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Abstract—To aid program comprehension, programmers
choose identifiers for methods, classes, fields and other program
elements primarily by following naming conventions in software.
These software ‘“naming conventions” follow systematic patterns
which can convey deep natural language clues that can be
leveraged by software engineering tools. For example, they can be
used to increase the accuracy of software search tools, improve
the ability of program navigation tools to recommend related
methods, and raise the accuracy of other program analyses.
After splitting multi-word names into their component words,
the next step to extracting accurate natural language information
is tagging each word with its part of speech (POS) and then
chunking the name into natural language phrases. State-of-the-
art approaches, most of which rely on “traditional POS taggers”
trained on natural language documents, do not capture the
syntactic structure of program elements.

In this paper, we present a POS tagger and syntactic chunker
for source code names that takes into account programmers’
naming conventions to understand the regular, systematic ways
a program element is named. We studied the naming conventions
used in Object Oriented Programming and identified different
grammatical constructions that characterize a large number of
program identifiers. This study then informed the design of
our POS tagger and chunker. Our evaluation results show a
significant improvement in accuracy(11%-20%) of POS tagging
of identifiers, over the current approaches. With this improved
accuracy, both automated software engineering tools and develop-
ers will be able to better capture and understand the information
available in code.

Index Terms—Program understanding, comprehension, part-
of-speech, natural language processing, identifiers

I. INTRODUCTION

Comprising 70% of source code [1], program identifiers
are a fundamental source of information to understand a soft-
ware system. Because programmers choose program names
to express the concepts of the domain of their software,
this natural language component of the program provides the
reader with insights into developers’ intent. It has already been
demonstrated that many tools that help program understanding
for software maintenance and evolution rely on, or can benefit
from, analyzing the natural language embedded in identifier
names and comments (e.g., concept location, comment gener-
ation, code refactoring) [2]-[5].
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Automated analysis of program identifiers begins with split-
ting the identifier into its constituent words and abbreviations
to tokenize the name. Many text-based tools for software engi-
neering then use part-of-speech (POS) taggers, which identify
POS of a word and tag it as a noun, verb, preposition, etc.
and then chunk (or parse) the tagged words into grammatical
phrases to help distinguish the semantics of the component
words. However, off-the-shelf POS taggers have difficulties
tagging words found in software, especially source code, even
when applying appropriate templates [3], [5], [6]. And, studies
of using off-the-shelf text analysis techniques on software
without customization show that the inaccuracies inhibit the
effectiveness of the client software tools [7].

We informally surveyed software engineering researchers
developing text-based software engineering tools and found
that 58% of them use a POS tagger. For example, Abebe
and Tonella [3] parse program identifiers to create an on-
tology used for concept extraction from source code. This
extracted domain knowledge has been shown to help in
program comprehension [8] and query reformulation in source
code exploration [9]. POS tagging is also useful for mining
semantically related words from source code. Falleri et al.
[6] use POS tag information to extract WordNet-like [10]
lexical views. Synonym information can improve code search
[11] and improve automatically generated recommendations
for program exploration from a starting point [12].

Sridhara et al. [4] leverage the natural language information
generated by the Software Word Usage Model (SWUM) [13]
to identify the action, theme and secondary arguments of a
method name to automatically generate leading comments that
describe a method’s intent. SWUM requires POS tagging to
identify the word usage information. Code refactoring can also
benefit from POS tagging. For instance, Binkley et al. [5]
identified rules to improve identifier names as an example
application of POS tagging of source code. Verb-direct object
pairs have been used to locate and understand action-oriented
concerns [2], and require identifying the verbs and their
associated direct objects in method signatures. Other examples
of using POS tagging include improving software search and
exploration [13] and increasing the accuracy of traceability
recovery [14], [15].

Automated POS tagging and parsing in software is compli-



cated by several programmer behaviors and the way that POS
taggers typically work. POS taggers for English documents
are built using machine learning techniques that depend on
the likelihood of a tag given a single word and the tags of its
surrounding context — data that is trained on typical natural
language text such as the Wall Street Journal or newswire
training data [16]. These taggers work well on newswire and
similar artifacts; however, their accuracy reduces as the input
moves farther away from the highly structured sentences found
in traditional newswire articles.

Word usage in the domain of software can be very different
from general natural language documents. For example, the
words ‘fire’, ‘handle’, ‘set’, and ‘test’ are overwhelmingly
used in the verb sense in software, but are typically identi-
fied as nouns in natural language documents. Programmers
invent new non-dictionary words and their own grammatical
structures when naming program elements. For instance, they
form new adjectives by adding “able” to a verb (e.g., “give”
becomes “givable”). In addition, source code identifiers and
comments follow very different grammar, may omit conjunc-
tions and prepositions, and are typically written as imperative
directives rarely encountered in traditional natural language
training data. Thus, traditional POS taggers and parsers for
natural language fail to accurately capture the lexical structure
of program identifiers.

Some researchers have approached the problem by retrain-
ing existing natural language POS taggers for field names [5],
but accuracy is 15-20% less than tagging natural language texts
(under 80%). Others create sentences from identifiers and then
run an existing tagger. Abebe and Tonella [3] transform each
identifier into one of a set of template sentences, depending
on whether it is a class, method, and attribute name under
certain constraints and then input the sentences into a natural
language parser for POS tagging and parsing. These template
generated sentences guide the parser to treat identifiers in
a specific way, which may work for typical cases but may
be too constraining for other scenarios. Falleri et. al. [6]
use TreeTagger [17], trained on English text to extract POS
information from identifiers.

