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Abstract—Research studies in software maintenance are 
notoriously hard to reproduce due to lack of datasets, tools, 
implementation details (e.g., parameter values, environmental 
settings) and other factors. The progress in the field is hindered 
by the challenge of comparing new techniques against existing 
ones, as researchers have to devote a lot of their resources to the 
tedious and error-prone process of reproducing previously 
introduced approaches. In this paper, we address the problem of 
experiment reproducibility in software maintenance and provide 
a long term solution towards ensuring that future experiments 
will be reproducible and extensible. We conducted a mapping 
study of a number of representative maintenance techniques and 
approaches and implemented them as a library of experiments 
and components that we make publicly available with TraceLab, 
called the Component Library. The goal of these experiments and 
components is to create a body of actionable knowledge that 
would (i) facilitate future research and would (ii) allow the 
research community to contribute to it as well. In addition, to 
illustrate the process of using and adapting these techniques, we 
present an example of creating new techniques based on existing 
ones, which produce improved results. 

Keywords—software maintenance, reproducible, experiments, 
case studies, TraceLab 

I. INTRODUCTION 

Research in software maintenance (SM) is primarily driven 
by empirical studies. Thus, advancing this field requires 
researchers not only to come up with new, more efficient and 
effective approaches that address SM problems, but most 
importantly, to compare their new approaches against existing 
ones in order to demonstrate that they are complementary or 
superior and under which scenarios. 

However, comparing an approach against existing ones is 
time consuming and error-prone. For example, the existing 
approaches may be hard to reproduce because the datasets used 
in their evaluation, the tools and implementation, or the 
implementation details (e.g., specific parameter values, 
environmental factors) are not available [1, 2, 3, 4, 5, 6].  

For example, a survey on feature location (FL) techniques 
by Dit et al. [1] revealed that only 5% of the papers surveyed 
(three out of 60 papers) used in their evaluation the same 
dataset that was used in evaluating other techniques, and that 
only 38% of the papers surveyed (23 out of 60 papers) 
compared their proposed feature location technique against a 
small number of previously introduced feature location 
techniques. In addition, these findings are consistent with the 

ones from the study by Robles [2], which determined that 
among the 154 research papers analyzed, only two made their 
datasets and implementation available, and the vast majority of 
the papers describe evaluations that cannot be reproduced, due 
to lack of data, details, and tools. Furthermore, a study by 
González-Barahona and Robles [6] identified the factors 
affecting the reproducibility of results in empirical software 
engineering research and proposed a methodology for 
determining the reproducibility of a study. In another study, 
Mytkowicz et al. [3] investigated the influence of the omitted-
variable bias (i.e., a bias in the results of an experiment caused 
by omitting important causal factors from the design) in 
compiler optimization evaluation. Their study showed that 
factors such as the environment size and the link order, which 
are often not reported and are not explained properly in the 
research papers, are very common, unpredictable and can 
influence the results significantly. Moreover, D'Ambros et al. 
[4] argued that many approaches in bug prediction have not 
been evaluated properly (i.e., they were either evaluated by 
themselves, or they were compared against a limited set of 
other approaches), and highlight the difficultness of comparing 
results. 

This issue of the reproducibility of experiments and 
approaches has been discussed and investigated in different 
areas of software maintenance research [1, 2, 3, 4, 5, 6], and 
some initial steps have been taken towards solving this 
problem. For example, efforts for establishing datasets or 
benchmarks that can be used uniformly in evaluations have 
resulted in online benchmark repositories such as PROMISE 
[7, 8], Eclipse Bug Data [9], SEMERU feature location dataset 
[1], Bug Prediction Dataset [4], SIR [10], and others. In 
addition, different infrastructures for running experiments were 
introduced, such as TraceLab [11, 12, 13], RapidMiner [14], 
Simulink [15], Kepler [16], and others.  However, among 
these, the most suitable framework for facilitating and 
advancing research in software engineering and maintenance is 
TraceLab (see Section III.B for an in-depth comparison and 
discussion of TraceLab's features with other tools). TraceLab is 
a plug-and-play framework that was specifically designed for 
facilitating creating, evaluating, comparing, and sharing 
experiments in software engineering and maintenance. These 
characteristics ensure that TraceLab makes experiments 
reproducible.  

The goal of this paper is to ensure that a large portion of 
existing and future experiments in software maintenance 
research that are designed and implemented with TraceLab will 
be reproducible. We analyzed the approaches presented in 27 



 

research papers and we implemented them as TraceLab 
experiments. In order to implement these SM approaches, we 
identified their common building blocks and we implemented 
them as components in a well organized (structured), 
documented and comprehensive Component Library for 
TraceLab. In addition, we used the Component Library to 
assemble and replicate a subset of existing SM techniques, and 
to exemplify how these components and experiments can be 
used as starting points for creating new and reproducible 
experiments. 

In summary, the contributions of our paper are as follows: 
 a mapping study of techniques and approaches in SM 

(Section IV) to identify the set of techniques that we 
reproduced as TraceLab experiments; 

 a TraceLab Component Library (CL), which contains a 
comprehensive and representative set of TraceLab 
components designed to help instantiate the set of SM 
experiments, and a Component Development Kit 
(CDK), which serves as a base for extending this 
component base in order to facilitate the creation of 
new techniques and experiments; 

 an example of reproducing a feature location technique 
using the proposed CL, as well as using the existing 
technique as a starting point to design and evaluate new 
ideas; 

 an online appendix that makes publicly available all the 
resources presented in this paper: 
www.cs.wm.edu/semeru/TraceLab_CDK 

The paper is organized as follows. Section II presents a 
motivating example that shows variability in results of 
applying a simple SM technique and challenges of reproducing 
those results without complete details. Section III introduces 
background details about TraceLab and presents a comparison 
with other tools. Section IV presents the mapping study 
performed, which we used to implement the Component 
Library and Development Kit (Section V). Section VI shows 
an example of reproducing an existing FL technique and 
presents details on improving it. Finally, Section VII discusses 
some potential limitations and Section VIII concludes the 
paper and introduces some ideas for future work. 

