
Automatically Mining Software-Based,
Semantically-Similar Words

from Comment-Code Mappings
Matthew J. Howard, Samir Gupta, Lori Pollock, and K. Vijay-Shanker

Department of Computer and Information Sciences
University of Delaware

Newark, DE 19716 USA
{mjhoward, sgupta, pollock, vijay}@cis.udel.edu

Abstract—Many software development and maintenance tools
involve matching between natural language words in different
software artifacts (e.g., traceability) or between queries submitted
by a user and software artifacts (e.g., code search). Because
different people likely created the queries and various artifacts,
the effectiveness of these tools is often improved by expanding
queries and adding related words to textual artifact representa-
tions. Synonyms are particularly useful to overcome the mismatch
in vocabularies, as well as other word relations that indicate
semantic similarity. However, experience shows that many words
are semantically similar in computer science situations, but not
in typical natural language documents. In this paper, we present
an automatic technique to mine semantically similar words,
particularly in the software context. We leverage the role of
leading comments for methods and programmer conventions in
writing them. Our evaluation of our mined related comment-code
word mappings that do not already occur in WordNet are indeed
viewed as computer science, semantically-similar word pairs in
high proportions.

I. INTRODUCTION

Many software development and maintenance tasks involve
traceability and code search; however, most tools’ effective-
ness is hindered by inconsistent language use between users
and developers. The mismatch between vocabularies often
results from using multiple semantically-related terminologies
for the same concept, which are then related only by synonymy
or, in some cases, by hyponymy or hypernymy. For example, a
developer looking for a routine that “inserts a new task” would
quickly agree that the method addTask(Task newTask)
would satisfy their inquiry.

Expanding queries or corpora with synonyms and other
semantically related words supplements the “bag of words” ap-
proach to traceability and search by suggesting highly related
terms in place of failed queries [1]. In fact, Shepherd et.al. [2]
showed that expanding a query with WordNet [3] synonyms,
in conjunction with a sophisticated search algorithm, can
locate relevant code more effectively than traditional searching
mechanisms.

This material is based upon work supported by the National Science
Foundation under Grant No. CCF 0915803.

Previous work [4] led us to hypothesize that synonyms and
other semantic relationships can be used to improve auto-
matically generated recommendations for program exploration
from a starting point. Existing approaches [5], [6] can take
advantage of this information by incorporating a textual com-
ponent in addition to structural information [4]. In addition,
synonyms and hypernyms can be used to locate and rank code
clones [7], a common refactoring task. Clones that have similar
structure and identifiers indicate more tightly coupled clones.
Thus, synonyms could be incorporated into a code fragment
distance analysis, so in addition to comparing types and
values for distance, the identifiers could be compared by using
semantic similarity. Techniques to recommend relevant code
examples or other artifacts from open source repositories [8],
[9] could benefit from semantic similarity. Rather than just
using the structure and words of code fragments, the artifacts
could be augmented with topic words. Semantic similarity is
also useful when analyzing maintenance requests, such as in
maintenance request assignment [10], and tools for finding
differences between versions of software [11] can also benefit
by using synonymous relations between words—for example,
when the change between two versions involves renaming a
method to a synonymous word.

Thus, Sridhara et.al. [12] investigated whether six publicly
available, well known semantic similarity techniques that
perform well on English text [13]–[15] are directly applicable
to the software domain. In general, these strategies use the
hierarchical structure of WordNet to produce a score that
indicates the similarity relation between words, with higher
scores indicating higher similarity. Their study indicated that
all six English text-based approaches perform poorly above
50% recall when applied to the software domain. The best
technique needs to find over 3,000 pairs of words in order
to discover 30 out of the 60 semantically related word pairs
in the gold set. In general, the number of returned results
can be 10 times greater than the number of desired results,
and much more for higher levels of recall. While the use
of semantic similarity information is intended to improve the
performance of software tools, the large number of returned re-

sults could instead be detrimental. The qualitative study results
also suggested that one promising way to customize semantic
similarity techniques for software is to augment WordNet
with relations specific to software, possibly by mining word
relations from software, as some pairs were identified due to
WordNet being augmented with some very common software
word relations, such as (write, save).

