Making Parallel Programming Accessible to Inexperienced
Programmers through Cooperative Learning

Lori Pollock and Mike Jochen
Computer and Information Sciences
University of Delaware
Newark, DE 19716
{pollock, jochen}@cis.udel.edu

Abstract

This paper describes how we utilized cooperative learn-
ing to meet the practical challenges of teaching parallel
programming in the early college years, as well as to pro-
vide a more real world context to the course. Our main
contribution is a set of cooperative group activities for
both inside and outside the classroom, which are tar-
geted to the computer science discipline, have received
very positive student feedback, are easy to implement,
and achieve a number of learning objectives beyond
knowledge of the specific topic. These activities can be
applied directly or be easily adapted to other computer
science courses, particularly programming, systems, and
experimental computer science courses.

1 Introduction

As parallel computing is becoming a cost effective way
to achieve large performance gains, these high per-
formance computing systems are changing the nature
of research and development across all areas of sci-
ence and engineering. Computing theory and prac-
tice have begun a rapid transition to parallel archi-
tectures, opening new opportunities in algorithms and
software and hardware design. However, skilled scien-
tists are needed to exploit the opportunities that paral-
lelism presents, which mandates modifying our curric-
ula to teach computer science, engineering, and other
science students to use this technology effectively. We
have developed a sophomore level foundations course
in parallel programming, for which C/C++ program-
ming and data structures are the only prerequisites.

Providing students with parallel programming skills
early in their studies enables integration of parallelism
into core junior-level courses such as algorithms, oper-
ating systems, and programming languages, as well as
many of the elective upper level courses, including sim-
ulation, computer architecture, databases, and artificial
intelligence. However, our experiences have revealed
several challenges that must be addressed to successfully
teach parallel programming to inexperienced program-
mers. Parallel programming requires a very different ap-
proach from traditional sequential programming, as the
programmer must think of performing tasks in parallel,
communicating information, coordinating actions, and
balancing workload between parallel processes. Making
the switch from thinking in sequential mode to thinking
in parallel is a big step for many students, particularly,
when they are trying to understand why their program
is not working.

Furthermore, given the cost effectiveness and general
availability of clusters, we chose to use the standard
message passing interface, MPI[6], as our parallel pro-
gramming paradigm. Besides its advantages of porta-
bility and free availability, it remains the most fre-
quently used and most well accepted parallel program-
ming paradigm. The disadvantages of MPI on a cluster
are the cryptic error messages, and the lack of stable
and useful debugging tools. This kind of environment
is particularly challenging for inexperienced program-
mers. In addition, a parallel computing course is by
nature an experimental computer science course, where
students are not only concerned about the correctness
of their program, but also focused on how well their
program performs under different conditions (e.g., num-
ber of processes, sizes of data sets,...). Students have
typically not had to go that extra step at this level to
analyze why their program is not performing well, in
this case, in parallel, and determine how to improve
its performance. This requires critical analysis of their
programs. These observations led us to reexamine the
course pedagogy.

The first two instantiations of this course were designed



similar to the majority of computer science courses in
colleges and universities today. Classroom time con-
sisted of lectures, albeit, with considerable question and
answer interaction. Students worked individually on
small programming exercises outside the classroom to
grasp the practical hands-on experience with the vari-
ous features of parallel programming and MPI. Due to
memory and disk space limitations, small data sets were
used. Unlike other courses, the students performed ex-
perimental performance evaluations and were required
to write scientific reports describing their experiments
similar to other sciences. Students struggled with writ-
ing these reports and the analysis of their performance
results as it was quite new to them in computer science,
and writing a report for a programming assignment ap-
peared to be busy work to them. Because assessment
was based on the individual programming assignments
and test scores, students were not permitted to work to-
gether or help one another debug their program. This
approach not only did not reflect the real world of paral-
lel computing in the research and development labs, but
it did not provide a supportive learning environment
that addresses the challenges of parallel programming
for inexperienced programmers.

