# On The Naturalness of Software

#### **SID RASKAR**

Computer And Information Science University Of Delaware

### Naturalness?

#### Central Hypothesis –

- Natural Languages Simple and repetitive in practice
- Software Natural product of human effort
- Usefully modelled by Statistical language models

Can be leveraged to support software engineers

### Motivation

"The European Central #### announced that interest rates remain unchanged..."

- Bank rather than fish !
- Speech Recognizer, OCR
- Similar Code Completion -
- ► For(i=0;i<=10
- ▶ ;i++) {

### Language Model

Assigns probability to an utterance

 Attempts to calculate maximum likelihood estimate of the parameter

#### N-gram Model -

Token occurrence is influenced by the n-1 tokens that precede the token in consideration.

 $p(s) = p(a_1)p(a_2 \mid a_1)p(a_3 \mid a_1a_2)\dots p(a_n \mid a_1 \dots a_{n-1})$ 

### What Makes a Good Model?

- Captures the regularities in the corpus, predicts tokens with high confidence
- Model will not find new document surprising
- In NLP term, cross entropy

$$H_{\mathcal{M}}(s) = -\frac{1}{n} \sum_{i=1}^{n} \log p_{\mathcal{M}}(a_i \mid a_1 \dots a_{i-1})$$

- Good model has low entropy
- High Probability for frequent words
- Low probability for rare words

### Datasets

Natural Language-

Brown and Gutenberg corpus

#### For code –

- Java projects
- Ubuntu Applications

Removed comments, produce token sequence

Each project concatenated as single document

# 10 Fold Cross Validation

 90% corpus for training

 10% corpus for testing

Unseen tokens smoothed

|                |          |         | Tokens   |         |
|----------------|----------|---------|----------|---------|
| Java Project   | Version  | Lines   | Total    | Unique  |
| Ant            | 20110123 | 254457  | 919148   | 27008   |
| Batik          | 20110118 | 367293  | 1384554  | 30298   |
| Cassandra      | 20110122 | 135992  | 697498   | 13002   |
| Eclipse-E4     | 20110426 | 1543206 | 6807301  | 98652   |
| Log4J          | 20101119 | 68528   | 247001   | 8056    |
| Lucene         | 20100319 | 429957  | 2130349  | 32676   |
| Maven2         | 20101118 | 61622   | 263831   | 7637    |
| Maven3         | 20110122 | 114527  | 462397   | 10839   |
| Xalan-J        | 20091212 | 349837  | 1085022  | 39383   |
| Xerces         | 20110111 | 257572  | 992623   | 19542   |
|                |          |         | Tokens   |         |
| Ubuntu Domain  | Version  | Lines   | Total    | Unique  |
| Admin (116)    | 10.10    | 9092325 | 41208531 | 1140555 |
| Doc (22)       | 10.10    | 87192   | 362501   | 15373   |
| Graphics (21)  | 10.10    | 1422514 | 7453031  | 188792  |
| Interp. (23)   | 10.10    | 1416361 | 6388351  | 201538  |
| Mail (15)      | 10.10    | 1049136 | 4408776  | 137324  |
| Net (86)       | 10.10    | 5012473 | 20666917 | 541896  |
| Sound (26)     | 10.10    | 1698584 | 29310969 | 436377  |
| Tex (135)      | 10.10    | 1405674 | 14342943 | 375845  |
| Text (118)     | 10.10    | 1325700 | 6291804  | 155177  |
| Web (31)       | 10.10    | 1743376 | 11361332 | 216474  |
|                |          |         | Tokens   |         |
| English Corpus | Version  | Lines   | Total    | Unique  |
| Brown          | 20101101 | 81851   | 1161192  | 56057   |
| Gutenberg      | 20101101 | 55578   | 2621613  | 51156   |

### " Do n-gram language models **capture regularities** in software ? "

 Calculate n-gram models for English and java

#### Self cross entropy



- Language model captures as much repetitive local context in Java, as it does in English
- Software is far more regular than English
- Increased similarity due to simplicity of Java?

Is the **local regularity** that the statistical language model captures merely **language specific** or is it also **project specific?** 

- Train model on one project and test on another to local regularity
- 10 Projects Trigram model



- Avg Self entropy is always lower
- Useful language models can be built even for small projects.
- Captures significant levels of local regularity

### Do n-gram models capture similarities within and differences between **project domain?**

Local Regularities repeated within application domains

Some domains have very high level of regularity eg. web



# **Eclipse Suggestion Plug-in**

Algorithm 1 MSE(esugg, nsugg, maxrank, minlen)Require: esugg and nsugg are ordered sets of Eclipse and N-gram suggestions.

```
elong := \{p \in esugg[1..maxrank] \mid strlen(p) > minlen\}
```

```
if elong \neq \emptyset then

return esugg[1..maxrank]

end if

return esugg[1..[\frac{maxrank}{2}]] \circ nsugg[1..[\frac{maxrank}{2}]]
```

#### Simple Merge Algorithm (MSE)

Breakeven length= 7

#### lf

ECSE offers long suggestions, pick them greedily

#### Else

Pick half from ECSE and half from NGSE

- NGSE n-gram models suggestion engine
- ECSE Eclipse's built in suggestion engine

#### ► NGSE –

- Tri-gram Model
- 0.2 seconds suggestion time
- NGSE good at recommending short tokens
- ECSE good at longer tokens

- Controlled 2 factors
  - String length of suggestions
  - Number of choices
- ► Training set 160 files
- Test set 40 files
- Tri gram model
- MSE has advantage over ECSE

   measured as the gain in number of correct suggestions.
- Gains up through 6 character tokens – 33-67%
- ▶ 7 to 15 characters 3-16%



### Related and Future Work

- Naturalness of names in code
- Code Summarization
- Software Mining
- Language Models for accessibility
- Software Tools

### Conclusion

Fairly simple statistical model can capture a surprising amount of regularity in natural software which can be leveraged to assist further in software development and maintenance.