

Supporting and Accelerating Reproducible Research in Software Maintenance using
TraceLab Component Library

Bogdan Dit, Evan Moritz, Mario Linares-Vásquez, and Denys Poshyvanyk
Computer Science Department

The College of William and Mary
Williamsburg, VA, USA

{bdit, eamoritz, mlinarev, denys}@cs.wm.edu

Abstract—Research studies in software maintenance are
notoriously hard to reproduce due to lack of datasets, tools,
implementation details (e.g., parameter values, environmental
settings) and other factors. The progress in the field is hindered
by the challenge of comparing new techniques against existing
ones, as researchers have to devote a lot of their resources to the
tedious and error-prone process of reproducing previously
introduced approaches. In this paper, we address the problem of
experiment reproducibility in software maintenance and provide
a long term solution towards ensuring that future experiments
will be reproducible and extensible. We conducted a mapping
study of a number of representative maintenance techniques and
approaches and implemented them as a library of experiments
and components that we make publicly available with TraceLab,
called the Component Library. The goal of these experiments and
components is to create a body of actionable knowledge that
would (i) facilitate future research and would (ii) allow the
research community to contribute to it as well. In addition, to
illustrate the process of using and adapting these techniques, we
present an example of creating new techniques based on existing
ones, which produce improved results.

Keywords—software maintenance, reproducible, experiments,
case studies, TraceLab

I. INTRODUCTION

Research in software maintenance (SM) is primarily driven
by empirical studies. Thus, advancing this field requires
researchers not only to come up with new, more efficient and
effective approaches that address SM problems, but most
importantly, to compare their new approaches against existing
ones in order to demonstrate that they are complementary or
superior and under which scenarios.

However, comparing an approach against existing ones is
time consuming and error-prone. For example, the existing
approaches may be hard to reproduce because the datasets used
in their evaluation, the tools and implementation, or the
implementation details (e.g., specific parameter values,
environmental factors) are not available [1, 2, 3, 4, 5, 6].

For example, a survey on feature location (FL) techniques
by Dit et al. [1] revealed that only 5% of the papers surveyed
(three out of 60 papers) used in their evaluation the same
dataset that was used in evaluating other techniques, and that
only 38% of the papers surveyed (23 out of 60 papers)
compared their proposed feature location technique against a
small number of previously introduced feature location
techniques. In addition, these findings are consistent with the

ones from the study by Robles [2], which determined that
among the 154 research papers analyzed, only two made their
datasets and implementation available, and the vast majority of
the papers describe evaluations that cannot be reproduced, due
to lack of data, details, and tools. Furthermore, a study by
González-Barahona and Robles [6] identified the factors
affecting the reproducibility of results in empirical software
engineering research and proposed a methodology for
determining the reproducibility of a study. In another study,
Mytkowicz et al. [3] investigated the influence of the omitted-
variable bias (i.e., a bias in the results of an experiment caused
by omitting important causal factors from the design) in
compiler optimization evaluation. Their study showed that
factors such as the environment size and the link order, which
are often not reported and are not explained properly in the
research papers, are very common, unpredictable and can
influence the results significantly. Moreover, D'Ambros et al.
[4] argued that many approaches in bug prediction have not
been evaluated properly (i.e., they were either evaluated by
themselves, or they were compared against a limited set of
other approaches), and highlight the difficultness of comparing
results.

This issue of the reproducibility of experiments and
approaches has been discussed and investigated in different
areas of software maintenance research [1, 2, 3, 4, 5, 6], and
some initial steps have been taken towards solving this
problem. For example, efforts for establishing datasets or
benchmarks that can be used uniformly in evaluations have
resulted in online benchmark repositories such as PROMISE
[7, 8], Eclipse Bug Data [9], SEMERU feature location dataset
[1], Bug Prediction Dataset [4], SIR [10], and others. In
addition, different infrastructures for running experiments were
introduced, such as TraceLab [11, 12, 13], RapidMiner [14],
Simulink [15], Kepler [16], and others. However, among
these, the most suitable framework for facilitating and
advancing research in software engineering and maintenance is
TraceLab (see Section III.B for an in-depth comparison and
discussion of TraceLab's features with other tools). TraceLab is
a plug-and-play framework that was specifically designed for
facilitating creating, evaluating, comparing, and sharing
experiments in software engineering and maintenance. These
characteristics ensure that TraceLab makes experiments
reproducible.

The goal of this paper is to ensure that a large portion of
existing and future experiments in software maintenance
research that are designed and implemented with TraceLab will
be reproducible. We analyzed the approaches presented in 27

research papers and we implemented them as TraceLab
experiments. In order to implement these SM approaches, we
identified their common building blocks and we implemented
them as components in a well organized (structured),
documented and comprehensive Component Library for
TraceLab. In addition, we used the Component Library to
assemble and replicate a subset of existing SM techniques, and
to exemplify how these components and experiments can be
used as starting points for creating new and reproducible
experiments.

In summary, the contributions of our paper are as follows:
 a mapping study of techniques and approaches in SM

(Section IV) to identify the set of techniques that we
reproduced as TraceLab experiments;

 a TraceLab Component Library (CL), which contains a
comprehensive and representative set of TraceLab
components designed to help instantiate the set of SM
experiments, and a Component Development Kit
(CDK), which serves as a base for extending this
component base in order to facilitate the creation of
new techniques and experiments;

 an example of reproducing a feature location technique
using the proposed CL, as well as using the existing
technique as a starting point to design and evaluate new
ideas;

 an online appendix that makes publicly available all the
resources presented in this paper:
www.cs.wm.edu/semeru/TraceLab_CDK

The paper is organized as follows. Section II presents a
motivating example that shows variability in results of
applying a simple SM technique and challenges of reproducing
those results without complete details. Section III introduces
background details about TraceLab and presents a comparison
with other tools. Section IV presents the mapping study
performed, which we used to implement the Component
Library and Development Kit (Section V). Section VI shows
an example of reproducing an existing FL technique and
presents details on improving it. Finally, Section VII discusses
some potential limitations and Section VIII concludes the
paper and introduces some ideas for future work.

II. MOTIVATING EXAMPLE

When new approaches are introduced, in general, authors
rightfully focus more on describing the important details of the
new techniques, and due to various reasons (e.g., space
limitations) they may present only in passing the details of
applying well-known and popular techniques (e.g., VSM), as
they rely on the conventional wisdom and knowledge (or
references to other papers for more details) about applying
these techniques [1, 2].