In this paper, we present a POS tagger and chunker, POSSE
(POS tagger for Software Engineering), that is customized
to software, and developed after considerable analysis of
programmer conventions in identifier naming from our exten-
sive work on natural language analysis in the development
of SWUM [13], verb-DO pair identification [18], and the
accurate analysis needed for comment generation [4]. Over
the years, we have studied a diverse set of Java signatures
and naming conventions by analyzing the most frequently
occurring identifiers in a set of 9,000 open source Java pro-
grams downloaded from sourceforge.net. This set of programs
contains over 18 million signatures, with 3.5 million unique
names consisting of over 200 thousand unique words [13].
Developers follow patterns while naming identifiers in order
to make their code readable. Leveraging these conventions,
POSSE takes program identifiers as input and outputs their
tagged part of speech and chunked syntactic phrases. POSSE is

targeted towards object-oriented language identifiers including
class, method and attributes. To evaluate our approach, we
compared POSSE’s output over a test set of 310 Java and
C++ Program Identifiers to a human annotated gold set. We
measured accuracy of POSSE and compared it with two
implementations based on current approaches of POS tagging
of identifiers [3], [6]. Our results show an improvement of
11-20% over the current approaches.
The main contributions of this paper are:

o Analysis of programming conventions in naming classes,
methods and attributes,

¢ An algorithm and implemented tool for POS tagging and
syntactic chunking of program identifiers,

o Development of an annotated gold set that can be used
to evaluate identifier POS tagging tools, and

o Evaluation and comparison with existing POS tagging
approaches. The evaluation shows an increase of 11%
to 20% in accuracy of POS tagging over the current
approaches.

JI. CHALLENGES THROUGH EXAMPLES

Table I shows examples that demonstrate some of the
challenges in POS tagging of program identifiers, specifically
method names which present the most problems for an au-
tomatic system. The first example illustrates the impact of
abbreviations. The method name “concatTokens” should be
tagged as “concat” (verb) and “tokens” (noun) with concat as
the action verb. Since “concat” is a short form for “concatena-
tion”, WordNet [10] does not identify it as word; abbreviation
expansion using techniques such as AMAP [19] are needed
before POS tagging. After expansion, this example follows
a straightforward (verb, direct object) convention for method
naming, where the verb is the first word in the method name.

In the second example, the method is composed only of
a single word. Naive approaches will tag these words as
verbs, while sometimes, they should be nouns, such as in the
example “spaces”. A POS tagger can capture these situations
by leveraging the typical POS of certain words in software.

The third example contains two words that could both
be tagged as verbs or nouns in text documents or software,
making it difficult to identify a single tag for each word.
However, some words are predominately either verb or noun in
software, especially in particular positions in the method name.
In this example, “fire” in the software domain predominantly
behaves as a verb, but plays a strong noun role in the natural
language domain. A POS tagger for software should leverage
the strong POS roles of words such as “fire” in software.

The fourth and fifth examples show how the main action
verb is not necessarily the first word in the method name. The
verb “set” occurs in the last position, and the direct object
precedes it. It is still in a sense a verb phrase but it does not
follow the grammatical construction of verb phrases typical
in natural language text. An interesting scenario occurs in
example 5 where “text” acts as an adverb modifying the main
action verb “remove”, indicating that “textRemove” is a type
of remove operation. The last example indicates the issues



TABLE I
EXAMPLE METHOD NAME SCENARIOS

Method Signature

Actual Part of Speech

Automation Challenges

String concatTokens (IIIZ)

concat:verb; tokens:noun

Difficult to identify concat as verb since
‘concat’ is an abbreviation for concatenate.
‘concat’ is not recognized by WordNet as a word.

boolean equals (QObject;)
String spaces(I)

equals:verb
spaces:noun

A single word method name can be a noun.
Difficult to identify spaces as a noun since the
stemmed part can be both a verb and noun

void fireCopy (QString;)

fire:verb; copy:noun

Difficult to identify ‘fire’ as verb since fire is
predominantly a verb in English text but acts
as a verb in almost all cases in S/W domain

void dynamicMultipleValuesSet(Z)

dynamic:adjective; multiple:adjective;
values:noun; set:verb

Difficult to identify ‘set’ in method signature
as verb since it is at signature’s end

void textRemoveTabs2 ()

text:noun; remove:verb;
tabs:noun; 2:noun

Difficult to identify ‘remove’ in method
signature as verb since it is preceded by a term
which can be a verb in the first position

void downloadManagerAdded (QDManager ;)

download:noun; manager:noun;
added:verb (past particle)

Difficult to identify ‘download® as an
adjective and ’added’ as event (past participle)

associated with conventional naming of methods that handle
events. These types of events generally have a past participle
at the end of the method name. The challenge is to identify
such cases and not wrongly classify “download” as the verb.
Identifying “download manager” as a single entity is important
in handling such cases. POSSE is able to tag all the above
examples with the correct POS tags.

III. PART OF SPEECH TAGGING

The main task of the POSSE POS tagger for software is
to assign part of speech tags to each word of multi-word
program identifiers, namely method, attribute and class names
and perform syntactic chunking of the tagged words. We didn’t
consider POS tagging of method parameters and return type
of identifiers explicitly, as they fall in the class of attribute and
class names respectively.