II. MOTIVATING EXAMPLE 

When new approaches are introduced, in general, authors 
rightfully focus more on describing the important details of the 
new techniques, and due to various reasons (e.g., space 
limitations) they may present only in passing the details of 
applying well-known and popular techniques (e.g., VSM), as 
they rely on the conventional wisdom and knowledge (or 
references to other papers for more details) about applying 
these techniques [1, 2]. 

However, for a researcher who tries to reproduce the results 
exactly, it might be difficult to infer all the assumptions the 
original authors took for granted and did not explicitly state in 
the paper. Therefore, the reproducer's interpretation of applying 
the approach could have significant impact on the results.  

To illustrate this point on a concrete example, we applied 
the popular IR technique Vector Space Model (VSM) [17] on 
the EasyClinic system from TEFSE 20091 challenge to recover 

                                                           
1 http://web.soccerlab.polymtl.ca/tefse09/Challenge.htm 

traceability links between use cases and class diagrams. We 
configured the VSM technique using four treatments consisting 
of all the possible combinations of two corpus preprocessing 
techniques and two VSM weighting schemes. The 
preprocessing techniques were raw preprocessing (i.e., only 
the special characters were removed) and basic preprocessing 
(i.e., remove special characters, split identifiers and stem). The 
weighting schemes used were no weighting and term 
frequency-inverse document frequency (tf-idf) weighting. 
Figure 1 indicates the raw and basic preprocessing steps with 
gray and black color respectively, and the no weighting and tf-
idf weighting with dashed line and solid line respectively. The 
results in Figure 1 show a high variety in the precision and 
recall values, based on the type of preprocessing and weighting 
schemes used. Assuming these details are not clearly specified 
in the paper, any of these configurations or variations of these 
configurations can be chosen while reproducing an experiment, 
potentially yielding completely unexpected and drastically 
different results. It is worth emphasizing that in our example 
we picked a small subset of the large number of weighting 
schemes and preprocessing techniques that can be found in the 
literature, and these options were deliberately picked to 
illustrate an example, as opposed to conducting a rigorous 
experiment to identify the configuration of factors that could 
produce the best results. 

The main point of this example is that even in this simple 
scenario of using VSM for a typical traceability task, there are 
many options on how we can instantiate and use this technique, 
which leads to completely different results. However, all these 
problems could be eliminated if all these details are encoded in 
the experiment description, such as one designed in TraceLab. 

III. BACKGROUND AND RELATED WORK 

This section provides the background details about 
TraceLab as an environment for SM research and compares 
and contrasts TraceLab to other research tools specific to other 
domains. 

Figure 1 Precision-Recall curves for EasyClinic for recovering traceability 
links between use cases and classes using a VSM-based traceability technique 

and different preprocessing techniques (raw – gray color, preprocessed – 
black color) and weighting schemes (no weight – dash line, tf-idf – solid line)



 

A. TraceLab 

TraceLab [11, 12, 13] is a framework designed to support 
the reproducibility of experiments in software engineering and 
software maintenance (see Figure 2). More specifically, it 
allows researchers to create, evaluate, compare, and most 
importantly share experiments in SM research. TraceLab was 
developed at DePaul University in collaboration with 
researchers at Kent State University, University of Kentucky, 
and the College of William and Mary. 

The heart of a TraceLab experiment lies in its workflow of 
components and tools (see Figure 2 upper-right). An 
experiment is a collection of nodes (or components) connected 
in the form of a precedence graph. Each component 
communicates with the preceding and following nodes by 
storing and loading information to and from a common data-
sharing interface called the Workspace (see Figure 2 lower-
left). The status of an experiment is reported in the Output 
view (see Figure 2 lower-right). Individual components are 
engineered to implement a specific task and components that 
implement related tasks can be combined to form composite 
components, such as the node with rectangular edges labeled 
Queries preprocessing in Figure 4, which implements various 
tasks such as identifier splitting, stemming, and stopwords 
removal. In addition, TraceLab provides basic control flow 
within the experiment via decision nodes and while loops (see 
Figure 4). 

A major contribution of this paper is a Component Library, 
designed to implement a wide range of SM techniques that can 
be easily accessed from TraceLab (see Figure 2 upper-left). 
The Component Library will be included in the distribution of 
next official TraceLab release. 

B. TraceLab Comparison with Other Tools 

There are also numerous other frameworks and tools that 
were designed to support research in other domains, such as 
information retrieval, machine learning, data mining, and 
natural language processing, among others. Consequently, 
reuse of third party tools or APIs is a common practice for 
making experiments and building research infrastructure in 
software evolution and maintenance. For example, a common 
scenario is to reuse WEKA for implementations of machine 
learning classifiers, R for statistical analysis, or MALLET for 
topic modeling. However, these tools/APIs were not built to 
support research on software evolution and maintenance. 
Moreover, most of the tools were conceived as extensible APIs 
and only few of them provide features such as experiment 
composition by using a data-flow GUI, new components 
implementation, or easy sharing/publishing of experiments; 
moreover, not all of them can be used across multiple 
platforms. Table I compares TraceLab to some similar tools 
that also use a data-flow oriented GUI. 

