms DropTail
$ns queue-limit $switchl0GbpsOut $sink($i) $switchlOGbpsQueuelLimit

}

#$ns duplex-link $switchlGbps $switchl0Gbps 1000Mb 1ms DropTail

#%ns queue-limit $switchlGbps $switchlOGbps $switchlGbpsQueuelLimit

$ns duplex-link $switchl0Gbps $switchl0GbpsOut 10000Mb 10ms DropTail

$ns queue-limit $switchl0Gbps $switchl0GbpsOut $switchl0GbpsQueuelLimit

$ns duplex-link $concurTraffic $switchl0Gbps 10000Mb 10ms DropTail

$ns queue-limit $concurTraffic $switchl0Gbps $tcpConcurTrafficQueueLimit
$ns duplex-link $switchl0GbpsOut $sinkConcurTraffic 10000Mb 1ms DropTail
$ns queue-limit $switchl0GbpsOut $sinkConcurTraffic $switchl0GbpsQueuelLimit

#Set visual orientation for nam

for {set i 0} {$i < $tcpGenerators} {incr i} {
$ns duplex-link-op $source($i) $switchlOGbps queuePos 0.5
$ns duplex-link-op $switchl0GbpsOut $sink($i) queuePos 0.5

}
#%$ns duplex-link-op $switchlGbps $switchl0Gbps queuePos 0.5

Report on switch buffers performance investigation Marcos Portnoi 26/33

$ns duplex-link-op $switchlOGbps $switchl0GbpsOut queuePos 0.5
$ns duplex-link-op $concurTraffic $switchl0Gbps queuePos 0.5
$ns duplex-link-op $switchl0GbpsOut $sinkConcurTraffic queuePos 0.0

#modify here for automatic placement of n tcp sources

$ns duplex-link-op $source(0) $switchlOGbps orient 1.67

$ns duplex-link-op $source(l) $switchlOGbps orient 1.83

$ns duplex-link-op $source(2) $switchl0Gbps orient 0.17

$ns duplex-link-op $source(3) $switchlO0Gbps orient 0.33

#%ns duplex-link-op $switchlGbps $switchl0Gbps orient 0.0
$ns duplex-link-op $switchl0Gbps $switchl0GbpsOut orient 0.0
#modify here for automatic placement of n tcp sinks

$ns duplex-link-op $switchl0GbpsOut $sink(0) orient 0.33

$ns duplex-link-op $switchl0GhbpsOut $sink(l) orient 0.17

$ns duplex-link-op $switchl0GbpsOut $sink(2) orient 1.83

$ns duplex-link-op $switchl0GbpsOut $sink(3) orient 1.67

$ns duplex-link-op $concurTraffic $switchlOGbps orient 1.5
$ns duplex-link-op $switchl0GbpsOut $sinkConcurTraffic orient 1.5

1y
1T
T

#Create TCP agents and TCPSinks, attach them to nodes and link them
#
#Also, set here the maximum window_ size (cwnd_ or congestion window) for TCP
#Here is the catch: ns allows TCP algorithm to grow cnwd accordingly if
there is no congestion. The
#TCP variables trace file can demonstrate that. However, the maximum burst
of TCP PDUs (segments) is
#limited to the maximum (advertised) window_size, regardless whether cwnd_
is larger. Thus, if in a specific moment,
#cwnd_ value is 2000 and window_ is set to 1000, TCP will send a burst of
only 1000 PDUs and then wait for
#the corresponding ACKs (since the max advertised window_ size is 1000).
#
for {set i 0} {$i1 < $tcpGenerators} {incr i} {

set connection_list [$ns create-connection-list TCP/Reno $source($i)
TCPSink $sink($i) $i]

set tcpSource($i) [lindex $connection list 0]

set tcpSink($i) [lindex $connection_list 1]

$tcpSource($i) set Fid_ $i

$tepSink($i) set fid_ $i

$tcpSource($i) set window_ 64000

#$tcpSource($i) set windowlnit_ 64000

#$tcpSource($i) set packetSize 8000

$tepSource($i) set maxburst_ 64000

$tepSink($i) set window_ 64000

#flowlD for Concurrent traffic

set concurld 100

set connection_list [$ns create-connection-list TCP/Reno $concurTraffic
TCPSink $sinkConcurTraffic $concurld]

set tcpConcurTraffic [lindex $connection_list 0]

set tcpSinkConcurTraffic [lindex $connection_list 1]