The POS tags comprise a set of 12 tags:

e« Noun
e Verb

Base verb (baseV)
Third-person singular verb (3PS)
Verb ending in “ing” (VBG)
Past tense verb (VBD)
Past participle (VBN)
e Adverb (adv)
« Adjective (adj)
e Closed list (fixed)
— Article (art)
quantifier (quant)
pronoun (pro)
Preposition (prep)

In chunking, or parsing, the identifiers, the component
words are chunked into syntactic phrases. For example, the
method identifier setCurrentBalance is identified as a Verb
Group (VG) followed by Noun Phrase, where “CurrentBal-
ance” is identified as a Noun Phrase (NP) and “Current” as a
Noun Modifier (NM). Specifically, we show the POS tagging

and chunker output for “setCurrentBalance” where VG is verb
group, NM is noun modifier and NP is noun phrase.

void setCurrentBalance()
set (baseV) current (adj) balance (noun)
[set]:VG [[current]:NM balance]:NP]

Input:
POS Tagging:
Chunker Output:

A. Study of Conventions in Program Element Names

Using a combination of manual analysis and scripts over
millions of program identifiers from 11546 Java programs
taken from 20 open source projects across multiple domains,
we have studied programmer conventions in word usage and
grammatical structures of program identifiers for methods,
classes, and attributes. Our POS tagger was designed by first
categorizing the different grammatical structures we observed.
This section summarizes our observations for method, class
and attribute names, focusing primarily on method names
which have the most variety of forms.

Method Names: Most method names can be characterized
as one of the following:

1) Leading Verb. Method names beginning with a verb
are typically verb phrases and have an explicit action.
We further classify method names with a leading verb
according to the type of the leading verb.

e baseV: Methods starting with a base form of verb
(baseV) behave like “imperative sentences”. For
example, delete and insert are examples of methods
with an explicit main action verb, but the object is
not mentioned in the method name. In other cases,
the object of the main action verb is indicated in the
method name, such as insertElement, deleteltem and
showDialog.

e 3PS, VBG, VBD: These method names begin with
third-person singular (3PS), verbs ending in “ing”
and “ed”, respectively. Examples of method names
beginning with 3PS are isList, isOpen, hasElement
where the verbs are in a closed list, and contains,
exists, equals, creates where the verb is an arbitrary
verb in 3PS form. These kinds of methods typically
function as “predicate” statements and having a



2)

3)

4)

Attributes

boolean return type. Leading verbs that are VBG
or VBD are usually verbs behaving in the adjec-
tival sense. For example, serializedData, synchro-
nizedList, pendingRelayMessage are functions that
typically return some object. In these cases, deter-
mining the appropriate POS tag to assign to the first
term is difficult in the sense that it can be interpreted
both as a derived verb (VBG/VBD) or an adjective.
The Penn Tree Bank [20] provides guidelines on
how to handle confusing and problematic cases
among which are examples to distinguish between
adjective and VBG.

Reactive Names. This category of methods represents
event handlers, where the actual method name does not
express the action performed by the method but rather
suggests the context under which the method’s action
should be performed. For example, in method names
such as onOkPressed, actionPerformed, mouseReleased,
connectionClosed, the main intended action is “handle
some event” where the event is written in the method
name. Some names can also to interpreted to refer to
the “state of an object”. For example, messageDeleted
may refer to “handle the event of the message being
deleted” or may ask the question‘has the message been
deleted?”. Typically, methods which describe a state or
ask a question are of type boolean, while event-handling
methods are non-boolean.

Implicit Action Verb. Methods fall into this category
when they do not specify the specific action being
performed. These methods can be further classified as
“getters” and “converters”:

e Getters: These are typically Noun Phrases that may
be constructors or methods where the implicit action
verb is “get” or “compute” and they return or
modify data objects. Examples include squareRoot,
elementAt, endColumnNumber, synchronizedList.

o Converters: Methods with names that have the im-
plicit action verb “convert ” belong to this class.
These are typically of the form (NP)‘to’NP. Exam-
ples include toString, listToArray, littleToBigEndian,
viewToModel.

Non-Leading Action Verb. In some cases, the action verb
is explicitly expressed in the method name but is not
in the typical “verb position in method names”, which
is the leading word. Consider the methods lruRemove
and dynamicMultiValueSet. The main action verb is
“remove” and “set” respectively, which occur at the end
of the method name. Methods like textRemoveTabs and
tagDefineShape have the action verb in the middle of
the method name. A noun phrase preceding the action
verb suggests a specialization of the action denoted by
the verb. The noun phrase can be viewed as behaving
in adverbial sense. That is, “lruRemove” can be viewed
as a special kind of “remove”.

and Class Names. We did not observe as

much variety in names of attributes and class names as
method names. Class names are a user-defined data type
and are typically noun phrases. Similarly, attributes represent
some kind of data and are also typically noun phrases.
We found that most boolean type attributes are ‘predicates’
and ask a question whose answer (value) is true or false.
These attribute names generally are characterized as Verb
Phrases. Examples of boolean type attribute names which act
as a VP are isDescending, isPrimaryKey, displayingEvents,
createTempTable.

B. Overview of Approach

Figure 1 presents the phases of POSSE. We first split the
identifier into its component words using the Samurai identifier
splitter [21]. We loosely call them “words” as most are words,
however, some may be abbreviations or acronyms.