However, for a researcher who tries to reproduce the results
exactly, it might be difficult to infer all the assumptions the
original authors took for granted and did not explicitly state in
the paper. Therefore, the reproducer's interpretation of applying
the approach could have significant impact on the results.

To illustrate this point on a concrete example, we applied
the popular IR technique Vector Space Model (VSM) [17] on
the EasyClinic system from TEFSE 20091 challenge to recover

1 http://web.soccerlab.polymtl.ca/tefse09/Challenge.htm

traceability links between use cases and class diagrams. We
configured the VSM technique using four treatments consisting
of all the possible combinations of two corpus preprocessing
techniques and two VSM weighting schemes. The
preprocessing techniques were raw preprocessing (i.e., only
the special characters were removed) and basic preprocessing
(i.e., remove special characters, split identifiers and stem). The
weighting schemes used were no weighting and term
frequency-inverse document frequency (tf-idf) weighting.
Figure 1 indicates the raw and basic preprocessing steps with
gray and black color respectively, and the no weighting and tf-
idf weighting with dashed line and solid line respectively. The
results in Figure 1 show a high variety in the precision and
recall values, based on the type of preprocessing and weighting
schemes used. Assuming these details are not clearly specified
in the paper, any of these configurations or variations of these
configurations can be chosen while reproducing an experiment,
potentially yielding completely unexpected and drastically
different results. It is worth emphasizing that in our example
we picked a small subset of the large number of weighting
schemes and preprocessing techniques that can be found in the
literature, and these options were deliberately picked to
illustrate an example, as opposed to conducting a rigorous
experiment to identify the configuration of factors that could
produce the best results.

The main point of this example is that even in this simple
scenario of using VSM for a typical traceability task, there are
many options on how we can instantiate and use this technique,
which leads to completely different results. However, all these
problems could be eliminated if all these details are encoded in
the experiment description, such as one designed in TraceLab.

III. BACKGROUND AND RELATED WORK

This section provides the background details about
TraceLab as an environment for SM research and compares
and contrasts TraceLab to other research tools specific to other
domains.

Figure 1 Precision-Recall curves for EasyClinic for recovering traceability
links between use cases and classes using a VSM-based traceability technique

and different preprocessing techniques (raw – gray color, preprocessed –
black color) and weighting schemes (no weight – dash line, tf-idf – solid line)

A. TraceLab

TraceLab [11, 12, 13] is a framework designed to support
the reproducibility of experiments in software engineering and
software maintenance (see Figure 2). More specifically, it
allows researchers to create, evaluate, compare, and most
importantly share experiments in SM research. TraceLab was
developed at DePaul University in collaboration with
researchers at Kent State University, University of Kentucky,
and the College of William and Mary.

The heart of a TraceLab experiment lies in its workflow of
components and tools (see Figure 2 upper-right). An
experiment is a collection of nodes (or components) connected
in the form of a precedence graph. Each component
communicates with the preceding and following nodes by
storing and loading information to and from a common data-
sharing interface called the Workspace (see Figure 2 lower-
left). The status of an experiment is reported in the Output
view (see Figure 2 lower-right). Individual components are
engineered to implement a specific task and components that
implement related tasks can be combined to form composite
components, such as the node with rectangular edges labeled
Queries preprocessing in Figure 4, which implements various
tasks such as identifier splitting, stemming, and stopwords
removal. In addition, TraceLab provides basic control flow
within the experiment via decision nodes and while loops (see
Figure 4).

A major contribution of this paper is a Component Library,
designed to implement a wide range of SM techniques that can
be easily accessed from TraceLab (see Figure 2 upper-left).
The Component Library will be included in the distribution of
next official TraceLab release.

B. TraceLab Comparison with Other Tools

There are also numerous other frameworks and tools that
were designed to support research in other domains, such as
information retrieval, machine learning, data mining, and
natural language processing, among others. Consequently,
reuse of third party tools or APIs is a common practice for
making experiments and building research infrastructure in
software evolution and maintenance. For example, a common
scenario is to reuse WEKA for implementations of machine
learning classifiers, R for statistical analysis, or MALLET for
topic modeling. However, these tools/APIs were not built to
support research on software evolution and maintenance.
Moreover, most of the tools were conceived as extensible APIs
and only few of them provide features such as experiment
composition by using a data-flow GUI, new components
implementation, or easy sharing/publishing of experiments;
moreover, not all of them can be used across multiple
platforms. Table I compares TraceLab to some similar tools
that also use a data-flow oriented GUI.

WEKA [18] is a collection of machine learning algorithms
that are packaged as an open source Java library that also
allows running the algorithms using a graphical user interface
(GUI). One of the WEKA modules is the KnowledgeFlow,
which provides the user with a data-flow oriented GUI for
designing experiments. As in TraceLab, the components in the
KnowledgeFlow are categorized by tasks (DataSources,
DataSinks, Filters, Classifiers, Clusterers, Associations,
Evaluation, Visualization), and there is a layout canvas for
designing experiments by dragging, dropping, and connecting
components. New components can be added to WEKA by
extending or modifying the library using Java, and the
experiments can be saved and loaded for being executed in the
WEKA Experimenter module.

RapidMiner [14] is a data mining application that provides
an improved GUI for designing and running experiments. It
includes a reusable library for designing experiments and
running them and it fully integrates WEKA as the machine
learning library.

Figure 2 The four "quadrants" of TraceLab in clockwise order from top-right
are (i) the sample TraceLab experiment that implements our motivating

example in Section 2; (ii) an output window for reporting execution status of
an experiment; (iii) the Workspace containing the data and the values of the

experiment; and (iv) the Component Library

Table I Comparison of TraceLab with other related tools (columns). The
features (rows) are as follows: 1) data-flow oriented GUI [Yes / No]; 2) Type
of application [Desktop / Web / API]; 3) License type [Commercial / Open
source / Free online access]; 4) Tool allows saving and loading experiments

[Yes / No]; 5) Tool allows creating composite components [Yes / No /
Programmatically]; 6) Tool has a component "market" where developers can
contribute with their own components [Yes / No]; 7) Programming language

that can be used to build new components; 8) The platforms were the tool
could be used [Software As A Service, Windows, Linux, Mac]

 Tool
Feature

Yahoo
pipes

Weka/
 R. Miner

Simulink Gate Kepler TraceLab

GUI Y Y Y N Y Y
Type W API, D D API, D API, D API, D

License F O C O O O
Save/Load

exp.
Y Y Y Y Y Y

Composite
comp.