In this paper, we describe how we utilized cooperative
learning to meet the practical challenges of teaching
parallel computing in the early college years, as well
as to provide a more real world context of parallel pro-
gramming throughout the course. Cooperative learn-
ing through peer groups has long been promoted to in-
crease student depth of learning, comfort level, confi-
dence, motivation, higher order thinking, and learning
skills[4, 1, 5, 7, 3]. It has also been shown to increase
retention (especially of women and non-traditional stu-
dents) and reduce gender bias in the classroom[8, 9, 2].

The main contribution of this paper is a set of cooper-
ative group activities, for both inside and outside the
computer science classroom, which are targeted to the
computer science discipline, have received very positive
student feedback, are easy to implement, and achieve a
variety of learning objectives in an experimental com-
puter science course. We believe that all of these activ-
ities are also appropriate for other programming, sys-
tems, and experimental computer science courses be-
yond parallel programming.

2 Group Activities in the Classroom

We experimented with a number of different classroom
activities in groups of 3-4 students. Groups were some-
times formed randomly by counting off by 4’s, other
times by the formal project groups, and still other times
formed by grouping the students sitting close to one an-
other. For the classroom activities, all methods worked
equally well. Classroom group work included mystery

program readings, program solution sharing and analy-
sis, group problem solving reviews for exams, problem
specification clarifications, and discussion groups.

Mystery program readings. The main goal of this
activity was to demonstrate the use of several new par-
allel constructs to students through examples. However,
the activity had several additional learning objectives,
including the ability to read, understand, and explain
parallel programs, and the verbal critique of a parallel
program with peers.

Each group was given 5 mystery MPI programs, and as-
signed responsibility for one of them. Each mystery pro-
gram exhibited a different parallel construct or paral-
lelization method. Each program was less than 2 pages
in length. Students were told to come prepared to class
with their MPI books. Each group was asked to con-
verge on a group answer to the following set of questions
for their assigned program: (1) For each MPI command
that you have not yet seen, use your textbook to dis-
cover and write in English exactly what each instance of
that command is doing. Note that MPI is a library, and
each instance of an MPI command is a call to the library
with some set of parameters that determines the effect
of executing the command. (2) Each program had one
or two points in the program which had been marked
with a star. For each of these marked points, the group
was to draw a picture of each process’s memory con-
tents, assuming that there are 2 processes. (3) Write
a short description of what the program does, not only
statement by statement, but a short paragraph of the
overall program task achieved.

Each group chose a different person from the group to
present the results of each of the tasks to the entire class.
The presentations to the class were made on slides that
the groups prepared in class. For some students, this
was the first time they had ever discussed a program
with other students (legally!). The challenge of solving
the mystery of each program without any clues as to the
overall goal of the programs was very enticing to many
of the students. When some groups finished earlier than
others, they began to discuss the other groups’ mystery
programs without any coaxing. By limiting the discus-
sions to small groups, students were less intimidated
to speak, and many students who would not speak up
in class were participating actively in the discussions.
This approach also allowed the entire class to cover 5
examples as opposed to 1 or 2 without the instructor
presenting a single example.

Program solution sharing and analysis. While few
people enjoy grading programming assignments, this
task can actually be a valuable learning experience since
the grader needs to examine and assess the various so-
lutions identified for the same programming problem.



This classroom group activity had the goal of giving the
students the opportunity to gain that same kind of as-
sessment experience where different solutions developed
by the students themselves were compared in terms of
correctness, performance, and cleverness.

On days that individual parallel programming assign-
ments were returned to the students, we formed our
small groups, and each person in the group explained
their program and experimental results to the group.
The group then voted on the “best” solution to repre-
sent their group based on a set of criteria which focused
primarily on correctness, generality, performance and
clarity. The group developed a justification for their
choice, and identified the most common alternatives and
their pitfalls with respect to the group’s best solution.
The class was told before they started to avoid nega-
tive comments, and to present their critiques in a pos-
itive light. A spokesperson from the group presented
the group’s best solution to the class. The class then
discussed the tradeoffs of all of the presented best solu-
tions. Considerable discussion of different ways to per-
form specific subtasks was spurred by these discussions.

