
LinBox Lab – University of Delaware

D. Saunders, Z. Wan, D. Roche, C. Devore

(A. Duran, E. Schrag, R. Seagraves, B. Hovinen, ...).

Thanks to the National Science Foundation

1

Tools for exact linear algebra http://linalg.org/

Mirror sites are maintained at linalg.org (North America) and linalg.net (Europe). Local links: org, net.

Project LinBox: Exact computational linear algebra

LinBox is a C++ template library for
exact, high-performance linear algebra
computation with sparse and structured
matrices over the integers and over
finite fields.

No stable releases available at this
time

Current development version: 0.1.3

Comments? Bug reports?
Please contact us at
linbox@yahoogroups.com

Overview
News
People
Download
Documentation
Developer resources
Links
Support

We offer related packages: (1) A gap
share package for Simplicial
Homology computation and for Smith
normal forms, (2) A package for
access to linbox computation from
Maple.

GAP homology package
Maple-LinBox package

We offer a server which provides
linear algebra computations including
the Smith normal form of a matrix. A
second server computes the full
homology of simplicial complexes.
Use our compute cycles gratis.

Online computing servers

Comments? Bug reports? Please contact us at
linbox@yahoogroups.com
Page prepared by the LinBox team <linbox@yahoogroups.com>
This page’s URL:
http://www.linalg.org/ (US), http://www.linalg.net/ (Europe)
Page major version change: 4 August 2002
Page last updated: 7 March 2003
This material is based upon work supported by the National Science Foundation under grants
9726763, 9712362, 0098284, and 0112807. Any opinions, findings and conclusions or
recomendations expressed in this material are those of the author(s) and do not necessarily reflect the

2

Problems solved by LinBox

• Do exact rank, Smith form, determinant, system solve, min-

poly, charpoly of integer matrices (via modular computation

plus Chinese Remainder Algorithm or Hensel lifting).

• Particularly, use rank and Smith form of {0,1} or {0,1,−1}
matrices for Homology and other incidence matrix situations.

– Homology of simplicial complexes.

– multivariate polynomial equation system solving.

• Problems may be huge (100,000 equations, millions of nonzero

entries.)

3

Picture of Trefethen and TF class matrices

Very sparse matrices, about 2 logn non-zero entries per row in

Trefethen matrices.

4

Methods

• Blackbox (BB) methods are excellent for large sparse matri-

ces over finite fields. Wiedemann, Kaltofen-Saunders, Dumas-

Saunders-Villard...

• Sparse elimination (such as SuperLU of Demmel, et al) is

excellent on matrices which are small, or slow to fill in. Duran

adapted it to work over finite fields.

• Other eliminations are fast by using floating point BLAS.

5

Example 1. Engineered algorithm for rank

Tref500 TF12 Rand600 IG5_10 Saylr3 Tref1000 TF13 F855 Rnd3_15 Rnd3_45 Rnd3_30 TF14 tols4000 Tref5000 Rnd6_30 Rnd6_45 TF15 Tref10000 IG5_15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

best/t(A3)

best/(2t(A4))

best/t(COLAMD)

best/t(BB)

Matrices ordered by size

R
e
la

ti
v
e
 e

ff
ic

ie
n
c
ie

s

• Blackbox method

• Generalized SuperLU

• racing - guaranteed 1/2 efficiency of best of BB, GSLU

• hybrid - elim until BB estimate is faster

6

TF family

107 236 552 1302 3160 7742 19321
0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

BB

GSLU

matrix order

s
p

e
e

d
u

p

The crossover is near order 1000

7

(slide from Williamsburg report)

Conclusions

An adaptive hybrid of elimination and blackbox methods is advis-

able and effective for exact linear algebra over finite fields (and

over the integers).

A left looking elimination such as SuperLU lends itself to early

determination of excess fill-in and switch to an indirect (black-

box) method.

High performance exact linear algebra is implemented in LinBox,

available at linalg.org.

8

Example 3: The Generic Design methodology

Speedup of ZeroOne over SparseMatrix for 32 bit prime

bcsstk29 bcsstk30 bcsstk31 bcsstk32 bcsstk33

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

matrix name

z
e
ro

o
n
e
 r

e
p
.

s
p
e
e
d
u
p
 o

v
e
r

s
p
a
rs

e
 r

e
p
.

ZeroOne takes 2/3 as long as SparseMatrix for matrix-vector products.

9

Example 2. Rank of matrices of rational functions

with rational number coefficients.