The POSSE approach is broadly divided into two phases:

1. Tagging all possible part-of-speech of each word in an
identifier.

2. Using POS tag sets for each word and set of grammati-
cal structures identified from programming conventions,
chunk the identifier into its lexical components and
choose a particular POS for each word.

Program
Identifier

| Split name into words |

l

Identify all possible POS

tags per word
Ordered
Chunking Rules [—>

Word Context
Frequency Counts

Disambiguation
Rules

|

Chunk Name into
Syntactic Phrases

|

Select Single POS tag
for each word

l

Program
Identifier with
POS Tagged
Words

Fig. 1. The POSSE Approach to POS Tagging of Program Identifiers

We use WordNet and morphological rules to assign all
possible POS tags to each word. For example, the word
‘request’ in the method name ‘decodeRequest()’ can be both
a noun and a verb as identified by WordNet. The tags are
assigned from the list of 12 POS tags presented earlier.



After identifying all possible POS tags for each word in the
identifier, we use context to select the appropriate POS tag
from the set for the particular instance of the words and group
words into meaningful lexical phrases. Specifically, we use
the POS tags of the surrounding words and the position of the
word within the method identifier. The context is considered in
terms of the type of lexical phrase structure being considered.

Based on our study of programmer conventions, we devel-
oped a set of grammatical constructions (i.e., chunking rules)
which are derived from combinations of one or more of the
basic lexical phrases. We determine which grammatical con-
struction best matches the program identifier under analysis.
We grouped the grammatical constructions under three sets
which are tried in a default order, which depends on the kind of
identifier is being considered (method/class/attribute). Because
words typically have multiple parts of speech, it is sometimes
possible to apply more than one grammar construction to
a identifier. For example, the method name squareRoot can
be parsed as ‘square’ as the action verb and ‘root’ as its
object, thus implying a Verb Group(VG) followed by its
argument. Alternatively, it could be parsed as Noun Phrase
where ‘square’ is a Noun Modifier modifying the noun “root”.
Thus we might need to override the default order for which
we developed certain disambiguation rules.

To resolve ambiguities, we use “Word Context Frequency
Counts”, which we call the NVScore for words. The NVScore
of a word is based on the probability of the word being
a noun or verb in software. It is used to override default
order of identifying appropriate grammatical construction for
an identifier, which will affect the choice of POS tag for words
within the name.

C. Algorithm Details

We present the details of identifying all possible POS tags
for a given word in a name, chunking the name into basic
lexical phrases, and selecting the grammatical construction,
which leads to trivial identification of the appropriate POS tag
for each word in the name.

Finding All Possible POS Tags: Given a program identifier
split into words, this phase outputs a set of possible POS tags
for each word, ignoring context of the word within the method
name. Each word in the identifier is treated independently
while assigning all possible POS tags for it.

1) For each word in the identifier, call WordNet to return
all possible POS tags. For example, consider the word
‘request’ in the method name “decodeRequest()”. Word-
Net identifies “decode” as a noun and “request” as both
noun and verb, so output of this phase is: decode(baseV),
request(noun,baseV).

2) WordNet may not always be able to identify a POS
tag for a word that occurs in an identifier. These cases
occur when the word being analyzed is not a “true
word”. Programmers often invent new words by adding
certain prefixes/suffixes (re-, de-, un-, -able, etc) to form
words like givable, unmarshall, deserialize, relable . If
WordNet fails to return any POS tags, then to identify

the role of a word, we use suffix and prefix information
and morphological rules to identify the word’s possible
POS tags. For example adding ‘-able’ to the verb ‘give’
forms an adjective ‘giveable‘. Similarly words with
common verb prefixes like ‘de-’, ‘re-’ are tagged as

verbs.

Chunking into Basic Lexical Phrases: The study of nam-
ing conventions resulted in a set of categories of method names
that can be expressed as a set of grammatical constructions.
Each of these involves a combination of basic lexical phrases.
Our system uses six of the same lexical phrases that are
commonly found in the English language [22]. In this section,
we describe each type of phrase, give examples of how they
are identified in program identifiers, and present the matching
pattern used in the syntactic parser.

Noun Modifier Phrase (NM): A noun modifier phrase is
any combination of nouns, adjectives, or determinants that
precedes a noun. Consider the attribute name tablerowheader.
Here, “table row” modifies the noun “header” and is identified
as an NM. The lexical pattern for a noun modifier is:

NM  — (noun|adj|V BN|V BG|quant|pro)*

Noun Phrase (NP): Noun phrases consist of any type of noun
(singular, plural, gerund, or pronoun), optionally preceded
by a noun modifier phrase (NM). For example, the class
name currentBalance will be parsed as an NP with “current”
being parsed as an NM phrase. We introduce the following
syntactic chunking notation: [[current]yarbalancenp] Two
noun phrases joined by “of” also make a noun phrase, as in
“size of array”. The lexical pattern for a noun phrase is:

NP — NM? noun|V BG|pro

Verb Modifier (VM) : Verb Modifiers are adverbs (adv). The
lexical pattern is simply:

VM  — adv

Verb Group (VG): A verb group ends with any word from
the verb category (baseV, 3PS VBG, VBD) and is optionally
preceded by helping verbs or verb modifiers (VM). The lexical
pattern is:

VG — VM? baseV|VBG|3PS|VBD

Past Participle Phrase (PLP): A past participle phrase
is a noun phrase followed by a past participle. For
example, in the method name isButfonPressed, ‘button
pressed” is a past participle phrase with chunked notation:
[[button]y ppressed] prp. The lexical pattern is:

PPL  — VBN|NP(“is”|“has been”)V BN

Prepositional Phrase (PP): A prepositional phrase is a noun or
Past Participle Phrase preceded by a preposition. For example,
in the method movePaneltoFront, “to front” is a PP. The



chunked notation is [move]y g [panel]np|[to][front]na]pp-
The lexical pattern is:

PP — prep NM|PPL

Selecting the Identifier’s Grammatical Construction: The
program identifiers tagged with all possible POS tags are
tested against a set of possible grammatical constructions
involving a combination of the basic lexical phrases in an
order we settled on after analyzing method, class and attribute
names. If an identifier cannot be of a phrase structure, then
the next phrase structure is tested. Because of the different
roles of methods, attributes and classes and their naming
convention differences, our algorithm for selecting a candidate
grammatical construction is different for method, attribute and
class names.

After the appropriate grammatical construction is deter-
mined for a given identifier, successfully assigning POS tags is
a trivial task with exception of Noun Modifiers. The POS tags
for the words in the identifier are those tags in the set of all
possible tags for each word that fit the grammatical structure
selected for the identifier. Determining the tags for words in
an NM is more difficult, as some words can be both adjectives
and nouns in an NM. For words in a NM phrase which can
be both noun and adjective, we assign a noun tag if the word
is the last term of the identifier otherwise a adjective tag is
assigned.

I. Method Names

Based on our categorizing of different grammatical struc-
tures we observed for method names, we grouped the observed
grammatical constructions of basic lexical phrases into three
sets:

1) VG-starting

2) NM/Noun-starting

3) Reactive and Converter methods

Typically, names start with a Verb Group (VG), such as
sortList. However, sometimes a method name appears to start
with a verb according to WordNet which assigned it a possible
tag of verb, when in fact, the first word is really not intended
to be a verb in the method name. For example, WordNet
provides verb as a possible tag for ‘value’ in valueSet, when
in fact it is being used as a Noun Modifier. If we always
select the VG-starting constructions for every identifier that
started with a word that WordNet returns verb as a possible
tag, we would mistag many identifiers and also chunk them
incorrectly as verb phrases. This problem occurs because
WordNet does not differentiate between the likelihood of a
word being a verb or noun in software. For example, it is
highly unlikely that the word ‘value’ will be used as a verb
in the programming domain. To enable the POS tagger to
leverage the fact that word usage in software differs from
usage in English documents, we have developed a score for
a word, called the NVScore, (Noun-Verb Score), that captures
the likelihood of the word being used mostly as noun or mostly
as a verb in the programming domain.

Calculation of the NVScore: Based on our analysis of

method names, our hypothesis is that if a word appears most
frequently over a large corpus of method names as the first
word in method names, then it is probably used primarily as a
verb in software. Specifically, we consider ‘verb’ positions in
method names to be at the start of the name and single-word
method names. Likewise, we found that the last word of a
method name is predominantly a “noun position”. We do not
infer that every word appearing at the end of a method name
is a noun. Instead, we believe that a word occurring at the
end of many method names as compared to the beginning of
method names is a good indicator that it is usually used in the
noun sense. We consider ‘noun’ positions to be at the end of
method and attribute names and single-word attribute names.
To establish our NVScore for individual words, we collected
81,873 method names and 31,533 attribute names across 20
open source Java projects. We counted the number of times
that each word appeared in the noun and verb positions. We
define the Noun-Verb Score, NVScore for a word to be:

freq(word at verb positions)

NVS d) =
core(word) freq(word at noun positions)

A word with a higher (lower) NVScore is more likely used
in programs in a verb (noun) sense. After several iterations
of analysis, we conservatively set 0.9 as the threshold above
which we consider a word to be a strong verb, and 0.1 as the
threshold under which we consider a word to be a strong noun
in software. For example, using these thresholds, we determine
that document, model, lock, mask are strong nouns and fire,
parse, add, set are all strong verbs in software.

Selecting Grammatical Constructions using NVScore:
We use NVScore of the first word in a method name to deter-
mine if it is considered to be strong noun. If so, we begin se-
lection of the grammatical construction for the identifier under
analysis by examining the NM/Noun-starting constructions.
For example, in the identifier “squareRoot” where WordNet
returns both noun and verb as possible tags for ‘square’,
the NVScore for ‘square’ is 0.08 indicating a strong noun,
and thus we do not consider the constructions in the VG-
starting set. If the first word doesn’t have a verb tag as a
possibility and can be an adjective, noun or from the closed
list containing ‘on’, ‘my’ and similarly others, then also we do
not consider the VG-starting set of constructions. VG-starting
set of constructions are also skipped, if the last word is a past
participle and the word preceding it is a ‘strong noun’ as in
the case of downloadManagerStarted.

The remainder of this section describes the grammatical
constructions that comprise the three grammatical construc-
tions sets that we defined for POS tagging and chunking based
on programmer conventions.

VG-starting Grammatical Construction Set: This set
includes typical cases of method names that start with Verb
Groups. After the initial VG, the name can be optionally
followed by its arguments. Based on our study of method
names, there are seven such grammatical constructions in this

group:



1) VG: Verb Group with no arguments

2) VG NP: Verb Group followed by a Noun Phrase

3) VG NP PP: Verb Group followed by a Noun Phrase and

Prepositional Phrase

4) VG PP: Verb Group followed by Prepositional Phrase

5) VG NP prep: Verb Group followed by a Noun Phrase

and preposition.