Y N Y P Y Y

Comp.
Market

Y N Y Y Y Y

Prog. Lang. - Java C/C++
 Matlab.
Fortran

Java R
C

Matlab
Java

Java
R

.NET lang.
Matlab

Platforms SAAS W, L, M W, L, M W, L, M W, L, M W, L, M

Yahoo Pipes [19] is a data mashup tool with components
for web retrieval, filtering and aggregation of web feeds, web
pages, and other services. As the TraceLab composite
components, pipes (i.e., Yahoo pipes composite components)
can be reused as building blocks for new pipes. In addition,
pipes are shared/published through the Yahoo pipes website.

Simulink [15] is a Matlab-based tool for simulation and
model-based design of embedded systems. In Simulink, a
model is composed of subsystems (i.e., a group of blocks) or
individual blocks, and the blocks can be implemented using
Matlab, C/C++, or Fortran.

GATE [20] provides an environment for text processing
that includes an IDE with components for language processing,
a web application for collaborative annotation of document
collections, a Java library, and a cloud solution for large scale
text processing.

Kepler [16] is a tool that follows the same philosophy as
TraceLab. By using Kepler, it is possible to build, save, and
publish experiments/components using a data-flow oriented
GUI. It is also possible to extend Kepler because of its
collaborative-project nature. However, the main difference
with TraceLab is that Kepler was conceived as a tool for
experiments in sciences such as Math or Physics.

Although TraceLab is not specialized on simulation, natural
language processing, or machine learning, it was specifically
designed to allow software engineering and maintenance
researchers the possibility to (i) develop and share their own
components/experiments, and (ii) to ensure the reproducibility
of their results. TraceLab supports all major OS platforms (e.g.,
Window, MacOS and Linux) and researchers can use Java, any
.NET language (e.g., C#, VB, C++), R or Matlab to implement
their components.

IV. MAPPING STUDY OF SOFTWARE MAINTENANCE

TECHNIQUES

In this section we present the methodology, analysis and
results of a mapping study [21] aimed at identifying a set of
techniques from particular areas of SM, which could be
implemented as TraceLab experiments in order to constitute an
initial practical body of knowledge that would benefit the SM
research community. Moreover, these identified techniques
were reverse engineered into basic modules that we
implemented as TraceLab components, in order to generate a
Component Development Kit (see Section V.A) and a
Component Library (see Section V.B) that serves as a starting

point for any interested researcher to implement new
techniques or build upon existing ones.

For our study, we use the systematic mapping process
described by Petersen et al. [22]. The process consists of five
stages: 1) defining the research questions of the study, 2)
searching for papers in different venues, 3) screening the
papers based on inclusion and exclusion criteria in order to find
the relevant ones, 4) classifying the papers, and 5) data
extraction and generating the systematic map.

1) Defining the Research Questions
Our goal is to identify a set of representative techniques

from specific areas of SM, and use them to generate TraceLab
components and experiments to accelerate and support research
in SM. Therefore, our main guiding research question was
formulated as: Which SM techniques are suitable to form an
initial actionable body of knowledge that other researchers
could benefit from? In particular, we focused on a subset of
SM areas where the authors have expertise, which allowed
generating this initial body of knowledge that could support the
research community, and one that we, and the research
community, could contribute to, by constantly adding new
techniques and components.

2) Conducting the Search
In order to find these techniques, we narrowed the search

space to the publications from the last ten years of a subset of
journals and software engineering conferences (see our online
appendix for more details). In addition, in our search we
incorporated the "snowballing" discovery technique (i.e.,
following references in the related work) discussed by
Kitchenham et al. [21].

3) Screening Criteria
The primary inclusion criterion consisted in identifying

whether the research paper described a technique that
addressed one of the following maintenance tasks: traceability
link recovery, feature location, program comprehension and
duplicate bug report identification. In most cases, this
information was determined by the authors of this paper by
reading the title, abstract, keywords, and if necessary the
introduction and the conclusion of the investigated paper.

The exclusion criteria were as follows. First, we discarded
techniques that could not have been implemented effectively in
TraceLab due to various reasons, such as (i) lack of sufficient
implementation details, (ii) lack of tool availability or (iii) the
technique was not fully automated, and would require
interaction with the user. Second, we did not implement
complex techniques that would have required a lengthy

Figure 3 Diagram of the hierarchy of the CDK in the context of TraceLab. CDK and CL are part of TraceLab. Researchers can contribute to the CDK and the
datasets (gray arrow), and reviewers and researchers (green arrow) can use TraceLab to verify details of existing experiments

development time, or techniques that are outside the expertise
of the authors. Third, we discarded techniques with numerous
dependencies to deprecated libraries or other techniques, as our
goal was to implement the most popular techniques that can be
incorporated or built upon.

4) Classification
In our mapping study we used two independent levels of

classification. The first one consisted of categorizing the papers
based on the type of technique (e.g., traceability link recovery,
feature location, program comprehension and detecting
duplicate bug reports) they presented (see Section IV.3)). The
second level of classification was identifying common
functionality between the basic building blocks used in an
approach (e.g., all the functionality related to identifier
splitting, stemming, stopwords removal and others, were
grouped under "preprocessing").

5) Data extraction
The list of papers that we identified in our study is

presented in Table II in the first column along with the Google
Scholar citation count as of August 9, 2013 (second column).
The papers are grouped by their primary maintenance tasks
they address, and are sorted chronologically.

The remaining columns constitute the individual building
blocks and components we identified in each approach,
grouped by their common functionality. A checkmark (✓)
denotes that we implemented the component in the CL. An X
denotes that the code related to the components appears in the
approach, but is not implemented in the CL at this time (see
Section V.B and Section VII).

Table II shows only a subset of the information. For the
complete information, we refer the interested reader to our
online appendix.

V. COMPONENT LIBRARY AND DEVELOPMENT KIT

From the 27 papers identified in the mapping study, we
reverse engineered their techniques in order to create a
comprehensive library of components and techniques with the
aim of providing the necessary functionality that SM
researchers would need to reproduce experiments and create
new techniques.

This process resulted in generating (i) a Component
Development Kit (CDK) that contains the implementation of all
the SM techniques from the study, (ii) a Component Library
(CL) that adapts the CDK components to be used in TraceLab

and (iii) the associated documentation and usage examples for
each.

A. Component Development Kit

The Component Development Kit (CDK) is a multi-tiered
library of common tools and techniques used in SM research.
These tools are organized in a well-defined hierarchical
structure and exposed through a public API. The intent of this
compilation is to aid researchers in reproducing existing
approaches and creating new techniques. By providing these
tools in a clear manner, the Component Development Kit
facilitates the research evaluation process - researchers no
longer have to start from scratch or spend time adapting their
pre-existing tools to a new project. Furthermore, researchers
can use combinations of these tools to create new techniques
and drive new research.

