
On The Naturalness
of Software

SID RASKAR
Computer And Information Science

University Of Delaware

Naturalness ?

 Central Hypothesis –
 Natural Languages - Simple and repetitive in

practice

 Software - Natural product of human effort

 Usefully modelled by Statistical language models

 Can be leveraged to support software engineers

Motivation

 “The European Central #### announced that
interest rates remain unchanged…”

 Bank rather than fish !
 Speech Recognizer, OCR

 Similar Code Completion -
 For(i=0;i<=10
 ;i++) {

Language Model
 Assigns probability to an utterance
 Attempts to calculate maximum likelihood estimate of the

parameter

N-gram Model –
 Token occurrence is influenced by the n-1 tokens that

precede the token in consideration.

What Makes a Good Model?
 Captures the regularities in the corpus, predicts tokens with

high confidence
 Model will not find new document surprising
 In NLP term, cross entropy

 Good model has low entropy
 High Probability for frequent words
 Low probability for rare words

Datasets

 Natural Language-
 Brown and Gutenberg corpus

 For code –
 Java projects

 Ubuntu Applications

 Removed comments, produce token sequence
 Each project concatenated as single document

10 Fold Cross
Validation

 90% corpus for
training

 10% corpus for
testing

 Unseen tokens
smoothed

“ Do n-gram language models
capture regularities
in software ? ”

 Language model captures
as much repetitive local
context in Java, as it does
in English

 Software is far more regular
than English

 Increased similarity due to
simplicity of Java?

 Calculate n-gram models for
English and java

 Self cross entropy

Is the local regularity that the
statistical language model captures
merely language specific or is it

also project specific?

 Train model on one project and test on
another to local regularity

 10 Projects - Trigram model

 Avg Self entropy is
always lower

 Useful language models
can be built even for
small projects.

 Captures significant
levels of local regularity

Do n-gram models capture similarities
within and differences between
project domain?

 Local Regularities repeated within application domains

 Some domains have very high level of regularity eg. web

Eclipse Suggestion Plug-in
 NGSE – n-gram models suggestion

engine

 ECSE – Eclipse’s built in suggestion
engine

 NGSE –
 Tri-gram Model

 0.2 seconds suggestion time

 NGSE good at recommending short
tokens

 ECSE good at longer tokens

Simple Merge Algorithm (MSE)
 Breakeven length= 7

If

ECSE offers long suggestions, pick
them greedily

Else

Pick half from ECSE and half from
NGSE

 Controlled 2 factors –
 String length of suggestions

 Number of choices

 Training set – 160 files

 Test set – 40 files

 Tri gram model

 MSE has advantage over ECSE
– measured as the gain in
number of correct suggestions.

 Gains up through 6 character
tokens – 33-67%

 7 to 15 characters – 3-16%

Related and Future Work
 Naturalness of names in code

 Code Summarization

 Software Mining

 Language Models for accessibility

 Software Tools

Conclusion
Fairly simple statistical model can capture a surprising

amount of regularity in natural software which can be
leveraged to assist further in software development and
maintenance.

	On The Naturalness �of Software
	Naturalness ?
	Motivation
	Language Model
	What Makes a Good Model?
	Datasets
	Slide Number 7
	“ Do n-gram language models capture regularities �in software ? ”
	Slide Number 9
	Is the local regularity that the statistical language model captures merely language specific or is it also project specific?
	Slide Number 11
	Do n-gram models capture similarities within and differences between �project domain?
	Slide Number 13
	Eclipse Suggestion Plug-in
	Slide Number 15
	Related and Future Work
	Conclusion