6) VG prep: Verb Group followed by a preposition.

7) VG PPL: Verb Group followed by a Past Participle

Phrase.

The order to select a grammatical construction for a given
identifier among these 7 constructions is not important, be-
cause they express non-overlapping structures, that is, they
are mutually exclusive. The matching of these constructions
against the identifier with all possible tags, as well as the
chunking into base phrases, is performed by regular expression
matching. The identifiers generateAPIList, buildOptimizer and
createlable are some examples that are matched by VG-
starting constructions.

NM/Noun-starting Grammatical Construction Set: This
set consists of grammatical constructions that begin with a
Noun Modifier or Noun. Names such as dynamicValueSet and
squareRoot match these constructions. In dynamicValueSet,
“dynamicValue” forms an NP, and acts as a Modifier of the
verb “set” (the method itself sets some value). In contrast,
the entire name “squareRoot” forms an NP, and the method
name has an implicit verb (i.e., compute or get). We need to
distinguish between cases that have a VG after an NP versus
cases where the entire name is an NP. We first check whether
the identifier fits the first case of NP VG by checking if it starts
with an NP and is followed by word whose NVScore exceeds
a threshold indicating it is a verb. Note that the verb can be
followed by its arguments as in VG-starting constructions. If
the NVScore of the word following the NP doesn’t exceed the
threshold for being a verb, we chunk the entire name as a NP.
synchronizedList, toggleToolBar, error are examples that are
also detected by constructions in this set and chunked as NP.

Reactive and Converter Method Construction Set: This
set contains constructions that correspond to names commonly
identifying reactive methods and converter methods. Our study
revealed that reactive names come mostly in two forms: either
ending in a Past Participle Phrase (PPL) or starting with a
Prepositional Phrase (PP). When a name ends with a PPL, the
preceding part of the name represents its arguments. Usually
this argument is an NP. A typical example is the method
keyPressed which is an event-handler reacting to the situation
of “the key is pressed”. Reactive names such as onFailure can
also start with prepositions. These names are invariably just a
prepositional phrase (PP). In addition to the reactive names this
group also has constructions involving the preposition “to”. A
method named foString performs the task of converting an
object to string. Such converters methods can also include
the word “to” in the middle of the name. To recognize such
cases, we check for the grammatical construction “NP ’to’
NP”. windowClosed, onPostRemoveCollection and listToArray
are examples that matched by constructions in this set.

1I. Attribute and Class Names

As we stated in our study of program identifiers, attribute
and class names are generally Noun Phrases, thus we first
check if the identifier matches any grammatical constructions
in the NM/Noun-starting grammatical construction set. Within
that set, we check whether the identifier is an NP before check-
ing for the NP VG construction, when processing attribute and
class names. The only exception are attribute names that are
boolean type attributes. These attribute names are treated the
same as method names, first checking whether the identifier
matches a construction in the VG-starting grammatical con-
struction set. An example is the attribute name boolean sorted.

IV. EVALUATION

We designed our evaluation to answer the following research
questions:

RQI1. How accurately does POSSE assign POS tags to words
in Java identifiers, namely method, attribute and class
names?

RQ2. How well does POSSE apply to other object oriented
programming languages?

RQ3. How well does POSSE compare to the ‘state-of-the-art’?

We designed an experimental setup in which human anno-
tators participated to create a gold annotated set that was used
to test the accuracy of POSSE. The annotated test set consisted
of method, attribute and class names extracted from Java and
C++ programs, which enabled us to address RQ1 and RQ2.
We compared results from POSSE with two implementations
of current approaches to tagging program identifiers with POS
information to answer RQ3. In this section, we present the
design of the experiment including a brief discussion of our
implementation of the ‘“state-of-the-art” approaches that we
compared against, results of comparing POSSE with these
taggers, an analysis of the results, and finally a discussion
of threats to validity.

A. Experiment Design

Subjects, Variables and Measures: The subjects in our
experiment were identifiers from the two most popular object
oriented programming languages, Java and C++. We extracted
program identifiers from 20 open source projects written in
Java and 6 in C++ across multiple domains. In total, the
projects are comprised of approximately 3 million lines of
code from 14,989 program files.

The independent variable in our study is the set of POS
taggers being compared. In addition to implementing POSSE,
we implemented two systems based on the current approaches
that perform POS tagging on program identifiers. The first
system is the TreeTagger, which was used by Falleri et. al.
[6]. In this system, the identifier is separated into a series of
words, which is input to the POS tagger, TreeTagger. This POS
tagger, which was developed for general English as well as
other languages, is freely available online. The second system,
which we will call TemplateTagger is based on the system
developed by Abebe and Tonella [3]. It uses the templates
that are described in [3] to generate phrases for a given



identifier based on the possible POS tags of the first word
in the identifier. The possible tags are obtained by looking
them up in WordNet. The generated phrases are then input to
a broad based coverage parser called Minipar. In their work,
rather than just doing POS tagging, the focus is on ontology
construction. Thus, in our implementation, TemplateTagger we
use the POS tags assigned by Minipar when it parses the
phrase generated by the templates. This is also similar to the
approach of Binkley et. al [5] where phrases are first generated
using templates and then POS tags are determined by using an
NLP tool that processes these phrases. Thus, TemplateTagger
implements the only other approach for POS tagging that we
are aware of that specializes for the software domain. We
measure and compare effectiveness of systems by computing
accuracy, defined as the percentage of program identifiers in
the test set that are correctly tagged (i.e., every word in the
identifier has the correct POS tag).