Yang and Tan [16] developed a context-based approach to
automatically infer semantically related words by leveraging
the context of words in comments and code. The approach is
based on the key insight that if two words or phrases are used
in the same context in comment sentences or identifier names,
then they likely have syntactic and semantic relevance. After
extracting comments and method names from the code and
clustering them based on at least one common word in their
parsed word sequences, the similarity between a pair of word
sequences is calculated, the longest common subsequences are
extracted as semantically similar, and related word pairs are
inferred from them. The evaluation shows that this approach
can find related word pairs accurately when they share a
common context.

In this paper, we present an approach to automatically
mine word pairs that are semantically similar in the software
domain, with the goal of automatically augmenting WordNet
for use in software engineering tools. Our work differs from
Yang and Tan [16] in that we seek to find word pairs that
are commonly related over many applications, while their
approach identifies word pairs related within a given context
(such as the pair auction - entry in the project jBidWatcher).
Specifically, we leverage the role of leading comments of
methods and programmer conventions in writing them as
well as method signatures to automatically mine semantically
similar verbs. A leading comment sentence and the method
name are normally both expected to state the computational
intent of the method. Hence, this pair is expected to be the
same or be different, but regardless, express the same action
(i.e., be semantically similar). We focus on verbs as we believe
that higher accuracy can be achieved for these words by
leveraging programmer conventions in documenting code, and
we believe that verbs are the words most likely mismatched
in vocabularies among developers, with many synonyms for
word choice among different readers and writers of code. We
believe our work is complementary to Yang and Tan [16], and
they could be combined for certain software engineering tools.

Our key insight in mining semantically-similar verbs is
to map the main action verb from the leading comment of
each method to the main action verb of its method signature.
While the intuition that they should be semantically similar is
straightforward, automatically identifying them is not trivial.
While many method names begin with a verb, many do not
fall in the first position. We developed a part-of-speech tagging
technique to help automatically identify the main action verb
in a method signature. In addition, identifying the main verb
in the leading comment also presents challenges, beginning
with ensuring that the comment is descriptive of the method’s
actions, and additional challenges exhibited in the next section.

To address these challenges, the contributions of this paper
include:

• an automated analysis of mined comment-code action
verb mappings to rank the most common semantically-
similar verbs in the software domain,

• a rule-based algorithm to automatically identify the main
action verb in a descriptive leading comment for a
method,

• a heuristic to automatically classify a comment as a
descriptive leading comment,

• a heuristic to identify the main action word from a method
signature,

• an empirical evaluation of the overall semantically-similar
pair-mining strategy and its component steps. The eval-
uation shows that mining accuracy increases directly
with frequency and the component steps perform with
moderately high accuracy.

II. OVERVIEW: SEMANTICALLY-SIMILAR WORD MINING

Figure 1 presents the phases of our automatic technique for
extracting word pairs that are semantically similar particularly
in the software domain. Our hypothesis is that the action
verb used in the descriptive leading comment for a method
is semantically similar to the action verb used in the signature
of the documented method. We define a descriptive leading
comment to be a comment block placed before a method
signature that provides the reader with the overall summary of
a method’s actions. That is, a descriptive comment describes
the intent of the code succinctly.

There are four main components to our approach. The first
step filters out leading comments that are non-descriptive.
Then, for each descriptive leading comment, we extract the
main action word from the descriptive leading comment and
the main action word from the method’s signature. The main
action of a method is defined to be a term that describes the
collective intent of the method body. The comment-code word
pairs form the candidate semantically-similar word pairs. We
then analyze and rank the comment-code pairs to automatically
generate a list of semantically-similar word pairs.

III. CHALLENGES THROUGH EXAMPLES

In Table I, the first example containing a leading comment
and its documented method signature motivates our key insight
that synonyms can be automatically mined from mapping the
main action verbs in leading comments to the main action verb
in the documented method signature. In this case, the first
word, ‘searches’, in the leading comment maps to the first
word in the documented method signature, ‘find’, resulting
in the mined semantically-similar word pair (searches, find).
Because methods mostly correspond to actions or operations,
programmers often start the method name with the main action
word. And, many developers start the leading descriptive
comment with a verb that describes the main intent of the
method. In these cases, the automatic mining is straightforward
once the non-descriptive comments have been filtered out.