$tcpConcurTraffic set fid_ $concurld

$tcpSinkConcurTraffic set Fid_ $concurld

$tcpConcurTraffic set window_ 64000

#$tcpConcurTraffic set windowlnit_ 64000

Report on switch buffers performance investigation Marcos Portnoi 27/33

#$tcpConcurTraffic set packetSize 8000
$tcpConcurTraffic set maxburst_ 64000
$tcpSinkConcurTraffic set window_ 64000

#Create FTP applications and attach them to agents
for {set i 0} {$i1 < $tcpGenerators} {incr i} {

set Tftp($i1) [new Application/FTP]

$Ftp($i) attach-agent $tcpSource($i)

}
set ftpConcur [new Application/FTP]
$fFtpConcur attach-agent $tcpConcurTraffic

#Create queue monitors if corresponding trace flag is set
ifT {$traceQueue} {
for {set i 0} {$i1 < $tcpGenerators} {incr i} {
set gmonSource($i) [$ns monitor-queue $source($i) SswitchlOGbps "]
set gmonSink($i) [$ns monitor-queue $switchlOGbpsOut $sink($i) "]
}
#set gmonSwitchl 10 [$ns monitor-queue $switchlGbps $switchl0Gbps "]
set gmonSwitchl0 out [$ns monitor-queue $switchl0Gbps $switchl0GbpsOut
"1

set gmonConcur_Switchl0 [$ns monitor-queue $concurTraffic $switchlOGhbps
llll]

set gmonSwitchl0_SinkConcur [$ns monitor-queue $switchl0GbpsOut
$sinkConcurTraffic "]

}

#Create statistics record procedure
proc record {time} {

global tcpSource tcpConcurTraffic tcpSink tcpSinkConcurTraffic
throughputs tcpGenerators tcpVariablesTrace

#Get instance of simulator

set ns [Simulator instance]

#Get current time
set now [$ns now]
puts "Recording at $now s..."

#print header only once to sink throughputs file

if {Snow == 0} {
puts $throughputs *“Throughput MBps™
puts -nonewline $throughputs *"time;"
#tcpSources
for {set i 0} {$i1 < $tcpGenerators} {incr i} {

puts -nonewline $throughputs *"tcpSink($i);"

}

#concurrent traffic sink
puts $throughputs "tcpSinkConcurTraffic”

}
#How many bytes have been received by traffic sinks?
Problem here is that bytes 1in tcp-sink.cc is a INT value... max is

2147483647, and this is easily surpassed in gigabit links; bytes then WRAPS
To avoid this for 10Gbps of throughput, we can use the relation:
time = max_int_bytes / throughput
where time is the time step or resolution where bytes should be read

Report on switch buffers performance investigation Marcos Portnoi 28/33

from TCPSink, and then set to zero again.

Thus, for the usual max_int, we have:

time = 2147483647 / 10,000,000,000 * 8 (multiply by 8 to equalize the
units to bytes) = 1.7179 s

Anything below that value should work accordingly, without integer
wrapping.

for {set i1 0} {$1 < $tcpGenerators} {incr i} {

set bw($i) [$tcpSink($i) set bytes]

set bwConcur [$tcpSinkConcurTraffic set bytes]

#Calculate bandwidth (MBit/s) and write to file

puts -nonewline $throughputs "$now;""

puts -nonewline "$now "

for {set i 0} {$i1 < $tcpGenerators} {incr i} {
puts -nonewline $throughputs "[expr $bw($i)/$time*8.0/1000000.0];"
puts -nonewline "[expr $bw($i)/$time*8.0/1000000.0];"

}

#concurrent traffic bandwidth (MBit/s)

puts $throughputs "[expr $bwConcur/$time*8.0/1000000.0]"

puts "[expr $bwConcur/$time*8.0/1000000.0]"