WEKA [18] is a collection of machine learning algorithms 
that are packaged as an open source Java library that also 
allows running the algorithms using a graphical user interface 
(GUI). One of the WEKA modules is the KnowledgeFlow, 
which provides the user with a data-flow oriented GUI for 
designing experiments. As in TraceLab, the components in the 
KnowledgeFlow are categorized by tasks (DataSources, 
DataSinks, Filters, Classifiers, Clusterers, Associations, 
Evaluation, Visualization), and there is a layout canvas for 
designing experiments by dragging, dropping, and connecting 
components. New components can be added to WEKA by 
extending or modifying the library using Java, and the 
experiments can be saved and loaded for being executed in the 
WEKA Experimenter module.  

RapidMiner [14] is a data mining application that provides 
an improved GUI for designing and running experiments. It 
includes a reusable library for designing experiments and 
running them and it fully integrates WEKA as the machine 
learning library. 

Figure 2 The four "quadrants" of TraceLab in clockwise order from top-right 
are (i) the sample TraceLab experiment that implements our motivating 

example in Section 2; (ii) an output window for reporting execution status of 
an experiment; (iii) the Workspace containing the data and the values of the 

experiment; and (iv) the Component Library  

Table I Comparison of TraceLab with other related tools (columns). The 
features (rows) are as follows: 1) data-flow oriented GUI [Yes / No]; 2) Type 
of application [Desktop / Web / API]; 3) License type [Commercial / Open 
source / Free online access]; 4) Tool allows saving and loading experiments 

[Yes / No]; 5) Tool allows creating composite components [Yes / No / 
Programmatically]; 6) Tool has a component "market" where developers can 
contribute with their own components [Yes / No]; 7) Programming language 

that can be used to build new components; 8) The platforms were the tool 
could be used [Software As A Service, Windows, Linux, Mac] 

            Tool
Feature 

Yahoo 
pipes 

Weka/ 
 R. Miner

Simulink Gate Kepler TraceLab 

GUI Y Y Y N Y Y 
Type W API, D D API, D API, D API, D 

License F O C O O O 
Save/Load 

exp. 
Y Y Y Y Y Y 

Composite 
comp. 

Y N Y P Y Y 

Comp. 
Market 

Y N Y Y Y Y 

Prog. Lang. - Java C/C++ 
 Matlab. 
Fortran 

Java R 
C 

Matlab 
Java 

Java 
R 

.NET lang. 
Matlab 

Platforms SAAS W, L, M W, L, M W, L, M W, L, M W, L, M 



 

Yahoo Pipes [19] is a data mashup tool with components 
for web retrieval, filtering and aggregation of web feeds, web 
pages, and other services. As the TraceLab composite 
components, pipes (i.e., Yahoo pipes composite components) 
can be reused as building blocks for new pipes. In addition, 
pipes are shared/published through the Yahoo pipes website.  

Simulink [15] is a Matlab-based tool for simulation and 
model-based design of embedded systems. In Simulink, a 
model is composed of subsystems (i.e., a group of blocks) or 
individual blocks, and the blocks can be implemented using 
Matlab, C/C++, or Fortran. 

GATE [20] provides an environment for text processing 
that includes an IDE with components for language processing, 
a web application for collaborative annotation of document 
collections, a Java library, and a cloud solution for large scale 
text processing. 

Kepler [16] is a tool that follows the same philosophy as 
TraceLab. By using Kepler, it is possible to build, save, and 
publish experiments/components using a data-flow oriented 
GUI. It is also possible to extend Kepler because of its 
collaborative-project nature. However, the main difference 
with TraceLab is that Kepler was conceived as a tool for 
experiments in sciences such as Math or Physics. 

Although TraceLab is not specialized on simulation, natural 
language processing, or machine learning, it was specifically 
designed to allow software engineering and maintenance 
researchers the possibility to (i) develop and share their own 
components/experiments, and (ii) to ensure the reproducibility 
of their results. TraceLab supports all major OS platforms (e.g., 
Window, MacOS and Linux) and researchers can use Java, any 
.NET language (e.g., C#, VB, C++), R or Matlab to implement 
their components. 

IV. MAPPING STUDY OF SOFTWARE MAINTENANCE 

TECHNIQUES  

In this section we present the methodology, analysis and 
results of a mapping study [21] aimed at identifying a set of 
techniques from particular areas of SM, which could be 
implemented as TraceLab experiments in order to constitute an 
initial practical body of knowledge that would benefit the SM 
research community. Moreover, these identified techniques 
were reverse engineered into basic modules that we 
implemented as TraceLab components, in order to generate a 
Component Development Kit (see Section V.A) and a 
Component Library (see Section V.B) that serves as a starting 

point for any interested researcher to implement new 
techniques or build upon existing ones. 

For our study, we use the systematic mapping process 
described by Petersen et al. [22]. The process consists of five 
stages: 1) defining the research questions of the study, 2) 
searching for papers in different venues, 3) screening the 
papers based on inclusion and exclusion criteria in order to find 
the relevant ones, 4) classifying the papers, and 5) data 
extraction and generating the systematic map. 

1) Defining the Research Questions 
Our goal is to identify a set of representative techniques 

from specific areas of SM, and use them to generate TraceLab 
components and experiments to accelerate and support research 
in SM. Therefore, our main guiding research question was 
formulated as: Which SM techniques are suitable to form an 
initial actionable body of knowledge that other researchers 
could benefit from? In particular, we focused on a subset of 
SM areas where the authors have expertise, which allowed 
generating this initial body of knowledge that could support the 
research community, and one that we, and the research 
community, could contribute to, by constantly adding new 
techniques and components. 

2) Conducting the Search 
In order to find these techniques, we narrowed the search 

space to the publications from the last ten years of a subset of 
journals and software engineering conferences (see our online 
appendix for more details). In addition, in our search we 
incorporated the "snowballing" discovery technique (i.e., 
following references in the related work) discussed by 
Kitchenham et al. [21]. 