At the top level, the CDK is separated into high-level tasks,
such as I/O, preprocessing techniques, artifact comparison
techniques, and metrics calculations (see Figure 3). Those
levels are then further broken down as needed into more
specific tasks. This design aids technique developers in
locating relevant functionality quickly and easily, as well as
providing base points for integrating new functionality in the
future.

Based on our findings from the mapping study, we
evaluated each technique based on coverage, usefulness, and
perceived difficulty and effort in implementation. In addition to
our design goals of providing a clean and easy to use API,
another goal was to minimize the number of external
dependencies necessary to implement the technique. As such,
some techniques that have numerous external dependencies
were left out.

B. Component Library

The Component Library (CL) is comprised of metadata and
wrapper classes registering certain functionality as components
in TraceLab. It acts as a layer in between TraceLab and the
CDK, adapting the functionality of the CDK to be used within
TraceLab.

To register a component in TraceLab, a class must inherit
from the BaseComponent abstract class in the TraceLab SDK.
All components have a Compute() method which contains the
desired functionality of the component within the context of a
TraceLab experiment. Furthermore, all components have a
component declaration attribute (or annotation in Java
terminology) that describes information about the component,

Figure 4 TraceLab experiment for reproducing the IRDynWM FLT [23] (without the components highlighted with red dashed border). TraceLab experiment for
implementing IRDynWMFMF (all components, including the highlighted ones)

such as its name, description, inputs, and outputs. This
declaration allows the class to be registered in TraceLab as a
component, and ensures that a component can only be
connected with a compatible component. A typical component
will import data from TraceLab's data sharing interface (the
Workspace), call various functions on the data using the CDK,
and then store the results back to the Workspace.

The structure of the Component Library mirrors the CDK
hierarchy, providing a mapping from TraceLab to the CDK.
Components can be organized in TraceLab through the use of
developer and user Tags, another feature of the TraceLab SDK.
Components are grouped via Tags into the same high-level
tasks as the CDK.

From the building blocks of the CDK identified in the
mapping study, we implemented 25 out of 51 as TraceLab
components. In many cases, this was done as a one-to-one
mapping from the CDK to the CL. However, some techniques

could be broken down into more general ones which were
desirable for component re-use. For example, the Vector Space
Model (VSM) is a straightforward technique, but there can be
many variations on its implementation (see Section II). We
implemented a few weighting schemes (e.g., binary term
frequency, tf-idf, and log-idf) and similarity functions (e.g.,
cosine, Jaccard), which a component developer could pick and
choose from the desired schemes.

Another example is the precision and recall metrics in
traceability link recovery. Although this component consists of
only one column in the mapping study, the CDK covers many
of the commonly used metrics in the literature (e.g., precision,
recall, average precision, mean average precision, F-measure,
and precision-recall curves). Component developers could
choose from any of these measures in their experiments.

Table II Mapping study results (first column) and implementation of these techniques in the CDK (✓represents the component is implemented in CDK and X
means is not yet implemented in CDK)

Technique
Year / Venue / Name / Ref

G
oo

gl
e

S
ch

ol
ar

 C
it

at
io

n
 C

ou
n

t

Preprocessing Artifact Comparison Metrics Postprocessing Other

B
ag

-o
f-

w
or

ds
 to

ke
ni

ze
r

S
to

pw
or

ds
 R

em
ov

er

P
or

te
r

st
em

m
er

C
am

el
C

as
e

sp
li

tt
er

E
xe

cu
ti

on
 tr

ac
e

lo
gg

er

D
ep

en
de

nc
y

G
ra

ph
 G

en
er

at
or

S
am

ur
ai

 s
pl

it
te

r

sm
oo

th
in

g
fi

lt
er

S
no

w
ba

ll
 S

te
m

m
er

P
ar

t-
of

-s
pe

ec
h

ta
gg

er

L
at

en
t S

em
an

ti
c

In
de

xi
ng

V
ec

to
r

S
pa

ce
 M

od
el

L
at

en
t D

ir
ic

hl
et

 A
ll

oc
at

io
n

Je
ns

en
-S

ha
nn

on
 d

iv
er

ge
nc

e

R
el

at
io

na
l T

op
ic

 M
od

el

H
IT

S

P
ag

eR
an

k

P
re

ci
si

on
 /

R
ec

al
l m

et
ri

cs

E
ff

ec
ti

ve
ne

ss
 M

ea
su

re

P
ri

nc
ip

al
 C

om
po

ne
nt

 A
na

ly
si

s

E
xe

cu
ti

on
 tr

ac
e

ex
tr

ac
to

r

A
ff

in
e

tr
an

sf
or

m
at

io
n

O
-C

S
T

I

U
D

-C
S

T
I

G
en

et
ic

 A
lg

or
it

hm

Traceability Link Recovery
2008.ICPC.Abadi [24] 50 ✓ ✓ ✓ ✓ ✓ . ✓ . . . ✓
2009.ICPC.Capobianco [25] 24 ✓ ✓ ✓ ✓ ✓ ✓ . . ✓ . . . ✓
2010.ICPC.Oliveto [26] 63 ✓ ✓ ✓ ✓ ✓ ✓ ✓ . . . ✓ . ✓
2010.ICSE.Asuncion [27] 76 ✓ ✓ ✓ ✓ . ✓ ✓
2011.ICPC.DeLucia [28] 11 ✓ ✓ ✓ ✓ . . . ✓ . . ✓ ✓ ✓
2011.ICSE.Chen [29] 4 ✓ ✓ ✓
2011.ICSM.Gethers [30] 24 ✓ ✓ ✓ ✓ ✓ . ✓ ✓ . . ✓ . ✓ . ✓ . . .
2013.CSMR.Panichella [31] NA ✓ ✓ . . . ✓ ✓ . ✓ . . . ✓ ✓ ✓ .
2013.ICSE.Panichella [32] 5 ✓ ✓ ✓ ✓ ✓
2013.TEFSE.Dit [33] 2 ✓ ✓ ✓ ✓
Feature Location
2004.WCRE.Marcus [34] 260 ✓ . . ✓ ✓ ✓
2007.ASE.Liu [35] 96 ✓ ✓ . ✓ X ✓ ✓ . ✓ ✓ . . .
2007.TSE.Poshyvanyk [36] 191 ✓ ✓ . ✓ ✓ ✓ . . ✓ . . .
2009.ICPC.Revelle [37] 33 ✓ . . . X ✓ ✓ ✓
2009.ICSM.Gay [38] 39 ✓ ✓ ✓ ✓ ✓
2011.ICPC.Dit [39] 23 ✓ ✓ ✓ ✓ X . X . . . ✓ ✓ . ✓
2011.ICPC.Scanniello [40] 8 ✓ ✓ ✓ ✓ . ✓ ✓ ✓
2011.ICSM.Wiese [41] 4 ✓ . ✓ ✓ . . ✓
2012.ICPC.Dit [42] 9 ✓ ✓ ✓ ✓ X ✓ ✓ ✓ . ✓
2013.EMSE.Dit [23] 6 ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ . ✓ . ✓
Program Comprehension
2009.MSR.Enslen [43] 57 ✓ . . ✓ . . X
2009.MSR.Tian [44] 34 ✓ ✓ . ✓ ✓ ✓
2010.ICSE.Haiduc [45] 27 ✓ ✓ ✓ ✓ ✓
2012.ICPC.DeLucia [46] 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Identify Duplicate Bug Rep.
2007.ICSE.Runeson [47] 161 ✓ ✓ ✓ ✓ ✓
2008.ICSE.Wang [48] 169 ✓ ✓ ✓ . X ✓ ✓
2012.CSMR.Kaushik [49] 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Total: 1,388 27 20 17 14 6 4 2 1 1 1 14 14 7 5 1 1 1 14 7 2 5 3 1 1 2