Besides exposing each student to a number of different
solutions to the same problem, the students gained ex-
perience in assessing and comparing different solutions,
and presenting a case for choosing one solution over an-
other one. This activity also created an atmosphere
within the class that it was acceptable, comfortable,
and even very beneficial, to discuss the students’ differ-
ent solutions to the programming problems throughout
the remainder of the semester.

Group problem solving reviews. Like many
courses, this course included a midterm and final exam
for individual assessment. In the past, the typical re-
view session for an exam consisted of the professor an-
swering student questions and presenting minilectures
to review important points. Instead, we spent two class
periods in our project groups working on the problem-
solving sections of the past year’s exam. Students who
attended the sessions were motivated to work as a team
in order to boost their grades if they indeed performed
well as a group on the problems. If they were not satis-
fied with their group’s performance, or did not attend,
they had the option not to have this grade counted to-
ward their final course grade.

This activity gave the students a flavor for the kinds of
problems on the exam, and eventually both the ques-
tions and answers from the past year’s exam problems.
This activity helped considerably in relieving their anxi-
eties over exams. The students liked the opportunity to
discuss different approaches to the problems in a non-
intimidating setting with a professor to give feedback
on the spot as they “studied”. They also liked the op-

portunity to work as a team to raise their grade with
no threat of hurting their grade by group work.

Problem specification clarifications. A big part of
programming and consulting jobs is gaining a clear un-
derstanding of the problem specification, mutually ac-
ceptable to the customer and programmer. Problem-
based learning tries to mimic this by having students
work in groups on ill-defined, complex problems. Stu-
dents are given the task of posing questions, gathering
knowledge, organizing ideas, and continuing to define
new learning issues as they progress through the prob-
lem. While one of our group programming projects per-
formed outside class focused on taking a problem-based
learning approach, we also devoted some class time to
specification clarification sessions.

In these sessions, the project groups were given an
ill-defined parallel programming problem, and charged
with posing a set of questions that they thought needed
to be answered in order to more clearly define the prob-
lem specification. For each question, they were charged
with developing a reasonable set of assumptions and pa-
rameters for experimentation with respect to the prob-
lem specification and evaluation of potential solutions.
Each group chose a different person from the group to
present the questions, assumptions, and parameters for
experimentation to the entire class. A complete list of
questions was created from the group lists, and the pa-
rameters for experimentation were discussed as a class.

This experience gave students exposure to one aspect
of problem-based learning in which they had to bet-
ter define an ill-defined problem, and develop reason-
able assumptions. This is the first time many of these
computer science students had been presented with an
ill-defined programming problem, without all the exact
specifications laid out for them in fine detail.

Discussion groups. Short discussion group meetings
were held throughout the semester during class to break
up classtime and get students actively discussing the is-
sues related to the current topic. Each discussion period
was initiated with a set of 3-4 questions for which the
group was to agree on a group answer. Often, this in-
volved examining a program segment and describing the
approach, the possible motivation for the approach, and
the potential pitfalls of the approach. Other times the
questions were more open-ended to create discussion,
with the comfort of a group of peers that agreed on an
argument to present to the class.

3 Group Projects

The hands-on parallel programming experience in this
course was achieved through a mix of small focused, con-
cretely specified individual programming assignments
and ill-defined, open-ended group projects. The indi-



vidual and group assignments were distributed evenly
throughout the semester, with the intent of getting the
students comfortable with working on group projects
early in the semester. The goal of the individual pro-
gramming assignments was to gain experience with spe-
cific parallel programming concepts through the effec-
tive application of MPI features. In this paper, we focus
on the three group projects.