3) Screening Criteria 
The primary inclusion criterion consisted in identifying 

whether the research paper described a technique that 
addressed one of the following maintenance tasks: traceability 
link recovery, feature location, program comprehension and 
duplicate bug report identification. In most cases, this 
information was determined by the authors of this paper by 
reading the title, abstract, keywords, and if necessary the 
introduction and the conclusion of the investigated paper. 

The exclusion criteria were as follows. First, we discarded 
techniques that could not have been implemented effectively in 
TraceLab due to various reasons, such as (i) lack of sufficient 
implementation details, (ii) lack of tool availability or (iii) the 
technique was not fully automated, and would require 
interaction with the user. Second, we did not implement 
complex techniques that would have required a lengthy 

Figure 3 Diagram of the hierarchy of the CDK in the context of TraceLab. CDK and CL are part of TraceLab. Researchers can contribute to the CDK and the 
datasets (gray arrow), and reviewers and researchers (green arrow) can use TraceLab to verify details of existing experiments



 

development time, or techniques that are outside the expertise 
of the authors. Third, we discarded techniques with numerous 
dependencies to deprecated libraries or other techniques, as our 
goal was to implement the most popular techniques that can be 
incorporated or built upon. 

4) Classification 
In our mapping study we used two independent levels of 

classification. The first one consisted of categorizing the papers 
based on the type of technique (e.g., traceability link recovery, 
feature location, program comprehension and detecting 
duplicate bug reports) they presented (see Section IV.3)). The 
second level of classification was identifying common 
functionality between the basic building blocks used in an 
approach (e.g., all the functionality related to identifier 
splitting, stemming, stopwords removal and others, were 
grouped under "preprocessing"). 

5) Data extraction 
The list of papers that we identified in our study is 

presented in Table II in the first column along with the Google 
Scholar citation count as of August 9, 2013 (second column). 
The papers are grouped by their primary maintenance tasks 
they address, and are sorted chronologically.  

The remaining columns constitute the individual building 
blocks and components we identified in each approach, 
grouped by their common functionality. A checkmark (✓ ) 
denotes that we implemented the component in the CL. An X 
denotes that the code related to the components appears in the 
approach, but is not implemented in the CL at this time (see 
Section V.B and Section VII). 

Table II shows only a subset of the information. For the 
complete information, we refer the interested reader to our 
online appendix. 

V. COMPONENT LIBRARY AND DEVELOPMENT KIT 

From the 27 papers identified in the mapping study, we 
reverse engineered their techniques in order to create a 
comprehensive library of components and techniques with the 
aim of providing the necessary functionality that SM 
researchers would need to reproduce experiments and create 
new techniques. 

This process resulted in generating (i) a Component 
Development Kit (CDK) that contains the implementation of all 
the SM techniques from the study, (ii) a Component Library 
(CL) that adapts the CDK components to be used in TraceLab 

and (iii) the associated documentation and usage examples for 
each. 

A. Component Development Kit 

The Component Development Kit (CDK) is a multi-tiered 
library of common tools and techniques used in SM research. 
These tools are organized in a well-defined hierarchical 
structure and exposed through a public API. The intent of this 
compilation is to aid researchers in reproducing existing 
approaches and creating new techniques. By providing these 
tools in a clear manner, the Component Development Kit 
facilitates the research evaluation process - researchers no 
longer have to start from scratch or spend time adapting their 
pre-existing tools to a new project. Furthermore, researchers 
can use combinations of these tools to create new techniques 
and drive new research. 

At the top level, the CDK is separated into high-level tasks, 
such as I/O, preprocessing techniques, artifact comparison 
techniques, and metrics calculations (see Figure 3). Those 
levels are then further broken down as needed into more 
specific tasks. This design aids technique developers in 
locating relevant functionality quickly and easily, as well as 
providing base points for integrating new functionality in the 
future. 

Based on our findings from the mapping study, we 
evaluated each technique based on coverage, usefulness, and 
perceived difficulty and effort in implementation. In addition to 
our design goals of providing a clean and easy to use API, 
another goal was to minimize the number of external 
dependencies necessary to implement the technique. As such, 
some techniques that have numerous external dependencies 
were left out.  

B. Component Library 

The Component Library (CL) is comprised of metadata and 
wrapper classes registering certain functionality as components 
in TraceLab. It acts as a layer in between TraceLab and the 
CDK, adapting the functionality of the CDK to be used within 
TraceLab. 

To register a component in TraceLab, a class must inherit 
from the BaseComponent abstract class in the TraceLab SDK. 
All components have a Compute() method which contains the 
desired functionality of the component within the context of a 
TraceLab experiment. Furthermore, all components have a 
component declaration attribute (or annotation in Java 
terminology) that describes information about the component, 

Figure 4 TraceLab experiment for reproducing the IRDynWM FLT [23] (without the components highlighted with red dashed border). TraceLab experiment for 
implementing IRDynWMFMF (all components, including the highlighted ones) 



 

such as its name, description, inputs, and outputs. This 
declaration allows the class to be registered in TraceLab as a 
component, and ensures that a component can only be 
connected with a compatible component. A typical component 
will import data from TraceLab's data sharing interface (the 
Workspace), call various functions on the data using the CDK, 
and then store the results back to the Workspace. 

The structure of the Component Library mirrors the CDK 
hierarchy, providing a mapping from TraceLab to the CDK. 
Components can be organized in TraceLab through the use of 
developer and user Tags, another feature of the TraceLab SDK. 
Components are grouped via Tags into the same high-level 
tasks as the CDK. 