C. Documentation

Documentation of the CDK and CL plays a key role in
assisting researchers and component developers new to
TraceLab. In addition to code examples and API references,
documentation provides vital information about a program's
functionality, design, and intended use. This adds a wealth of
knowledge to someone who wants to use TraceLab and start
designing new experiments from components. We provide this
information in a wiki format on our website2.

D. Extending the CDK and CL

The CL and CDK themselves are not the definitive
collection of all the SM tools that researchers will ever need.
However, their design and implementation in conjunction with
TraceLab's framework provide a foundation for extending SM
research in the future.

The CL and CDK are released under an Open Source
license (GPL) in order to facilitate collaboration and
community contribution. As new techniques are invented, they
can be added to the existing hierarchy and thus into TraceLab.

In creating the CL and CDK, we leveraged TraceLab's
ability to create (custom / user made) components through the
TraceLab SDK. As the body of SM techniques grows,
researchers can utilize our components and extend them to new
ones via the same process. Part of our future work will be
investigating effective ways of incorporating user-made
components into the CL and CDK.

VI. REPRODUCING EXISTING EXPERIMENTS AND

EVALUATING NEW IDEAS USING THE COMPONENT LIBRARY

This section presents the details of reproducing an existing
feature location technique (FLT) [23] using the CDK and the
CL proposed in this paper. We describe the original technique,
the details of reproducing it in TraceLab, and compare the
results of the original and reproduced technique. In addition,
we illustrate the process of experimenting with two new ideas
that are based on the reproduced technique.

A. Reproducing a Feature Location Technique

The FLT introduced by Dit et al. [23], called
IRLSIDynbinWM (or IRDynWM for short), was reproduced in

2 http://coest.org/coest-projects/projects/semeru/wiki

TraceLab using a subset of components from the proposed CL.
The high-level idea behind IRDynWM is to (i) identify a subset
of methods from an execution trace with high or low rankings
using advanced web mining analysis algorithms and to (ii)
remove those methods from the results produced by the SITIR
approach [35]. The SITIR approach (or IRDyn) uses
information retrieval (IR) techniques to rank all the methods
from an execution trace (Dyn) based on their textual
similarities to a maintenance task used as a query.

The IRDynWM FLT takes as input a description of a
maintenance task in natural language (e.g., bug report
description), the source code of the system, and an execution
trace of a scenario that exercises the feature described in the
maintenance task. The execution trace is processed and
converted into a program dependence graph (PDG), where a
pair of connected nodes represents a caller-callee relation
between two methods from the execution trace. The PDG is
used as an input for two link analysis algorithms, namely
PageRank [50] and HITS [51], which generate a score for each
node from the PDG (i.e., each method from the execution
trace). PageRank produces one score for each method, which
represents the popularity or importance of that method within
the graph [50]. HITS produces two scores for each method: (i)
an authority score, based on the content of the method and the
number of methods pointing to it (i.e., methods that are called
by other methods should have a higher authority score), and (ii)
a hub score, based on the outgoing links of a method (i.e.,
methods that call numerous other methods have higher hub
values) [51]. The different scores produced by PageRank and
HITS are used to rank methods and identify the ones with high
or low importance scores in order to remove them from the list
of results produced by the SITIR (IRDyn) approach [35].

The reproduced IRDynWM FLT, where WM = {PageRank
or HITS_Aut or HITS_Hub}, is presented as a TraceLab
experiment in Figure 4 (see components in the upper part of the
figure, which are not highlighted by the red dashed line).

The experiment uses the loop structure introduced in the
latest version of TraceLab to iterate though all the queries in
the dataset and (i) retrieves and parses its execution trace
(Parse Execution Trace), (ii) generates a program dependence
graph based on the caller-callee relations identified in the trace
(Generate PDG), (iii) generates a transition probability matrix
for PageRank (Generate TPM) and applies PageRank

Figure 5 Box plots of effectiveness measure obtained from reproducing the
experiments in [23]. The results of techniques T1, T2, T7 and T13 correspond

to IRLSIDynbin, IRLSIDynbinWMPR(freq)
t80, IRLSIDynbinWMHITS(a,freq)

b60,
IRLSIDynbinWMHITS(h,bin)

b80 from [23] Figure 4(c)

Figure 6 Box plots of effectiveness measure comparing (i) the techniques that

produced the best results in [23] for the jEdit4.3 dataset (e.g., T2, T7, and T13 - see
Figure 5 for exact names) against the (ii) No Scenario Filter (suffix NSF) and (iii)

Frequent Methods Filter (FMF)

(PageRank) to generate the importance scores, and similarly, it
generates an adjacency matrix (Generate AM) used by HITS
(HITS) to generate the authorities and hubs scores associated
with these methods. The parsed methods from the execution
trace are used by the IR Dyn component to produce the results
of the SITIR approach, and these results, along with the results
produced by the PageRank component, are used to generate the
results for the IRDynPageRank FLT (see IR Dyn PageRank
component). Similarly, using the HITS authorities and hubs
scores, the IRDynHITS_Aut and IRDynHITS_Hub FLTs are
computed. It is important to note that the components
associated with the IRDynWM FLT can be configured with
user defined thresholds for the percentage of methods to filter
[23].