#Reset bytes values on traffic sinks

for {set i 0} {$1 < $tcpGenerators} {incr i} {
$tcpSink($i) set bytes_ 0

}

$tcpSinkConcurTraffic set bytes 0

#record TCP variables
#print header only once to tcpVariablesTrace file
if {Snow == 0} {
puts $tcpVariablesTrace
"node;time;awnd_;rttvar_;backoff ;cwnd ;ssthresh ;rtt ;srtt "
}
#tcpSources
for {set i 0} {$i1 < $tcpGenerators} {incr i} {
puts $tcpVariablesTrace "tcpSource($i);$now; [$tcpSource($i) set
awnd_7]; [$tcpSource($i) set rttvar_];[$tcpSource($i) set
backoff _];[$tcpSource($i) set cwnd_];[$tcpSource($i) set
ssthresh_7];[$tcpSource($i) set rtt_];[$tcpSource($i) set srtt "
}
#tcp concurrent traffic
puts $tcpVariablesTrace "tcpConcurTraffic;$now;[$tcpConcurTraffic set
awnd_7];[$tcpConcurTraffic set rttvar_];[$tcpConcurTraffic set
backoff_];[$tcpConcurTraffic set cwnd_];[$tcpConcurTraffic set
ssthresh_]; [$tcpConcurTraffic set rtt_];[$tcpConcurTraffic set srtt_]"

#Re-schedule procedure
$ns at [expr $now+$time] *‘record $time"

}

#Schedule

$ns at 0.0 "record 1.5"

$ns at 0.0 "puts \'"Starting simulation..._\""

#ftp generators start synchronized!

for {set i 0} {$i1 < $tcpGenerators} {incr i} {
#$ns at [expr 0.0 + $i] "$ftp($i) start”

Report on switch buffers performance investigation Marcos Portnoi 29/33

$ns at 0.0 "$Fftp($i) start”

}

$ns at 0.0 "$FftpConcur start"

for {set i 0} {$1 < $tcpGenerators} {incr i} {
$ns at SMAX_TIME "$Ftp($i) stop”

}

$ns at SMAX TIME "$FtpConcur stop™
$ns at SMAX TIME "“Finish"

#Finish procedure
proc finish {} {
global ns nf tr throughputs tcpGenerators queueStats queueAvgStats
tcpSource tcpConcurTraffic simParams
global gmonSource gmonSink
#global gmonSwitchl_10
global gmonSwitchl0_out gmonConcur_Switchl0 gmonSwitchl0_SinkConcur
global tcpSourceQueueLimit tcpConcurTrafficQueueLimit
#global switchlGbpsQueuelLimit
global switchl10GbpsQueueLimit
global MAX_TIME traceAll traceQueue
if {$StraceAll} {
$ns Flush-trace
#close trace files
close $nf
close $tr

close $throughputs
puts "Ending simulation. Simulation time: $MAX_TIME s"

pUtS =—====
B generating queue statistics -——-———————————————————-

#outputting queue stats to screen, if trace flag is set
#queue sums stats
ifT {$traceQueue} {

puts '"\nStatistics:"

puts " Arrived
Lost Departed”

puts " Packets Bytes Throughput(Mbps)
Packets Bytes Packets Bytes Throughput(Mbps)™

puts "-——————.— - ——— ——— ——— —————————- —- - ., — ——

#sources

for {set i 0} {$i1 < $tcpGenerators} {incr i} {

puts -nonewline [format "Queue gmonSource($i): %7d %10d

%10f" [eval $gmonSource($i) set parrivals] [eval $gmonSource($i) set
barrivals_] [expr [$gmonSource($i) set barrivals_]/$MAX_TIME*8.0/1000000.07]
puts -nonewline [format " %7d %10f" [eval $gmonSource($i) set
pdrops_] [eval $gmonSource($i) set bdrops_ 1]
puts [format " %7d %10d %10F" [eval $gmonSource($i) set
pdepartures_] [eval $gmonSource($i) set bdepartures_] [expr [$gmonSource($i)
set bdepartures_]/$VMAX_TIME*8.0/1000000.0]]
}
#sinks
for {set i 0} {$i1 < $tcpGenerators} {incr i} {
puts -nonewline [format "Queue gmonSink($i): %7d %10d %10F"