From the building blocks of the CDK identified in the 
mapping study, we implemented 25 out of 51 as TraceLab 
components. In many cases, this was done as a one-to-one 
mapping from the CDK to the CL. However, some techniques 

could be broken down into more general ones which were 
desirable for component re-use. For example, the Vector Space 
Model (VSM) is a straightforward technique, but there can be 
many variations on its implementation (see Section II). We 
implemented a few weighting schemes (e.g., binary term 
frequency, tf-idf, and log-idf) and similarity functions (e.g., 
cosine, Jaccard), which a component developer could pick and 
choose from the desired schemes. 

Another example is the precision and recall metrics in 
traceability link recovery. Although this component consists of 
only one column in the mapping study, the CDK covers many 
of the commonly used metrics in the literature (e.g., precision, 
recall, average precision, mean average precision, F-measure, 
and precision-recall curves). Component developers could 
choose from any of these measures in their experiments. 

Table II Mapping study results (first column) and implementation of these techniques in the CDK (✓represents the component is implemented in CDK and X 
means is not yet implemented in CDK)  

Technique 
Year / Venue / Name / Ref 

 

G
oo

gl
e 

S
ch

ol
ar

 C
it

at
io

n
 C

ou
n

t 

Preprocessing Artifact Comparison Metrics Postprocessing Other

B
ag

-o
f-

w
or

ds
 to

ke
ni

ze
r 

S
to

pw
or

ds
 R

em
ov

er
 

P
or

te
r 

st
em

m
er

 

C
am

el
C

as
e 

sp
li

tt
er

 

E
xe

cu
ti

on
 tr

ac
e 

lo
gg

er
 

D
ep

en
de

nc
y 

G
ra

ph
 G

en
er

at
or

 

S
am

ur
ai

 s
pl

it
te

r 

sm
oo

th
in

g 
fi

lt
er

 

S
no

w
ba

ll
 S

te
m

m
er

 

P
ar

t-
of

-s
pe

ec
h 

ta
gg

er
 

L
at

en
t S

em
an

ti
c 

In
de

xi
ng

 

V
ec

to
r 

S
pa

ce
 M

od
el

 

L
at

en
t D

ir
ic

hl
et

 A
ll

oc
at

io
n 

Je
ns

en
-S

ha
nn

on
 d

iv
er

ge
nc

e 

R
el

at
io

na
l T

op
ic

 M
od

el
 

H
IT

S
 

P
ag

eR
an

k 

P
re

ci
si

on
 / 

R
ec

al
l m

et
ri

cs
 

E
ff

ec
ti

ve
ne

ss
 M

ea
su

re
 

P
ri

nc
ip

al
 C

om
po

ne
nt

 A
na

ly
si

s 

E
xe

cu
ti

on
 tr

ac
e 

ex
tr

ac
to

r 

A
ff

in
e 

tr
an

sf
or

m
at

io
n 

O
-C

S
T

I 

U
D

-C
S

T
I 

G
en

et
ic

 A
lg

or
it

hm
 

Traceability Link Recovery                           
2008.ICPC.Abadi [24] 50 ✓ ✓ ✓ . . . . . . . ✓ ✓ . ✓ . . . ✓ . . . . . . . 
2009.ICPC.Capobianco [25] 24 ✓ ✓ ✓ ✓ . . . . . ✓ ✓ . . ✓ . . . ✓ . . . . . . . 
2010.ICPC.Oliveto [26] 63 ✓ ✓ ✓ . . . . . . . ✓ ✓ ✓ ✓ . . . ✓ . ✓ . . . . . 
2010.ICSE.Asuncion [27] 76 ✓ ✓ ✓ . . . . . . . ✓ . ✓ . . . . ✓ . . . . . . . 
2011.ICPC.DeLucia [28] 11 ✓ ✓ ✓ ✓ . . . ✓ . . ✓ ✓ . . . . . ✓ . . . . . . . 
2011.ICSE.Chen [29] 4 ✓ . . . . . . . . . . ✓ . . . . . ✓ . . . . . . . 
2011.ICSM.Gethers [30] 24 ✓ ✓ ✓ ✓ . . . . . . . ✓ . ✓ ✓ . . ✓ . ✓ . ✓ . . . 
2013.CSMR.Panichella [31] NA ✓ ✓ . . . ✓ . . . . . ✓ . ✓ . . . ✓ . . . . ✓ ✓ . 
2013.ICSE.Panichella [32] 5 ✓ . . . . . . . . . . . ✓ . . . . ✓ ✓ . . . . . ✓ 
2013.TEFSE.Dit [33] 2 ✓ . . . . . . . . . . . ✓ . . . . ✓ . . . . . . ✓ 
Feature Location                           
2004.WCRE.Marcus [34] 260 ✓ . . ✓ . . . . . . ✓ . . . . . . ✓ . . . . . . . 
2007.ASE.Liu [35] 96 ✓ ✓ . ✓ X . . . . . ✓ . . . . . . . ✓ . ✓ ✓ . . . 
2007.TSE.Poshyvanyk [36] 191 ✓ ✓ . ✓ . . . . . . ✓ . . . . . . . ✓ . . ✓ . . . 
2009.ICPC.Revelle [37] 33 ✓ . . . X ✓ . . . . ✓ . . . . . . . . . ✓ . . . . 
2009.ICSM.Gay [38] 39 ✓ ✓ ✓ ✓ . . . . . . . ✓ . . . . . . . . . . . . . 
2011.ICPC.Dit [39] 23 ✓ ✓ ✓ ✓ X . X . . . ✓ . . . . . . . ✓ . ✓ . . . . 
2011.ICPC.Scanniello [40] 8 ✓ ✓ ✓ ✓ . ✓ . . . . . ✓ . . . . . . ✓ . . . . . . 
2011.ICSM.Wiese [41] 4 ✓ . ✓ . . . . . ✓ . . ✓ . . . . . . . . . . . . . 
2012.ICPC.Dit [42] 9 ✓ ✓ ✓ ✓ X . . . . . ✓ ✓ . . . . . . ✓ . ✓ . . . . 
2013.EMSE.Dit [23] 6 ✓ ✓ ✓ ✓ X ✓ . . . . ✓ . . . . ✓ ✓ . ✓ . ✓ . . . . 
Program Comprehension                           
2009.MSR.Enslen [43] 57 ✓ . . ✓ . . X . . . . . . . . . . . . . . . . . . 
2009.MSR.Tian [44] 34 ✓ ✓ . ✓ . . . . . . . . ✓ . . . . ✓ . . . . . . . 
2010.ICSE.Haiduc [45] 27 ✓ ✓ ✓ ✓ . . . . . . ✓ . . . . . . . . . . . . . . 
2012.ICPC.DeLucia [46] 5 ✓ ✓ ✓ ✓ . . . . . . ✓ ✓ ✓ . . . . . . . . . . . . 
Identify Duplicate Bug Rep.                           
2007.ICSE.Runeson [47] 161 ✓ ✓ ✓ . . . . . . . . ✓ . . . . . ✓ . . . . . . . 
2008.ICSE.Wang [48] 169 ✓ ✓ ✓ . X . . . . . . ✓ . . . . . ✓ . . . . . . . 
2012.CSMR.Kaushik [49] 7 ✓ ✓ ✓ . . . . . . . ✓ ✓ ✓ . . . . ✓ . . . . . . . 