The results produced by the replicated technique are the
same as the ones reported in the original paper, even though
the original technique used different implementations of LSI,
PageRank and HITS algorithms, as well as other scripts to
compute the results. Figure 5 shows a subset of the results
produced by our TraceLab implementation, which are the same
as the ones that were reported in [23] Figure 4(c) for the jEdit
dataset. Figure 5 represents the box plots of the effectiveness
measure for the techniques T1, T2, T7 and T13 corresponding to
IRLSIDynbin, IRLSIDynbinWMPR(freq)

t80, IRLSIDynbinWMHITS(a,freq)
b60,

IRLSIDynbinWMHITS(h,bin)
b80 from [23] Figure 4(c), using the

notation from [23]. For simplification, T2, T7, and T13
correspond to the IRDynPageRank, IRDynHITS_Aut and
IRDynHITS_Hub respectively. These techniques were chosen
as an example in Figure 5 because they produced the best
results for the jEdit dataset [23] and to illustrate that the
implemented technique produces the same results as the
original technique.

B. Experimenting with new Ideas

Using the IRDynWM FLT [23] as a starting point we
experimented with incorporating new ideas for further
improving the results. We describe the two new ideas and
present their results in comparison with the original ones.

1) Filtering Frequent Methods from Execution Traces
The first idea that we instantiated in TraceLab consisted of

filtering out some of the "noise" found in execution traces.
More specifically, given a set of execution traces we identify
the methods that appear in more than X% (i.e., a user defined
threshold) of execution traces and we filter them out from the
results produced by the IRDynWM technique. For example,
consider our jEdit 4.3 dataset [23, 52] which contains 150
execution traces generated while exercising particular
scenarios. Based on specified threshold (e.g., 66%) we (i)

identified the methods that appear in 100 traces or more, and
we (ii) filtered them out of the results produced by IRDynWM.
Our intuition was that if a particular method captured in an
execution trace appears in a large number of traces, the
probability of that method to be part of a specific feature is low
and therefore, could be eliminated. In a way, this filtering
technique is similar to the process of eliminating stop words
from corpora, where the stop words were identified as
appearing frequently and carrying no real meaning in the
corpus.

We implemented this idea based on the existing IRDynWM,
which resulted in the IRDynWMFrequentMethodFilter or
IRDynWMFMF technique (see the bottom part highlighted with
a red rectangle in Figure 4). The implementation required the
following steps. First, we added two new components to (i)
examine all the execution traces from the dataset (component
Load All Execution Traces) and (ii) identify the methods that
appear in more than X% of traces, with X% being the threshold
specified by the user (component Compute Method
Frequencies). Second, for each query in the while loop we
instantiated the same component three times to filter out the
most frequent execution trace methods from each technique in
the original experiment. For example, the results produced by
the IRDynPageRank FLT were used as input for the
IRDynPageRankFMF (see section VI.B.3) for results).

2) Filtering "No Scenario" Methods from a Trace
In case a large set of execution traces is not available (i.e.,

the prerequisite for IRDynWMFMF is not satisfied), a developer
can use only one execution trace to get improved results, by
collecting an execution trace that exercises no scenario (i.e.,
without exercising any specific features of the software). The
execution trace was collected from the moment the application
started to the moment the application terminated, without
exercising any user features in the meantime. The methods
captured in the No Scenario trace were filtered from the results
produced by IRDynWM, resulting in the IRDynWMNoScenarioFilter
or IRDynWMNSF technique. The intuition behind this idea is
that the No Scenario trace contains a number of methods that
are not associated with any specific scenario (i.e., generic
methods), which can be filtered in order to improve the results.

The implementation of this technique is similar to the one
presented in Figure 4, but for brevity, the diagram is not
included in this paper. The major modification was that the
Load All Execution Traces and Compute Method Frequencies
components were replaced with a component that loaded a
user-specified no scenario execution trace and extracted the
methods that will be filtered. In addition, the IRDynWMFMF

Table III Descriptive statistics for the box plots presented in Figure 6. The first row (Percentage Features) represents the percentage of features for which the
technique was able to locate at least one relevant method

 T2 T2-NSF T2-FMF T7 T7-NSF T7-FMF T13 T13-NSF T13-FMF
Percentage Features 68% 59% 64% 73% 59% 68% 67% 59% 66%

Min 1 1 1 1 1 1 1 1 1
25th 2 1 1 3 1.75 2 1 1 1

Median 5 3 4 5 4 4 2 1 2
75th 11 8 9 21 8.75 13.5 6 4 5
Max 237 81 145 170 141 142 35 40 35

Mean 14.81 7.47 10.02 20.85 10.36 12.72 4.92 3.56 4.25
Standard Deviation 34.24 11.71 21.18 32.98 19.68 21.45 6.19 5.96 5.51

composite nodes were replaced with corresponding
IRDynWMNSF composite nodes.

3) Results of the New Ideas
Figure 6 shows side by side the box plots of the

effectiveness measure produced by IRDynWM, IRDynWMFMF
and IRDynWMNSF. For the comparison, we choose the best
three configurations of PageRank, HITS Authority and HITS
Hubs that produced the best results for the jEdit dataset in [23],
which are T2, T7 and T13 (see Figure 5 for the labels). A
complementary view of Figure 6 is given by Table III, which
contains descriptive statistics of the box plots generated by
those techniques.

Figure 6 and Table III show that the IRDynWMFMF (e.g., T2-
FMF, T7-FMF and T13-FMF) techniques generate better results
in terms of the effectiveness measure than IRDynWM, and that
IRDynWMNSF produces better results than IRDynWMFMF. For
example, for T2, the median value was 5, whereas for T2-FMF
and T2-NSF the median values for 4 and 3 respectively. The
same trend is observed for the average values: 14.81, 10.02 and
7.47 for T2, T2-FMF and T2-NSF, respectively.

Our two experimental ideas produced better results than the
best results presented in [23] for the jEdit dataset. However, the
improvement in "precision", comes at the cost of potentially
filtering out relevant methods. For example in Table III row
Percentage Features shows the percentage of features for
which that particular technique was able to identify at least one
relevant method. As the table indicates, filtering additional
methods removes noise (i.e., irrelevant methods to the feature),
as well as some relevant methods.