TABLE I
EXAMPLE COMMENT-SIGNATURE SCENARIOS

Leading Comment - Method Signature Action Pair Automation Challenges
/∗ ∗ S e a r c h e s an a t t r i b u t e . ∗ /
XMLAttr ibute f i n d A t t r i b u t e (S t r i n g fu l lName){ . . . } searches - find Trivial to identify pair searches-find

from comment and code respectively

/∗ ∗ Cance l s t h e c u r r e n t HTTP r e q u e s t . ∗ /
void j s x F u n c t i o n a b o r t (){ . . . } cancels - abort

Trivial to identify comment-action.
Difficult to identify ‘abort’ in signature
since main action is at signature’s end

/∗ ∗ Many HTML components can have an < t t >a c c e s s k e y<t t >
∗ a t t r i b u t e which d e f i n e s a h o t key f o r keyboard
∗ n a v i g a t i o n . T h i s method v e r i f i e s t h a t a l l t h e
∗ < t t >a c c e s s k e y<t t > a t t r i b u t e s on t h e s p e c i f i e d page
∗ are un iqu e . ∗ /

void a s s e r t A c c e s s K e y A t t r s U n i q u e (HtmlPage page){ . . . }

verifies - assert

Difficult to identify ‘verifies’ from
comment since deep within

comment and preceded by other actions
such as ‘have’ and ‘define’. Trivial

signature-action identification

/∗ ∗ Method c a l l e d by t h e framework i m m e d i a t e l l y a f t e r
∗ RRD u pd a t e o p e r a t i o n f i n i s h e s . T h i s method w i l l
∗ s y n c h r o n i z e in−memory cache w i t h t h e d i s k c o n t e n t ∗ /

void a f t e r U p d a t e (){ . . . }
synchronize - update

Difficult to identify ‘synchronize’
from comment since preceded by
incorrect actions such as ‘called’,

‘update’, and ‘finishes’. Difficult to
identify ‘update’ from signature

because it does not begin signature
/∗ ∗ You may d e c i d e t o o v e r l o a d t h i s or t a k e t h e d e f a u l t
∗ and imp lemen t t h e f u n c t i o n a l i t y i n your MapModel
∗ (i m p l e m e n t s MindMap) . ∗ /

void l o a d (F i l e f i l e){ . . . }
- load No main action found in comment.

Trivial signature-action identification

/∗ ∗ Respond t o key p r e s s e s . ∗ /
void k e y P r e s s e d (KeyPres sedEven t e){ . . . } respond - Trivial comment-action identification.

No signature action found

However, a naive approach that assumes these conventions
will result in many incorrect mined word pairs.

Table I illustrates some of the key challenges to be addressed
to obtain an accurate set of mined semantically-similar words
through comment-code mappings. The second example shows
how the main action from the signature (in this case, ‘abort’)
is not always at the start of the method name, and similarly,
the third and fourth examples show how the main action of
the comment may be somewhere embedded in the comment
block with many other earlier verbs detracting from its easy
identification as the main action. In example 3, ‘verifies’ is the
main action verb of the comment, but the earlier words ‘have’
and ‘defines’ are also verbs in the comment. In the fourth
example, we need to filter out the first comment phrase as it
is not a descriptive comment so we do not consider ‘called’
or ‘update’ or ‘finishes’ as the main action. The main action
we identify automatically should be ‘synchronize’.

Sometimes, there is no main action described by the
comment or method name. These situations do not create
opportunity for mining. In the fifth example, ‘decide’, ‘over-
load’, ‘take’, ‘implement’ and ‘implements’ are all verbs, but
none of them describes the main action of the method. An
automatic system needs to recognize and discard these cases
so that incorrect semantically similar words (e.g., decide-load
or overload-load or take-load) are not mined. In the sixth
example, ‘pressed’ is a verb in the method name, but it is
not describing the main action of the method, but instead
describing a condition under which the method action is
performed, ‘when a key is pressed’. Without automatically
identifying this, we would incorrectly mine that ‘respond’ and
‘pressed’ are semantically similar.

We summarize the main challenges in each of the three main
phases of our approach.

Identifying Descriptive Leading Comments. Not all sen-
tences or phrases in a leading comment block are descriptive,
that is, describing the main intended action of the method.
While they may contain a verb that appears to be a main
action, they may be a ‘Notes’ comment that the developer left
to remind themselves of something they need to do or be aware
of, or a contextual comment that states that the method is
‘called from X’ or ‘calls Y’ or ‘called when ...’. Furthermore,
many of the non-descriptive comments indeed contain verbs,
which could be mistaken as describing the main action of the
method if these non-descriptive comments are not filtered out.