Total: 1,388 27 20 17 14 6 4 2 1 1 1 14 14 7 5 1 1 1 14 7 2 5 3 1 1 2 



 

C. Documentation 

Documentation of the CDK and CL plays a key role in 
assisting researchers and component developers new to 
TraceLab. In addition to code examples and API references, 
documentation provides vital information about a program's 
functionality, design, and intended use. This adds a wealth of 
knowledge to someone who wants to use TraceLab and start 
designing new experiments from components. We provide this 
information in a wiki format on our website2. 

D. Extending the CDK and CL  

The CL and CDK themselves are not the definitive 
collection of all the SM tools that researchers will ever need. 
However, their design and implementation in conjunction with 
TraceLab's framework provide a foundation for extending SM 
research in the future. 

The CL and CDK are released under an Open Source 
license (GPL) in order to facilitate collaboration and 
community contribution. As new techniques are invented, they 
can be added to the existing hierarchy and thus into TraceLab. 

In creating the CL and CDK, we leveraged TraceLab's 
ability to create (custom / user made) components through the 
TraceLab SDK. As the body of SM techniques grows, 
researchers can utilize our components and extend them to new 
ones via the same process. Part of our future work will be 
investigating effective ways of incorporating user-made 
components into the CL and CDK. 

VI. REPRODUCING EXISTING EXPERIMENTS AND 

EVALUATING NEW IDEAS USING THE COMPONENT LIBRARY 

This section presents the details of reproducing an existing 
feature location technique (FLT) [23] using the CDK and the 
CL proposed in this paper. We describe the original technique, 
the details of reproducing it in TraceLab, and compare the 
results of the original and reproduced technique. In addition, 
we illustrate the process of experimenting with two new ideas 
that are based on the reproduced technique.  

A. Reproducing a Feature Location Technique 

The FLT introduced by Dit et al. [23], called 
IRLSIDynbinWM (or IRDynWM for short), was reproduced in 

                                                           
2 http://coest.org/coest-projects/projects/semeru/wiki 

TraceLab using a subset of components from the proposed CL. 
The high-level idea behind IRDynWM is to (i) identify a subset 
of methods from an execution trace with high or low rankings 
using advanced web mining analysis algorithms and to (ii) 
remove those methods from the results produced by the SITIR 
approach [35]. The SITIR approach (or IRDyn) uses 
information retrieval (IR) techniques to rank all the methods 
from an execution trace (Dyn) based on their textual 
similarities to a maintenance task used as a query. 

The IRDynWM FLT takes as input a description of a 
maintenance task in natural language (e.g., bug report 
description), the source code of the system, and an execution 
trace of a scenario that exercises the feature described in the 
maintenance task. The execution trace is processed and 
converted into a program dependence graph (PDG), where a 
pair of connected nodes represents a caller-callee relation 
between two methods from the execution trace. The PDG is 
used as an input for two link analysis algorithms, namely 
PageRank [50] and HITS [51], which generate a score for each 
node from the PDG (i.e., each method from the execution 
trace). PageRank produces one score for each method, which 
represents the popularity or importance of that method within 
the graph [50]. HITS produces two scores for each method: (i) 
an authority score, based on the content of the method and the 
number of methods pointing to it (i.e., methods that are called 
by other methods should have a higher authority score), and (ii) 
a hub score, based on the outgoing links of a method (i.e., 
methods that call numerous other methods have higher hub 
values) [51]. The different scores produced by PageRank and 
HITS are used to rank methods and identify the ones with high 
or low importance scores in order to remove them from the list 
of results produced by the SITIR (IRDyn) approach [35]. 

The reproduced IRDynWM FLT, where WM = {PageRank 
or HITS_Aut or HITS_Hub}, is presented as a TraceLab 
experiment in Figure 4 (see components in the upper part of the 
figure, which are not highlighted by the red dashed line).  