Open-ended real-world program and experi-
ment. The main objectives of the first group project,
which was assigned after one individual programming
project, were (1) to gain the experience of the project
group environment common in the computer industry,
(2) to creatively solve a somewhat open-ended prob-
lem after investigating multiple solutions with varying
tradeoffs, and (3) to learn skills, apply knowledge, and
seek new knowledge through a problem-based approach.

The initial specifications for the project were merely the
input and output format, overall task to be performed,
and goals of correctness, performance, and generality.
Each group was to develop an edge detection processor
which when given an image, returns an altered version
of that image that delineates all the edges within the
original image. Due to the large computation times for
sequential versions, this is a commonly parallelized ap-
plication. The project had 3 deliverables with deadlines
of one week for the first two deadlines, and 2 weeks for
the third deadline, so the entire project lasted about
one month. The first deliverable was a written report
that answered a set of 8 questions, which directed the
students to perform some research on available algo-
rithms for edge detection, explore the tradeoffs of the
algorithms, select an algorithm to implement, discuss
and agree upon a way to handle image borders, deter-
mine how to perform file input/output, explore the po-
tential performance issues, and identify the desirable
characteristics in a good test suite.

The second deliverable was a prototype implementation,
either as a correct sequential program, or a first correct
version of a parallel system. For this deliverable, there
were no expectations of good performance, only correct-
ness. The third deliverable focused on meeting all the
requirements of the original specification, focusing on
obtaining good parallel performance, conducting an em-
pirical study of performance under different parameters,
and writing a group experimental report and user man-
ual. Each deliverable was evaluated and graded with
the same weight. Each student also performed a peer
review for each member of their group.

For many students, this was their first encounter with a
group project that involved multiple deliverables, and a
deliverable that merely had the goal of researching the
possible solutions and making a plan without any pro-

gramming. Students liked the feedback after each de-
liverable, and used the feedback to improve their plans
for the next deliverable. They also entered into interest-
ing discussions over which algorithms to use, and how
the best sequential algorithm often did not lead to the
better parallel algorithm. They had an opportunity to
go back and modify their ideas from the earlier deliver-
ables, and sometimes completely scrapped those ideas
due to implementation difficulties or realization that
there was a better way to gain performance in parallel.
The project mimicked the real world programming ex-
perience much more closely than typical programming
assignments with a single deadline. The experience was
different from a software engineering course, as the lines
of written code was not substantial, and little time was
spent on software engineering design.

Research project and presentation. The goals of
the second group project were to explore the role of par-
allelism in a variety of application domains, to learn how
to research a particular computer science topic in a fo-
cused manner, and to collectively organize and present
a talk that overviews the findings. For the first deliver-
able, the groups performed a quick search for informa-
tion on a set of application domains in order to make
their selection of a domain of interest. They needed to
determine whether they could present adequate infor-
mation on the problem, the common sequential solution,
motivation for parallelization, the common paralleliza-
tion method, and any experimental performance results
demonstrating the gains from parallelism.

The second deliverable was a draft of their slides for
their presentation, and a plan of who would present each
part of the presentation as each member had to share in
the oral presentation. Detailed comments on the drafts
were given in a group meeting with the professor or via
written comments. This feedback not only improved the
final presentations tremendously from a previous instan-
tiation of the course where drafts were not used, but the
confidence of the student speakers was increased, espe-
cially those who had not previously talked in front of an
audience. The third deliverable was the presentation to
the class; most talks were performed with laptops. The
talks were geared to 15 minutes shared among the 2-3
group members.

Each student completed an evaluation form for each
group presentation. While these evaluations were not
used for grading, the feedback was summarized and
anonymously given to each group. The evaluation of
others was included as part of each student’s grade in
order to promote attendance and participation in the
evaluations.

Parallel programming contest. The third group
project was an open-ended parallel programming assign-



ment posed as a programming contest. The only speci-
fication for the contest was to write a parallel sort pro-
gram in MPI, with specific input and output file speci-
fications to ease the grading. A set of contest rules was
set up to insure fairness in judging performance. Scor-
ing was based on (40%) correctness, (40%) performance,
(8%) creativity, (8%) generality, and (4%) documenta-
tion. Entries were judged by a panel of 6 professors,
research scientists, and teaching assistants. The grades
were assigned independent of the judges and results of
the contest. The top two teams were given t-shirts.