C. Discussion

Although for this particular dataset the two experimental
ideas produced better results than the ones reported in [23],
there is still more research to be done (e.g., investigate the
impact of removing also relevant methods, automatically
setting the threshold for IRDynWMFMF, ensuring
generalizability, considering more advanced techniques for
analyzing traces [53, 54], etc.) before considering these ideas
as viable techniques, but this is beyond the scope of this paper.

The main goal of these examples was to illustrate the
support that our Component Library and the TraceLab
framework can offer to researchers, who can test new ideas and
get some preliminary results to assess the feasibility of those
ideas, and decide if it is worth pursuing them or not.

VII. LIMITATIONS

This section discusses some potential limitations for
conducting research using TraceLab, the Component
Development Kit and the Component Library.

TraceLab was not designed for real-time feedback from the
user, and although this could be implemented it would impose
some overhead upon the developer. Additionally, running code
hosted in a .NET process is slower than running it natively.
Therefore the time or speed factors in evaluating an approach
would need to be considered.

We attempted to identify papers which covered a number
of topics in SM, which we were familiar with or had expertise
with. Within the papers we covered, in some cases we were
unable to obtain exact implementations due to lack of specific
details or availability of tools. Additionally, many experiments

cannot be reproduced directly because the datasets under study
were undisclosed or unavailable.

The CL and CDK do not implement every technique and
building block found in the mapping study. The amount of
time, manpower, and testing required to do so would be far
beyond the resources available. That being said, we tried to
implement as many of the techniques that we could in order to
show the efficacy and usefulness of TraceLab as a research
tool. We are continuously working on driving new research
with TraceLab and encourage others to do so as well.

A major issue that prevented us from using or
implementing certain tools was their copyright licensing. In
some cases they do not use permissive licenses, and even if the
source code was available its license did not permit
distribution. TraceLab is released under the open source license
GPL, which we follow as well with the CL and CDK.
Developers may release their own components under any
license they wish, but if they wish to extend or modify the CL
or CDK, they must release under GPL as well.

VIII. CONCLUSIONS AND FUTURE WORK

This paper addressed the reproducibility problem
associated with experiments in SM research. Our goal was to
support and accelerate research in SE by providing a body of
actionable knowledge in the form of reproduced experiments
and a Component Library and Component Development Kit
that can be used as the basis to generate novel, and most
importantly reproducible techniques.

After conducting a mapping study of SM techniques in the
areas of traceability link recovery, feature location, program
comprehension and duplicate bug report detection, we
identified 27 papers and techniques that we used to generate a
library of TraceLab components. We implemented a subset of
these techniques as TraceLab experiments to illustrate
TraceLab's potential as a research framework and to provide a
basis for implementing new techniques.

It is obvious that this does not cover the entire range of SM
papers or techniques. Therefore, in the future, we are
determined to continually expand the TraceLab Component
Library and Development Kit by including more techniques
and expanding it to other areas of SM (e.g., impact analysis). In
addition, we encourage other researchers to contribute to this
body of knowledge for the benefit of conducting research.

ACKNOWLEDGMENT

This work is supported in part by the United States NSF
CNS-0959924, CCF-1218129, and CCF-1016868 grants. Any
opinions, findings and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.
We would also like to acknowledge the team of researchers
from DePaul University: Jane Cleland-Huang, Ed Keenan,
Adam Czauderna, and Greg Leach. This work would not have
been possible without their continuous support on the
TraceLab project.

REFERENCES
[1] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, "Feature Location in
Source Code: A Taxonomy and Survey," Journal of Software: Evolution and
Process (JSEP), vol. 25, pp. 53–95, 2013.

[2] G. Robles, "Replicating MSR: A Study of the Potential Replicability of
Papers Published in the Mining Software Repositories Proceedings," in MSR,
2010, pp. 171-180.
[3] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. Sweeney, "The Effect of
Omitted-Variable Bias on the Evaluation of Compiler Optimizations," IEEE
Computer, vol. 43, pp. 62-67, 2010.
[4] M. D'Ambros, M. Lanza, and R. Robbes, "Evaluating Defect Prediction
Approaches: a Benchmark and an Extensive Comparison," Empirical Software
Engineering (ESE), vol. 17, pp. 531-577, 2012.
[5] E. Barr, C. Bird, E. Hyatt, T. Menzies, and G. Robles, "On the Shoulders
of Giants," in FoSER, 2010, pp. 23-28.
[6] J. M. González-Barahona and G. Robles, "On the Reproducibility of
Empirical Software Engineering Studies based on Data Retrieved from
Development Repositories," Empirical Software Engineering (ESE), vol. 17,
pp. 75-89, 2012.
[7] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan.
(2012). The PROMISE Repository of Empirical Software Engineering Data.
Available: http://promisedata.googlecode.com
[8] S. J. Sayyad and T. J. Menzies. (2005 July 17). The PROMISE Repository
of Software Engineering Databases. Available:
http://promise.site.uottawa.ca/SERepository
[9] T. Zimmermann, R. Premraj, and A. Zeller, "Predicting Defects for
Eclipse," in PROMISE, 2007.
[10] H. Do, S. Elbaum, and G. Rothermel, "Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and its Potential
Impact," Empirical Software Engineering, vol. 10, pp. 405-435, 2005
[11] J. Cleland-Huang, A. Czauderna, A. Dekhtyar, G. O., J. Huffman Hayes,
E. Keenan, G. Leach, J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman, G.
Antoniol, B. Berenbach, A. Egyed, and P. Maeder, "Grand Challenges,
Benchmarks, and TraceLab: Developing Infrastructure for the Software
Traceability Research Community," in TEFSE, 2011.
[12] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin, E. Moritz,
M. Gethers, D. Poshyvanyk, J. Maletic, J. H. Hayes, A. Dekhtyar, D.
Manukian, S. Hussein, and D. Hearn, "TraceLab: An Experimental Workbench
for Equipping Researchers to Innovate, Synthesize, and Comparatively
Evaluate Traceability Solutions," in ICSE, 2012, pp. 1375-1378.
[13] J. Cleland-Huang, Y. Shin, E. Keenan, A. Czauderna, G. Leach, E. Moritz,
M. Gethers, D. Poshyvanyk, J. H. Hayes, and W. Li, "Toward Actionable,
Broadly Accessible Contests in Software Engineering," in ICSE, 2012, pp.
1329-1332.
[14] Rapid-I. Rapid Miner. Available: http://rapid-i.com/content/view/181/190/
[15] Mathworks. Simulink. http://www.mathworks.com/products/simulink/
[16] U. of California. The Kepler Project. Available: https://kepler-project.org/
[17] G. Salton, A. Wong, and C. S. Yang, "A vector space model for automatic
indexing," Communications of the ACM (CACM), vol. 18, pp. 613-620, 1975.
[18] T. U. of Waikato.. WEKA. http://www.cs.waikato.ac.nz/ml/weka/
[19] Yahoo. Yahoo Pipes. Available: http://pipes.yahoo.com/pipes/
[20] T. U. of Sheffield. GATE Available: http://gate.ac.uk/
[21] B. A. Kitchenham, D. Budgen, and O. P. Brereton, "Using Mapping
Studies as the Basis for Further Research - A Participant-Observer Case
Study," Information and Software Technology, vol. 53, pp. 638-651, 2011.
[22] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic Mapping
Studies in Software Engineering," in 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE'08), 2008.
[23] B. Dit, M. Revelle, and D. Poshyvanyk, "Integrating Information
Retrieval, Execution and Link Analysis Algorithms to Improve Feature
Location in Software," Empirical Software Engineering, vol. 18, pp. 277-309,
2013.
[24] A. Abadi, M. Nisenson, and Y. Simionovici, "A Traceability Technique
for Specifications," in ICPC, 2008, pp. 103-112.
[25] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella,
"On the role of the nouns in IR-based traceability recovery," in ICPC, 2009, pp.
148-157.
[26] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, "On the
Equivalence of Information Retrieval Methods for Automated Traceability
Link Recovery," in ICPC, 2010, pp. 68-71.
[27] H. Asuncion, A. Asuncion, and R. Taylor, "Software Traceability with
Topic Modeling," in ICSE, 2010, pp. 95-104.
[28] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
"Improving IR-based Traceability Recovery Using Smoothing Filters," in
ICPC, 2011, pp. 21-30.