The experiment uses the loop structure introduced in the 
latest version of TraceLab to iterate though all the queries in 
the dataset and (i) retrieves and parses its execution trace 
(Parse Execution Trace), (ii) generates a program dependence 
graph based on the caller-callee relations identified in the trace 
(Generate PDG), (iii) generates a transition probability matrix 
for PageRank (Generate TPM) and applies PageRank 

 
Figure 5 Box plots of effectiveness measure obtained from reproducing the 
experiments in [23]. The results of techniques T1, T2, T7 and T13 correspond 

to IRLSIDynbin, IRLSIDynbinWMPR(freq)
t80, IRLSIDynbinWMHITS(a,freq)

b60, 
IRLSIDynbinWMHITS(h,bin)

b80 from [23] Figure 4(c) 

 
Figure 6 Box plots of effectiveness measure comparing (i) the techniques that 

produced the best results in [23] for the jEdit4.3 dataset (e.g., T2, T7, and T13 - see 
Figure 5 for exact names) against the (ii) No Scenario Filter (suffix NSF) and (iii) 

Frequent Methods Filter (FMF) 



 

(PageRank) to generate the importance scores, and similarly, it 
generates an adjacency matrix (Generate AM) used by HITS 
(HITS) to generate the authorities and hubs scores associated 
with these methods. The parsed methods from the execution 
trace are used by the IR Dyn component to produce the results 
of the SITIR approach, and these results, along with the results 
produced by the PageRank component, are used to generate the 
results for the IRDynPageRank FLT (see IR Dyn PageRank 
component). Similarly, using the HITS authorities and hubs 
scores, the IRDynHITS_Aut and IRDynHITS_Hub FLTs are 
computed. It is important to note that the components 
associated with the IRDynWM FLT can be configured with 
user defined thresholds for the percentage of methods to filter 
[23]. 

The results produced by the replicated technique are the 
same as the ones reported in the original paper, even though 
the original technique used different implementations of LSI, 
PageRank and HITS algorithms, as well as other scripts to 
compute the results. Figure 5 shows a subset of the results 
produced by our TraceLab implementation, which are the same 
as the ones that were reported in [23] Figure 4(c) for the jEdit 
dataset. Figure 5 represents the box plots of the effectiveness 
measure for the techniques T1, T2, T7 and T13 corresponding to 
IRLSIDynbin, IRLSIDynbinWMPR(freq)

t80, IRLSIDynbinWMHITS(a,freq)
b60, 

IRLSIDynbinWMHITS(h,bin)
b80 from [23] Figure 4(c), using the 

notation from [23]. For simplification, T2, T7, and T13 
correspond to the IRDynPageRank, IRDynHITS_Aut and 
IRDynHITS_Hub respectively. These techniques were chosen 
as an example in Figure 5 because they produced the best 
results for the jEdit dataset [23] and to illustrate that the 
implemented technique produces the same results as the 
original technique. 

B. Experimenting with new Ideas 

Using the IRDynWM  FLT  [23] as a starting point we 
experimented with incorporating new ideas for further 
improving the results. We describe the two new ideas and 
present their results in comparison with the original ones. 

1) Filtering Frequent Methods from Execution Traces 
The first idea that we instantiated in TraceLab consisted of 

filtering out some of the "noise" found in execution traces. 
More specifically, given a set of execution traces we identify 
the methods that appear in more than X% (i.e., a user defined 
threshold) of execution traces and we filter them out from the 
results produced by the IRDynWM technique. For example, 
consider our jEdit 4.3 dataset [23, 52] which contains 150 
execution traces generated while exercising particular 
scenarios. Based on specified threshold (e.g., 66%) we (i) 

identified the methods that appear in 100 traces or more, and 
we (ii) filtered them out of the results produced by IRDynWM. 
Our intuition was that if a particular method captured in an 
execution trace appears in a large number of traces, the 
probability of that method to be part of a specific feature is low 
and therefore, could be eliminated. In a way, this filtering 
technique is similar to the process of eliminating stop words 
from corpora, where the stop words were identified as 
appearing frequently and carrying no real meaning in the 
corpus. 

We implemented this idea based on the existing IRDynWM, 
which resulted in the IRDynWMFrequentMethodFilter or 
IRDynWMFMF technique (see the bottom part highlighted with 
a red rectangle in Figure 4). The implementation required the 
following steps. First, we added two new components to (i) 
examine all the execution traces from the dataset (component 
Load All Execution Traces) and (ii) identify the methods that 
appear in more than X% of traces, with X% being the threshold 
specified by the user (component Compute Method 
Frequencies). Second, for each query in the while loop we 
instantiated the same component three times to filter out the 
most frequent execution trace methods from each technique in 
the original experiment. For example, the results produced by 
the IRDynPageRank FLT were used as input for the 
IRDynPageRankFMF (see section VI.B.3) for results). 

2) Filtering "No Scenario" Methods from a Trace 
In case a large set of execution traces is not available (i.e., 

the prerequisite for IRDynWMFMF is not satisfied), a developer 
can use only one execution trace to get improved results, by 
collecting an execution trace that exercises no scenario (i.e., 
without exercising any specific features of the software). The 
execution trace was collected from the moment the application 
started to the moment the application terminated, without 
exercising any user features in the meantime. The methods 
captured in the No Scenario trace were filtered from the results 
produced by IRDynWM, resulting in the IRDynWMNoScenarioFilter 
or IRDynWMNSF technique. The intuition behind this idea is 
that the No Scenario trace contains a number of methods that 
are not associated with any specific scenario (i.e., generic 
methods), which can be filtered in order to improve the results. 

