
On The Naturalness
of Software

SID RASKAR
Computer And Information Science

University Of Delaware

Naturalness ?

 Central Hypothesis –
 Natural Languages - Simple and repetitive in

practice

 Software - Natural product of human effort

 Usefully modelled by Statistical language models

 Can be leveraged to support software engineers

Motivation

 “The European Central #### announced that
interest rates remain unchanged…”

 Bank rather than fish !
 Speech Recognizer, OCR

 Similar Code Completion -
 For(i=0;i<=10
 ;i++) {

Language Model
 Assigns probability to an utterance
 Attempts to calculate maximum likelihood estimate of the

parameter

N-gram Model –
 Token occurrence is influenced by the n-1 tokens that

precede the token in consideration.

What Makes a Good Model?
 Captures the regularities in the corpus, predicts tokens with

high confidence
 Model will not find new document surprising
 In NLP term, cross entropy

 Good model has low entropy
 High Probability for frequent words
 Low probability for rare words

Datasets

 Natural Language-
 Brown and Gutenberg corpus

 For code –
 Java projects

 Ubuntu Applications

 Removed comments, produce token sequence
 Each project concatenated as single document

10 Fold Cross
Validation

 90% corpus for
training

 10% corpus for
testing

 Unseen tokens
smoothed

“ Do n-gram language models
capture regularities
in software ? ”

 Language model captures
as much repetitive local
context in Java, as it does
in English

 Software is far more regular
than English

 Increased similarity due to
simplicity of Java?

 Calculate n-gram models for
English and java

 Self cross entropy

Is the local regularity that the
statistical language model captures
merely language specific or is it

also project specific?

 Train model on one project and test on
another to local regularity

 10 Projects - Trigram model

 Avg Self entropy is
always lower

 Useful language models
can be built even for
small projects.

 Captures significant
levels of local regularity

Do n-gram models capture similarities
within and differences between
project domain?

 Local Regularities repeated within application domains

 Some domains have very high level of regularity eg. web

Eclipse Suggestion Plug-in
 NGSE – n-gram models suggestion

engine

 ECSE – Eclipse’s built in suggestion
engine

 NGSE –
 Tri-gram Model

 0.2 seconds suggestion time

 NGSE good at recommending short
tokens

 ECSE good at longer tokens

Simple Merge Algorithm (MSE)
 Breakeven length= 7

If

ECSE offers long suggestions, pick
them greedily

Else

Pick half from ECSE and half from
NGSE

 Controlled 2 factors –
 String length of suggestions

 Number of choices

 Training set – 160 files

 Test set – 40 files

 Tri gram model

 MSE has advantage over ECSE
– measured as the gain in
number of correct suggestions.

 Gains up through 6 character
tokens – 33-67%

 7 to 15 characters – 3-16%

Related and Future Work
 Naturalness of names in code

 Code Summarization

 Software Mining

 Language Models for accessibility

 Software Tools

Conclusion
Fairly simple statistical model can capture a surprising

amount of regularity in natural software which can be
leveraged to assist further in software development and
maintenance.

	On The Naturalness �of Software
	Naturalness ?
	Motivation
	Language Model
	What Makes a Good Model?
	Datasets
	Slide Number 7
	“ Do n-gram language models capture regularities �in software ? ”
	Slide Number 9
	Is the local regularity that the statistical language model captures merely language specific or is it also project specific?
	Slide Number 11
	Do n-gram models capture similarities within and differences between �project domain?
	Slide Number 13
	Eclipse Suggestion Plug-in
	Slide Number 15
	Related and Future Work
	Conclusion

