Os Computadores

- Nós conseguimos guardar informações sob a forma de imagens e cenas
- Entretanto, o computador é uma máquina, sendo muito difícil construir circuitos para que ele guarde imagens, tal como o cérebro
- ☐ Então como é que as informações são *manipuladas* pelo computador?

■A maneira mais fácil:

presença/ausência de sinal elétrico

Ligado/desligado aceso/apagado 1/0

Como tem-se dois estados, chama-se essa representação de Codificação Binária

■A maneira mais fácil:

Exemplo: O número 2 em binário equivale a

1

0

... O que pode ser representado por

- □ A menor unidade que transita em um computador é o BIT
- Um símbolo, seja ele uma letra, um número, um sinal, é representado por um conjunto de bits
 - ∠ A esse conjunto de Bits denomina-se BYTE
- ☐ Tipicamente, 1 (um) Byte tem 8 (oito) Bits

- Por esse motivo, alguns componentes do computador são dimensionados em Bits ou Bytes
- □ Como cada símbolo precisa de 1 byte para ser representado, um texto precisará de vários bytes

Qualquer texto ou informação serão guardados no computador sob a forma de

Arquivos de Dados

□ Como o sistema de codificação é binário, as quantidades que representam grupos de bytes armazenados ou transportados no computador são potências de 2.

Assim:

```
∠1 KByte = 1.024 Bytes
```

∠1 MByte = 1.024 *KBytes* ou

1.048.576 Bytes

∠1 GByte = 1.024 MBytes ou

1.048.576 KBytes ou

1.073.741.824 Bytes

∠ KByte = KiloByte = KB = K

∠ MByte = MegaByte = MB = Mega

∠ GByte = GigaByte = GB = Giga

Os dados e as informações em um computador são representados internamente das seguintes formas:

- Representação Alfanumérica
 - ✔ Representação ASCII
 - Toriginalmente utilizava 7 bits, suficientes para representar 128 caracteres
 - só serve para língua inglesa, pois não inclui acentos e símbolos utilizados em alguns idiomas
 - atualmente utiliza 8 bits, mas o problema da representação limitada continua

- Representação Alfanumérica
 - ✔ Representação EBCDIC
 - assim como ASCII, também utilizava 7 bits inicialmente e hoje utiliza 8 bits
 - usado
 - nos mainframes IBM
 - computadores Macintosh (Apple)
 - apesar de utilizar o mesmo número de bits que o ASCII, a representação de um símbolo difere nos dois códigos

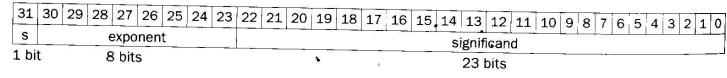
- Representação Alfanumérica
 - ✔ Representação UNICODE
 - sos códigos anteriores são insuficientes para representar símbolos de outros idiomas além do inglês
 - este código amplia a representação para 16 bits, o que possibilita mais de 65.000 símbolos
 - **adotado** por
 - Apple, HP, IBM, Microsoft, Oracle, Sun, Sybase, Unisys

Caractere	Representação ASCII	Representação EBCDIC
0	00110000	11110000
1	00110001	11110001
2	00110010	11110010
3	00110011	11110011
4	00110100	11110100
5	00110101	11110101
6	00110110	11110110
7	00110111	11110111
8	00111000	11111000
9	00111001	11111001
Α	01000001	11000001
В	01000010	11000010
С	01000011	11000011
D	01000100	11000100
E	01000101	11000101
F	01000110	11000110
G	01000111	11000111
Н	01001000	11001000
1	01001001	11001001
J	01001010	11010001
K	01001011	11010010
L	01001100	11010011
M	01001101	11010100
N	01001110	11010101
0	01001111	11010110
P	01010000	11010111
a	01010001	11011000
R	01010010	11011001
S	01010011	11100010
Т	01010100	11100011
U	01010101	11100100
V	01010110	11100101
W	01010111	11100110
×	01011000	11100111
Y	01011001	11101000
z	01011010	11101001

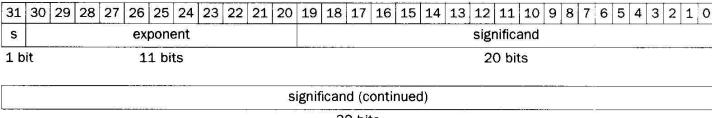
□ Representação Numérica

- ∠ Os códigos de caracteres não servem para representar números fracionários
- - os números são representados como potências de 2:

```
(-1)^S x F x 2^E, onde S = sinal
```


F = valor ponto flutuante

E = expoente


- Precisão simples: 32 bits
- Precisão dupla: 64 bits

■ Representação Numérica

✔ Padrão IEEE 754

simples

32 bits

dupla

- Outras bases de representações
 - Algumas vezes são utilizadas outras bases de representação além da binária para facilitar a escrita
 - **∠** Bases mais usadas
 - Hexadecimal base 16
 - Octal base 8
 - ✓ Isso não quer dizer que o computador represente internamente nessas bases!
 - Elas são usadas por programadores