2x2+7
23x−5 33x5 + x + 2 x

x100−3
x

x100−5
3x2+4
23x−5 94x4 + x3 + 10

3x7 + x2 − x x
x100−8

5x2+1
23x−5

...evaluated at a random point (in this example x = 1).

1/2 36 −1/2
−1/4 7/18 105

3 −1/7 1/3

...mod a random prime (in this example p = 11).

6 3 5
8 1 6
3 3 4

10

• This is a very fast heuristic when p is a wordsize prime and

the evaluation point is random from a sufficiently large set.

• It becomes a slower Monte Carlo algorithm with a proven

upper bound on the probability of error, if sufficiently many

primes and points are used.

• It becomes a very sloowww deterministic algorithm, if a really

large number of points and primes are used (as calculated

using formulas for bounds on determinants).

• This work won Carl Devore and me the Computer Algebra

Nederland Foundation Prize - 1000 Euros.

11

Example 4: Quickly and exactly solve a

challenge problem

In 2002, Prof. L. N. Trefethen posted “The SIAM 100-Dollar,

100-Digit Challenge”.∗ Here is problem 7 (of 10):

Let A be the 20,000×20,000 matrix whose entries are

zero everywhere except for the primes 2,3,5,7, ...,224737

along the main diagonal and the number 1 in all the

positions aij with |i− j| = 1,2,4,8, ...,16384. What is the

(1,1) entry of A−1?

∗http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/hundred.html.

12

The 20000 by 20000 matrix has over half a million nonzero en-

tries. The exact answer is a fraction whose numerator and de-

nominator each has 97,389 decimal digits.

Our solutions of two years ago:

• Parallel solution by LinBoxer Jean-Guillaume Dumas (Greno-

ble, France): Solve mod 32 bit primes (use 12 thousand

of them because of the size of the answer). Use Chinese

Remainder Algorithm to combine the results. He ran 182

processors for four days using LinBox software (80 of them

were the NSFRI cluster, the rest were PC’s in France). This

method runs in O∼(n4) time.

13

• A couple of months later, Zhendong Wan (Newark, Delaware)

Recomputed the result on strauss using Dixon lifting. Strauss

was called ‘spare’ then - it was in a test period before going

public. Its huge memory was necessary. The method needed

8GB. This method runs in O∼(n3) time.

Zhendong’s solution two years later:

• The exact answer can now be computed in 25 minutes on

a cheap PC running Linux on a 1.9GHZ Pentium processor

with 1GB memory (or in 12 minutes on a 3.2GHZ Intel Xeon

processor). Only a few MB of memory is required. The

method is a mixture of numeric approximation and symbolic

exact computation. It runs in O∼(n2) time.

Methods Complexity Memory Run time
Quotient of two determinants
Wiedemann’s algorithm
Chinese remainder theorem

O∼(n4) a few MB Four days in parallel
using 182 processors,
96 Intel 735 MHZ PIII, 6 1GZ
20 4 × 250MHZ sun ultra-450

Solve Ax = e1 = (1,0, ·,0)
by plain Dixon lifting
for the dense case
Rational reconstruction

O∼(n3) 3.2 GB 12.5 days sequentially in
a Sun Sun-Fire with
750 MHZ Ultrasparcs and
8GB for each processors

Solve Ax = e1 = (1,0, ·,0)
by our methods above
Rational reconstruction

O∼(n2) a few MB 25 minutes in a pc with
1.9GHZ Intel P processor,
and 1 GB memory

The original work earned Zhendong a nice writeup in Trefethen’s

report on the contest. The new fast method earned him a place

the website of a followup book about the contest. http://www-m3.

ma.tum.de/m3/bornemann/challengebook/Updates/index.html

14

Future work for the LinBox team

• Theory: For the run time, best asymptotic lower bounds (problem com-
plexity) 6= best asymptotic upper bounds (algorithm complexity).

– Design fast algorithms for general case.

– Design fast algorithms for special matrix classes.

– Prove any non-trivial lower bound.

• Practice: Best practical algorithm is determined problem size and shape,
by hardware properties, by the available tools.

– Implement and test the best algorithms.

– Improve the library design for genericity and performance.

– Engineer the hybrid algorithms.

– Continue to provide the best performing integer matrix computation
package in the world.

• Application:

15

– Homology - what is the geometry of huge, high dimensional, combi-
natorial objects?

– Graphics and medical imaging - quickly get the right shape.

– Cryptology - for instance, the RSA challenge problems.