The implementation of this technique is similar to the one 
presented in Figure 4, but for brevity, the diagram is not 
included in this paper. The major modification was that the 
Load All Execution Traces and Compute Method Frequencies 
components were replaced with a component that loaded a 
user-specified no scenario execution trace and extracted the 
methods that will be filtered. In addition, the IRDynWMFMF 

Table III Descriptive statistics for the box plots presented in Figure 6. The first row (Percentage Features) represents the percentage of features for which the 
technique was able to locate at least one relevant method 

 T2 T2-NSF T2-FMF T7 T7-NSF T7-FMF T13 T13-NSF T13-FMF 
Percentage Features 68% 59% 64% 73% 59% 68% 67% 59% 66% 

Min 1 1 1 1 1 1 1 1 1 
25th 2 1 1 3 1.75 2 1 1 1 

Median 5 3 4 5 4 4 2 1 2 
75th 11 8 9 21 8.75 13.5 6 4 5 
Max 237 81 145 170 141 142 35 40 35 

Mean 14.81 7.47 10.02 20.85 10.36 12.72 4.92 3.56 4.25 
Standard Deviation 34.24 11.71 21.18 32.98 19.68 21.45 6.19 5.96 5.51 



 

composite nodes were replaced with corresponding 
IRDynWMNSF composite nodes. 

3) Results of the New Ideas 
Figure 6 shows side by side the box plots of the 

effectiveness measure produced by IRDynWM, IRDynWMFMF 
and IRDynWMNSF. For the comparison, we choose the best 
three configurations of PageRank, HITS Authority and HITS 
Hubs that produced the best results for the jEdit dataset in [23], 
which are T2, T7 and T13 (see Figure 5 for the labels). A 
complementary view of Figure 6 is given by Table III, which 
contains descriptive statistics of the box plots generated by 
those techniques. 

Figure 6 and Table III show that the IRDynWMFMF (e.g., T2-
FMF, T7-FMF and T13-FMF) techniques generate better results 
in terms of the effectiveness measure than IRDynWM, and that 
IRDynWMNSF produces better results than IRDynWMFMF. For 
example, for T2, the median value was 5, whereas for T2-FMF 
and T2-NSF the median values for 4 and 3 respectively. The 
same trend is observed for the average values: 14.81, 10.02 and 
7.47 for T2, T2-FMF and T2-NSF, respectively.  

Our two experimental ideas produced better results than the 
best results presented in [23] for the jEdit dataset. However, the 
improvement in "precision", comes at the cost of potentially 
filtering out relevant methods. For example in Table III row 
Percentage Features shows the percentage of features for 
which that particular technique was able to identify at least one 
relevant method. As the table indicates, filtering additional 
methods removes noise (i.e., irrelevant methods to the feature), 
as well as some relevant methods.  

C. Discussion 

Although for this particular dataset the two experimental 
ideas produced better results than the ones reported in [23], 
there is still more research to be done (e.g., investigate the 
impact of removing also relevant methods, automatically 
setting the threshold for IRDynWMFMF, ensuring 
generalizability, considering more advanced techniques for 
analyzing traces [53, 54], etc.) before considering these ideas 
as viable techniques, but this is beyond the scope of this paper.  

The main goal of these examples was to illustrate the 
support that our Component Library and the TraceLab 
framework can offer to researchers, who can test new ideas and 
get some preliminary results to assess the feasibility of those 
ideas, and decide if it is worth pursuing them or not. 

VII. LIMITATIONS 

This section discusses some potential limitations for 
conducting research using TraceLab, the Component 
Development Kit and the Component Library. 

TraceLab was not designed for real-time feedback from the 
user, and although this could be implemented it would impose 
some overhead upon the developer. Additionally, running code 
hosted in a .NET process is slower than running it natively. 
Therefore the time or speed factors in evaluating an approach 
would need to be considered. 

We attempted to identify papers which covered a number 
of topics in SM, which we were familiar with or had expertise 
with. Within the papers we covered, in some cases we were 
unable to obtain exact implementations due to lack of specific 
details or availability of tools. Additionally, many experiments 

cannot be reproduced directly because the datasets under study 
were undisclosed or unavailable.  

The CL and CDK do not implement every technique and 
building block found in the mapping study. The amount of 
time, manpower, and testing required to do so would be far 
beyond the resources available. That being said, we tried to 
implement as many of the techniques that we could in order to 
show the efficacy and usefulness of TraceLab as a research 
tool. We are continuously working on driving new research 
with TraceLab and encourage others to do so as well. 

A major issue that prevented us from using or 
implementing certain tools was their copyright licensing. In 
some cases they do not use permissive licenses, and even if the 
source code was available its license did not permit 
distribution. TraceLab is released under the open source license 
GPL, which we follow as well with the CL and CDK. 
Developers may release their own components under any 
license they wish, but if they wish to extend or modify the CL 
or CDK, they must release under GPL as well. 

VIII. CONCLUSIONS AND FUTURE WORK 

This paper addressed the reproducibility problem 
associated with experiments in SM research. Our goal was to 
support and accelerate research in SE by providing a body of 
actionable knowledge in the form of reproduced experiments 
and a Component Library and Component Development Kit 
that can be used as the basis to generate novel, and most 
importantly reproducible techniques. 

After conducting a mapping study of SM techniques in the 
areas of traceability link recovery, feature location, program 
comprehension and duplicate bug report detection, we 
identified 27 papers and techniques that we used to generate a 
library of TraceLab components. We implemented a subset of 
these techniques as TraceLab experiments to illustrate 
TraceLab's potential as a research framework and to provide a 
basis for implementing new techniques.  

It is obvious that this does not cover the entire range of SM 
papers or techniques. Therefore, in the future, we are 
determined to continually expand the TraceLab Component 
Library and Development Kit by including more techniques 
and expanding it to other areas of SM (e.g., impact analysis). In 
addition, we encourage other researchers to contribute to this 
body of knowledge for the benefit of conducting research. 
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