Methodology: While extracting method names from the
Java and C++ programs, we extracted all method, attribute
and class names, except method names that were of the type
“getWord” and “setWord”, where Word is a single term. This
purposely excludes a large number of relatively simple cases,
thus the results are dominated by these method names. We
did not exclude completely the ‘get’ and ‘set” form of method
names. For example, getMultiValueHash was not excluded
from our experiment. From the Java identifiers, we randomly
extracted 100 method names, 60 class names and 50 attribute
names which formed the Java program identifier test set. We
extracted 50 method names, 25 class names and 25 attributes
for C++ test set.

We created a gold set by having humans annotate both
test sets. Our annotators consisted of two human subjects,
neither of whom are the authors of this paper. One of them
has extensive expertise in natural language processing and
linguistics, whereas the other has considerable programming
knowledge and experience. We asked the annotators to discuss
and jointly tag each identifier resolving any differences.

The annotators were given the identifier category (method,
class, attribute), the entire identifier signature with return type,
the programming language that the identifier belongs to (Java
or C++) and the identifier split into its component words. They
were asked to tag each word in the identifier with 5 basic part
of speech tags: Noun, Verb (base and all its forms), adjective,
adverb and closed list. The closed list is intended for articles,
quantifier, pronouns, prepositions and other categories. This
reduced tag set was chosen primarily to reduce the burden on
the annotators, make the annotations simple and unambiguous
and allow for easy comparison of the different tools.

B. Results

Table II shows the accuracy of output from POSSE, Tem-
plateTagger and TreeTagger on the 210 Java identifiers in the
test set. Overall, 91.4% of the Java identifiers were correctly
tagged by POSSE while TemplateTagger and TreeTagger
achieved an accuracy of 75.7% and 77.1%, respectively. Table
IIT shows the percentage of the correctly tagged identifiers

from the 100 C++ identifiers in the test set, for the three tag-
gers. Combined (method, class and attribute names), POSSE
correctly tagged 85% of the C++ identifiers, while Template-
Tagger and TemplateTagger achieved accuracy of 65% and
74%, respectively. Our results indicate an 11%-14% increase
in performance over the closest tagger: TreeTugger and a 15%-
20% increase over the TemplateTagger.

Both of these tables also show the separation of results into
the three individual identifier categories: methods, attributes
and classes. POSSE achieved a higher accuracy for all of the
identifier types, both in Java and C++. The biggest improve-
ment is in tagging method names (20%-24%), which has much
more variety than the other two types of names.

TABLE II
ACCURACY RESULTS FOR JAVA IDENTIFIERS
POSSE | TemplateTagger | TreeTagger
Methods 94% 70% 69%
Attributes 88% 88% 84%
Classes 90% 75% 85%
Combined 91.4% 75.7% 77.1%
TABLE III
ACCURACY RESULTS FOR C++ IDENTIFIERS
POSSE | TemplateTagger | TreeTagger
Methods 82% 56% 62%
Attributes 96% 88% 92%
Classes 80% 60% 80%
Combined 85% 65% 74%

C. Error Analysis

In this section, we present a sampling of the “errors” made
by each of the taggers. By “errors”, we imply disagreements
between the automated output of the taggers and the develop-
ers’ annotations.

POSSE: In the case of method names, our approach failed
to identify cases where verbs occurred both at the start and
the end. For example, in the method name addDiscriminator-
Tolnsert, the annotators identified both ‘add’ and ‘insert’ as
verbs, while POSSE only identified ‘add’ as a verb. None of
our grammatical constructions allowed for a verb to both begin
and end a method name.

POSSE had difficulty with method names like logQueued
where both words are ambiguous. POSSE tagged “logQueued’
as a noun followed by a verb implying “handle the event of the
log being queued”, while the developers’ annotation identified
it as a verb followed by an adjective implying “log (regis-
ter) the activity queued”. In the non-boolean attribute name
deployMinesCommand, POSSE was unable to tag ‘deploy’
as a verb. This is due to the fact POSSE gives preference
to noun starting construction while processing non-boolean
attribute names. POSSE correctly identified class names like
naivesBayesSimple as a Noun Phrase but incorrectly tagged
the last term ‘simple’ as a noun rather than an adjective.

TemplateTagger: One group of errors made by Tem-
plateTagger includes incorrectly tagging ‘leading verbs’ in a



method name as ‘nouns‘ or ‘adjectives’. Examples include
open, testList, updatePrefs. Minipar overrides constraints put
on the ‘templates’ generated for these sentences on such kinds
of method names. For example, consider the method name
‘testList’. The TemplateTagger generates the sentence ‘subjects
test list’. When this sentence is processed by Minipar, it
produces a dependency tree that identifies the entire sentence
as an NP and interprets ‘test’ as an adjective.

Some nouns and adjectives in the middle of method names
are incorrectly identified as verbs by TemplateTagger. Exam-
ples include getReportFrequency and initializePoseTransforms
where nouns such as ‘report’ and ‘transforms’ are tagged
as verbs instead. Similar errors are encountered in cases
of attribute names (e.g. pngFormatName) and class names
(e.g. jftpDataStreamHandler) where nouns like ‘format’ and
‘stream® are tagged as verbs. Despite the appropriate choice of
templates, Minipar’s preferences are based on the assumption
that these are phrases from standard English.