Report on switch buffers performance investigation Marcos Portnoi 30/33

[eval $gmonSink($i) set parrivals_] [eval $gmonSink($i) set barrivals_] [expr
[$gmonSink($i) set barrivals_]/$VMAX_TIME*8.0/1000000.07]
puts -nonewline [format " %7d %10d" [eval $gmonSink($i) set
pdrops_] [eval $gmonSink($i) set bdrops_]]
puts [format " %7d %10d %10F" [eval SgmonSink($i) set
pdepartures_] [eval $gmonSink($i) set bdepartures] [expr [$gmonSink($i) set
bdepartures_]/3VMAX_TIME*8.0/1000000.0]]
}
#others
set j O
foreach 1 {$gmonSwitchl0 out $gmonConcur_Switchl0
$gmonSwitch10_SinkConcur} {
puts -nonewline [format "Queue $i: %7d %10d %10F" [eval $i
set parrivals_] [eval $i set barrivals_] [expr [eval $i set
barrivals_]/$MAX TIME*8.0/1000000.07]
puts -nonewline [format " %7d %10d" [eval $i set pdrops]
[eval $i set bdrops_]]
puts [format " %7d %10d %10F" [eval $i set pdepartures_]
[eval $i set bdepartures_] [expr [eval $i set
bdepartures_]/3MAX_TIME*8.0/1000000.0]]
}

#average queue sizes

puts ""\nAverage Queue Size: Packets Bytes sum_
(pkts)

puts M--mm

#sources

for {set i 0} {$i1 < $tcpGenerators} {incr i} {
set bytesInt($i) [eval $SgmonSource($i) get-bytes-integrator]
set pktsInt($i) [eval $gmonSource($i) get-pkts-integrator]
set avg_queue_b($i) [expr [$bytesInt($i) set sum_J/SMAX_TIME]
set avg_queue_ p($i) [expr [$pktsIint($i) set sum_ J/SMAX TIME]
puts [format "Queue Source($i): %5.2F %8.2F

[SpktsInt($i) set sum_]" $avg queue p($i) $avg queue b($i)]
}

#sinks

for {set i 0} {$i1 < $tcpGenerators} {incr i} {
set bytesInt($i) [eval $gmonSink($i) get-bytes-integrator]
set pktsInt($i) [eval $SgmonSink($i) get-pkts-integrator]
set avg_queue_ b($i) [expr [SbytesInt($i) set sum J/SMAX TIME]
set avg_queue p($i) [expr [$pktsint($i) set sum_J/SVMAX TIME]
puts [format "Queue Sink($i): %5.2F %8.2F

[SpktsInt($i) set sum_]" Savg queue p($i) Savg queue b($i)]
}

#others
set j O
foreach 1 {$gmonSwitchl0 out $gmonConcur_Switchl0
$gmonSwitchl0_SinkConcur} {
incr j
set bytesInt($)) [eval $i get-bytes-integrator]
set pktsint($)) [eval $i get-pkts-integrator]
set avg_queue_b($)) [expr [$bytesIint($)) set sum_J/SMAX_TIME]

Report on switch buffers performance investigation Marcos Portnoi 31/33

set avg_queue p($)) [expr [Spktsint($)) set sum_J/SVMAX TIME]

puts [format ""Queue $i: %5.2F %8.2F
[$pktsInt($)) set sum_]" Savg queue p($j) S$avg queue b($j)]
}
e

#outputting to csv files

#queue sums stats

puts $queueStats "Simulation time;$MAX_TIME"

puts $queueStats
""node;arrived_packets;arrived bytes;arrived_throughputMbps;lost packets;lost_
bytes;departed_packets;departed_bytes;departed throughputMbps"

#sources
for {set i 0} {$i < $tcpGenerators} {incr i} {
puts $queueStats "gmonSource($i);[eval $gmonSource($i) set
parrivals_];[eval $gmonSource($i) set barrivals_];[expr [$gmonSource($i) set
barrivals_]/$MAX_TIME*8.0/1000000.0]; [eval $gmonSource($i) set pdrops_];[eval
$gmonSource($i) set bdrops_];[eval $gmonSource($i) set pdepartures_];[eval
$gmonSource($i) set bdepartures_];[expr [$gmonSource($i) set
bdepartures_]/$MAX_TIME*8.0/1000000.0]"
}
#sinks
for {set i1 0} {$i < $tcpGenerators} {incr i} {
puts $queueStats "gmonSink($i);[eval $gmonSink($i) set
parrivals_];[eval $gmonSink($i) set barrivals_];[expr [$gmonSink($i) set
barrivals_]/$MAX_TIME*8.0/1000000.0];[eval $gmonSink($i) set pdrops_];[eval
$gmonSink($i) set bdrops_];[eval $gmonSink($i) set pdepartures_];[eval
$gmonSink($i) set bdepartures_];[expr [$gmonSink($i) set
bdepartures_]/$MAX_TIME*8.0/1000000.0]"
}
#others
set j
foreach i {$gmonSwitchl10 out $gmonConcur_Switchl0
$gmonSwitch10_SinkConcur} {
puts $queueStats "$i;[eval $i set parrivals_];[eval $i set
barrivals_];[expr [eval $i set barrivals_]/$MAX_TIME*8.0/1000000.0];[eval $i
set pdrops_];[eval $i set bdrops_];[eval $i set pdepartures_];[eval $i set
bdepartures_];[expr [eval $i set bdepartures_]/$MAX_TIME*8.0/1000000.0]"
}