[29] X. Chen, J. Hosking, and J. Grundy, "A Combination Approach for
Enhancing Automated Traceability", in ICSE, 2011, pp. 912-915.
[30] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, "On Integrating
Orthogonal Information Retrieval Methods to Improve Traceability Link
Recovery," in ICSM, 2011, pp. 133-142.
[31] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D.
Poshyvanyk, and A. De Lucia, "Using Structural Information and User
Feedback to Improve IR-based Traceability Recovery," in CSMR, 2013, pp.
199-208.
[32] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De
Lucia, "How to Effectively Use Topic Models for Software Engineering
Tasks? An Approach based on Genetic Algorithms," in ICSE, 2013, pp. 522-
531.
[33] B. Dit, A. Panichella, E. Moritz, R. Oliveto, M. Di Penta, D. Poshyvanyk,
and A. De Lucia, "Configuring Topic Models for Software Engineering Tasks
in TraceLab," in TEFSE, 2013, pp. 105-109.
[34] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, "An Information
Retrieval Approach to Concept Location in Source Code," in WCRE, 2004, pp.
214-223.
[35] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, "Feature Location via
Information Retrieval based Filtering of a Single Scenario Execution Trace," in
ASE, 2007, pp. 234-243.
[36] D. Poshyvanyk, Y. G. Guéhéneuc, A. Marcus, G. Antoniol, and V.
Rajlich, "Feature Location using Probabilistic Ranking of Methods based on
Execution Scenarios and Information Retrieval," IEEE Transactions on
Software Engineering (TSE), vol. 33, pp. 420-432, 2007.
[37] M. Revelle and D. Poshyvanyk, "An Exploratory Study on Assessing
Feature Location Techniques," in ICPC, 2009, pp. 218-222.
[38] G. Gay, S. Haiduc, M. Marcus, and T. Menzies, "On the Use of Relevance
Feedback in IR-Based Concept Location," in ICSM, 2009, pp. 351-360.
[39] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, "Can Better
Identifier Splitting Techniques Help Feature Location?," in ICPC, 2011, pp.
11-20.
[40] G. Scanniello and A. Marcus, "Clustering Support for Static Concept
Location in Source Code," in ICPC, 2011, pp. 1-10.
[41] A. Wiese, V. Ho, and E. Hill, "A Comparison of Stemmers on Source
Code Identifiers for Software Search," in ICSM, 2011, pp. 496-499.
[42] B. Dit, E. Moritz, and D. Poshyvanyk, "A TraceLab-based Solution for
Creating, Conducting, and Sharing Feature Location Experiments," in ICPC,
2012, pp. 203-208.
[43] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, "Mining Source
Code to Automatically Split Identifiers for Software Analysis," in MSR, 2009,
pp. 71-80.
[44] K. Tian, M. Revelle, and D. Poshyvanyk, "Using Latent Dirichlet
Allocation for Automatic Categorization of Software," in MSR, 2009, pp. 163-
166.
[45] S. Haiduc, J. Aponte, and A. Marcus, "Supporting Program
Comprehension with Source Code Summarization," in ICSE, 2010, pp. 223-
226.
[46] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
"Using IR Methods for Labeling Source Code Artifacts: Is it Worthwhile?," in
ICPC, 2012, pp. 193-202.
[47] P. Runeson, M. Alexandersson, and O. Nyholm, "Detection of Duplicate
Defect Reports Using Natural Language Processing," in ICSE, 2007, pp. 499-
510.
[48] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, "An Approach to
Detecting Duplicate Bug Reports using Natural Language and Execution
Information," in ICSE, 2008, pp. 461-470.
[49] N. Kaushik and L. Tahvildari, "A Comparative Study of the Performance
of IR Models on Duplicate Bug Detection," in CSMR, 2012, pp. 159-168.
[50] S. Brin and L. Page, "The Anatomy of a Large-Scale Hypertextual Web
Search Engine," in 7th Int. Conference on World Wide Web, 1998, pp. 107-117.
[51] J. M. Kleinberg, "Authoritative Sources in a Hyperlinked Environment,"
Journal of the ACM, vol. 46, pp. 604-632, 1999.
[52] B. Dit, A. Holtzhauer, D. Poshyvanyk, and H. Kagdi, "Generating
Benchmarks from Change History Data to Support Evaluation of Software
Maintenance Tasks," in MSR Data Track, 2013, pp. 131-134.
[53] A. Egyed, "A Scenario-Driven Approach to Trace Dependency Analysis,"
Transactions on Software Engineering (TSE), vol. 29, pp. 116 - 132, 2003.
[54] T. Eisenbarth, R. Koschke, and D. Simon, "Feature-Driven Program
Understanding Using Concept Analysis of Execution Traces," presented at the
IWPC, 2001, pp. 300-309.