TreeTagger: Since TreeTugger has no component that at-
tempts to specialize to the software domain, as expected, we
find the same kind of errors that we found in TemplateTagger
in TreeTagger. For example, in the method name showLoad-
Dialog, TreeTagger incorrectly tags the verb ‘show’ as a noun.
Examples of class names include complementNaiveBayes and
querySelect where the adjective ‘complement’ and the noun
‘query’ are incorrectly classified as verbs. TreeTagger also
fails to identify the verb ‘use’ in the boolean attribute name
mUseDiscretization and tags it as a noun. As indicated by
the results, TreeTagger performs better than TemplateTagger
even though it does not attempt to specialize to the software
domain. We speculate that this might be due to the fact that
TreeTagger performs better at POS tagging than Minipar.

D. Threats to Validity

Our study and development were based on Java program
identifiers. We thought that the ideas developed could be
extended to C++ because of its similarity with Java. In fact,
our results indicate POSSE performs similarly across Java an
C++. This may not be conclusive proof that the results can be
extended to any object oriented programming language (e.g.,
Ruby, JavaScript or Python). Non OOP languages may have
different syntax which may not been captured by our tagger.

As with any human-based annotations, there might be some
cases where the annotators may not have correctly identified
the part of speech tag. Annotators must have good knowledge
of how identifiers are named in Java and other OOP languages
as well have a good background in understanding POS tagging.
To limit this threat, we had an annotator with extensive exper-
tise in natural language processing and linguistics (particularly
in the POS tagging task) and a second annotator with extensive
programming knowledge sit together, discuss and annotate.

V. RELATED WORK

Several efforts have taken program identifiers as input and
generated sentences or phrases to input to a classic POS
tagger for English text. Abebe and Tonella [3] applied natural

language parsing to sentences generated from the terms in a
program element. Depending on the program element being
named (class, method, or attribute) and the role (noun/verb)
played by the first term in the identifier, different templates
are used to wrap the words of the identifier to form sentences,
which are input into Minipar, a descendant of Principar [23]
to construct parse trees. Multiple sentences may be generated
if the first term in a method name is identified by WordNet
as both as noun and verb. For example, in the method name
“processMail”, ‘process’ is tagged as both a verb and noun by
WordNet, and the following sentences are generated: “subjects
process mail” & “subjects get process mail”. These sentences
are then parsed by Minipar. Based on how these candidate
sentences are parsed by Minipar, rules are then applied to
pick one of the candidate sentences. The Minpar parsing of
the chosen sentence and its tagging of the individual words in
the sentence are used construct an ontology.

Binkley et. al. [5] also discuss part of speech tagging
but limit it to field names. They followed the Abebe and
Tonella approach of using templates. Although they use fewer
templates (List, Sentence, Noun and Verb) than Abebe and
Tonella, they produce sentences with each template which
are then input to a POS tagger developed for the general
English domain. Unlike the Abebe and Tonella system, they
do not output a unique tag for each word, but rather produce
four different tags, one for each template (and the resulting
sentence). They leave it for future work to choose a single
tag from those output by these four different “taggers”. They
use a more recent tagger: Stanford Log-linear POS Tagger
[16] than Minipar. Of course, Minipar is a parser and assigns
dependency structure as opposed to the Stanford Tagger which
only assigns POS information. Falleri et al. [6] simply uses the
TreeTagger [17], a tagger trained on English text to perform
the POS tagging. This closely relates to the sentence template
used by [5] except the use of a different language parser.

Shepherd et al. [24] extracted verb and direct object infor-
mation from method names by approximating possible POS
for terms in method names, giving preference to method names
being Verb Phrases by favoring the verb tag for words in
the first position. While this works well for methods where
the first word is the action verb, it is not comprehensive, as
indicated by our study of naming conventions. Caprile and
Tonella [25] developed a grammar for C function names. Hill
[13] developed the Software Word Usage Model in which
a set of identifier grammar rules for Java were developed.
Liblit, et al. [26] examined common naming conventions and
identified morphological patterns which can serve as a starting
point for development of a parsing tool. A phrase book of
the most common method patterns was created by Hgst and
@stvold [27]. Though these rules describe most of the patterns
in naming, the rules cannot be applied to tag arbitrary method
signatures and is only limited to method names.

Our work is distinguished from the prior work as a spe-
cialized POS tagger for the software domain, able to handle
the common as well as the less common naming conventions
equally well and not limited to method names.



VI. CONCLUSION

Our study of naming conventions suggests that method
names may not follow the typical verb-argument phrase struc-
ture. Although a majority of method names start with a Verb
Group followed by a Noun Phrase, this may not always be the
case. Our approach does not constrain an identifier to satisfy a
specific phrase structure, which is used in current approaches
to guide English language based POS taggers. For attributes
and classes, we let the different categories of constructions
decide which phrase structure that the identifier might satisfy
depending upon its all possible POS information. Having
this flexibility and a method to identify “strong and weak”
nouns/verbs in the software domains helps us to accurately
assign part of speech information to identifiers. The evaluation
indicates an increase of 11% to 20% in accuracy of POS
tagging of program identifier sover the current approaches.
This improvement is over both programming languages (Java
and C++) as well as across each category of identifiers (meth-
ods, attributes and classes). We believe this increased accuracy
will enhance the performance of other software analysis and
maintenance tools which rely on part of speech and parsing
of identifier names in source code.
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