#average queue sizes
puts $queueAvgStats
"queue;average queue_size packets;average_ queue_size_bytes;sum_pkts™
#sources
for {set i 0} {$i1 < $tcpGenerators} {incr i} {
set bytesInt($i) [eval $SgmonSource($i) get-bytes-integrator]
set pktsInt($i) [eval $gmonSource($i) get-pkts-integrator]
set avg_queue_b($i) [expr [$bytesInt($i) set sum_J/SMAX_TIME]
set avg_queue p($i) [expr [$pktsint($i) set sum_J/SVMAX TIME]
puts $queueAvgStats
"'Source($i);%avg_queue_p($i);Pavg_queue_b($i); [$pktsInt($i) set sum_]"
}

#sinks
for {set i 0} {$i1 < $tcpGenerators} {incr i} {
set bytesInt($i) [eval $gmonSink($i) get-bytes-integrator]

Report on switch buffers performance investigation Marcos Portnoi 32/33

set pktsInt($i) [eval $gmonSink($i) get-pkts-integrator]
set avg_queue_b($i1) [expr [$bytesInt($i) set sum_J/$MAX_TIME]
set avg_queue_p($i) [expr [$pktsint($i) set sum_J/SMAX_TIME]
puts $queueAvgStats
"Sink($i1);$avg_queue_p($i);Pavg_queue_ b($i); [$pktsint($i) set sum_]"
}

#others
set j O
foreach 1 {$gmonSwitchl0 out $gmonConcur_Switchl0
$gmonSwitch10_SinkConcur} {
incr j
set bytesInt($j) [eval $i get-bytes-integrator]
set pktsint($)) [eval $i get-pkts-integrator]
set avg_queue_b($)) [expr [$bytesIint($)) set sum_J/SMAX_TIME]
set avg_queue p($)) [expr [$pktsint($)) set sum_J/SVMAX TIME]
puts $queueAvgStats
"$i;$avg_queue_p($j);$avg_queue_b($j); [Spktsint($j) set sum_]"

}

e
}
#——— end of queue statistics generation --—————————————————
H———— Print simulation parameters -------

#print simulation time
puts $simParams "Simulation time: $MAX TIME s\n"

#print queue limits

puts $simParams "Queue Limits:"

puts $simParams '"Queue Limit (packets)"

puts $simParams "M—————— - m "

foreach 1 {$tcpSourceQueuelLimit $tcpConcurTrafficQueuelLimit
$switchl0GbpsQueueLimit} {

puts $simParams [format ""%-28s: %5d" $i [expr $i]]
}

#print TCP sources configuration parameters

puts $simParams "\n\nTCP Configuration Parameters:"

puts $simParams "‘node window__ windowlnit_ packetSize_
tepTick . maxburst_ maxcwnd_""

puts $simParams "——————

for {set i 0} {$1 < $tcpGenerators} {incr i} {

puts $simParams [format "“tcpSource($i): %5d %5d

%5d %5.3F %6d %6d" [$tcpSource($i) set window_]
[$tcpSource($i) set windowlnit_] [$tcpSource($i) set packetSize]
[$tcpSource($i) set tcpTick] [$tcpSource($i) set maxburst] [$tcpSource($i)
set maxcwnd_1]]

puts $simParams [format "tcpConcurTraffic: %6d %5d %5d
%5.3F %6d %6d" [$tcpConcurTraffic set window] [$tcpConcurTraffic
set windowlnit_] [$tcpConcurTraffic set packetSize_] [$tcpConcurTraffic set
tepTick] [$tepConcurTraffic set maxburst_] [$tcpConcurTraffic set maxcwnd_]]

H————— end of printing simulation parameters ------

Report on switch buffers performance investigation Marcos Portnoi 33/33

if {$StraceAll} {
puts "Generating nam..."
exec nam out.nam &
#puts "Generating xgraph..."
#exec xgraph throughputs.csv -geometry 800x600 &

}

exit O

}

$ns run