The contest setting for this project really encouraged
the teams to work together to design their best possible
parallel program, with careful consideration of trade-
offs between the various parameters used for judging.
Students were already comfortable working in project
groups and had a good grasp of how to exploit the
strengths of each of their team members.

4 Lessons Learned

The student evaluations at the midterm and end of
the semester were very positive for all of the cooper-
ative classroom activities. They overwhelmingly be-
lieved that the mystery program readings and the group
problem solving reviews for exams were very helpful,
and suggested that they be used in other courses. The
groups certainly created open discussion during class,
as the students presented solutions as a group and then
became more comfortable with speaking in class. For-
tunately, each individual activity took much less time
than lecture preparation on the same material.

Students liked the mix of individual and group projects,
but believed they learned more from working in groups
for the projects than programming in isolation. The ex-
pected group management problems occurred, but they
all had workable solutions since the groups were given
adequate opportunity to voice their concerns early. The
group projects permitted more complex problems to
be considered than what could ordinarily be covered
with individual assignments. The only feedback on the
programming contest was several groups informally ex-
pressing their enjoyment for it and their comments on
their strong group effort, since the contest was run to
completion only after course evaluations had already
been completed. It did appear that the competitive
aspect of the contest heightened the interest of many
students.

The main lesson we learned was that student assess-
ment needs to include a mechanism for more individ-
ual responsibility within group projects. All members
of a group could start with the same grade, but then
that grade needs to be adjusted for each member by
some percentage that reflects their individual contribu-

tion measured by peer evaluations and self assessment.

5 Concluding Remarks

Our experience in creating and implementing these co-
operative learning activities specific to a parallel pro-
gramming course has not only demonstrated to us many
of the positive implications of cooperative learning, but
more importantly, shown us how easy it can be to cre-
ate such activities for computer science. These activities
can play a particularly important role when you want
to challenge students to go beyond writing the basic
correct program in order to analyze and improve the
performance of their programs, or inexperienced pro-
grammers are presented with an unfriendly working en-
vironment, or a major goal is to mimic the real world
environment with ill-defined, complex problems.

References

[1] Bonwell, C. C., and Eison, J. A. Active Learning:
Creating Excitement in the Classroom. ASHE ERIC
Higher Education Report No. 1 (1991).

[2] Chase, J. D., and Okie, E. G. Combining Coopera-
tive Learning and Peer Instruction in Introductory
Computer Science. Proceedings of ACM SIGCSE
(2000).

[3] Dougherty, R. C., Bowen, C. W., Berger, T., Rees,
W., Mellon, E. K., and Pulliam, E. Cooperative
Learning and Enhanced Communication: Effects on
Student Performance. Journal of Chemical Educa-
tion (1995).

[4] Johnson, D. W., Johnson, R. T., and Smith, K. A.
Cooperative Learning: Increasing College Faculty
Instructional Productivity. ASHE ERIC Higher Ed-
ucation Report No. 4 (1991).

[5] McConnell, J. J. Active and Group Learning and
Their Use in Graphics Education. Computers and
Graphics (1996).

[6] Message Passing Interface Forum. MPI: A message-
passing interface standard. International Journal of
Supercomputer Applications 8, 3-4 (1994).

[7] Silberman, M. L. Active Learning: 101 Strategies to
Teach Any Subject. Allyn and Bacon, 1996.

[8] Tenenberg, J. Using Cooperative Learning in the
Undergraduate Computer Science Classroom. Pro-
ceedings of the Midwest Small College Computing
Conference (1995).

[9] Walker, H. M. Collaborative Learning: A Case
Study for CS1 at Grinnell College and UT-Austin.
Proceedings of ACM SIGCSE (1997).