Extracting Documented Actions from Leading Comments.
While finding the main action is straightforward when the
leading comments begin with a verb in the present tense, many
comments do not follow this convention. Sometimes, the main
action verb is embedded in the comment. Sometimes, there are
multiple verbs in the leading comment that could potentially
be the main action. We first need to identify the verbs, and
applying a part-of-speech tagger that was trained on English
documents with full sentences starting with a subject noun
phrase often results in mistagging the verbs when applied to
comments due to the programmer convention of not using full
sentences, or words used as verbs only in the programming
sense. Typos and bad grammar also cause verbs to be mistaken
as the main action.

Identifying Main Actions from Method Signatures. Even
more difficult for a part-of-speech tagger trained on English
documents is tagging words in a method signature, which
has very dissimilar syntactic context. Many tagging mistakes
ensue from the difference in syntactic context. In addition,
some words in the programming domain differ from their
typical uses in general. For example, ‘fire’ is typically a noun,
but almost always a verb in computer science. While many

methods start with a verb similar to leading comments because
they are performing an action (e.g., sortList), the main action
verb need not be the first word (e.g., dynamicColorUpdate).
Thus, the location of the main action verb is not always the
same. Sometimes, there is a verb, but it is not describing
the main action of the method (e.g., eventDispatched, syn-
chronizedList). Often, they are being used as an adjective.
Also, sometimes the method name is just a noun phrase, while
WordNet says one of the words can be a verb (e.g., size).

IV. PHASES OF AUTOMATION

A. Identifying Descriptive Leading Comments

We refer to the whole comment that precedes a docu-
mented method signature as a leading comment block and
each component of the block that ends with a terminating
special character such as ‘.’, ‘:’, ‘;’ a phrase since often
developers do not write full sentences in leading comments.
Developers write several different kinds of leading comments.
Sometimes the whole comment is of a certain kind, while other
times, individual phrases are different kinds. Leading comment
phrases can typically be categorized as notes, explanatory,
contextual, evolutionary, conditional, or descriptive [17]. Notes
are used to communicate pending tasks to either the developer
or the team (e.g., TO DO: Fix ...), and sometimes used to
refer to other parts of the code (e.g., See also,...). Explanatory
comments explain the rationale behind some part of the code
(e.g., We sort the list to gain better performance.). Contextual
comments provide information about the context of the method
(e.g., This method is called from ... or called by ... or calls...).
Evolutionary comments describe information about the history
of the method (e.g., This method was added in version 3.5.).
Conditional comments specify conditions under which this
method should be called (e.g., The caller must ... The first
parameter should ...). Note that most of these other kinds of
comments indeed contain verbs, but which do not describe the
main intent of the method.

Since our goal is mining semantically-similar word pairs,
we are gathering examples from a large corpus of potential
comment-code mappings. Our goal is high precision in identi-
fying descriptive leading comments such that we are not map-
ping action words from comment phrases that do not describe
the intent of the method. Thus, as we identify descriptive
leading comments as potential locations for comment-code
mappings, recall is not a particular concern. That is, if we filter
out some descriptive leading comments during our automatic
identification of descriptive comments, this only decreases the
number of potential mined comment-code mappings, but does
not affect our results, given a large corpus. For other potential
software engineering client tools that require higher recall of
descriptive comments, our algorithm may need to be modified
for increased recall.

Our automatic descriptive comment phrase identifier takes
as input a leading comment block and outputs the sequence of
phrases that we identify as descriptive phrases, in their original
order. We execute the automatic descriptive comment phrase
identifier on our corpus of documented methods. The heuristics

method
signatures

Identify methods
with descriptive

leading comments
leading

comments

Analyze & Rank
comment-code

word pairs

set of methods
with leading
comments

Extract main action
from associated

signature

Extract main action
from descriptive

comment

word pairs

automatically
generated

semantically-similar
word pairs

Fig. 1. Process of automatically mining semantically-similar word pairs

are based on observations of programmer conventions in
writing the different kinds of comments.

The first step is to eliminate leading comment blocks that
are indicative of non-descriptive comments. We filter out the
whole leading block when it satisfies either of the following
properties:

• The comment begins with or is in complete all caps.
Based on observations of programmer conventions, all
caps is typically used to grab the attention of the reader,
and typically signifies a notes comment (e.g., TODO,
FIXME, HACK, REVISIT) [18], or an explanatory com-
ment (e.g., NOTE:).

• The comment starts with a personal pronoun (e..g., We
resort to avoid ..., You should ...). Developers commonly
start notes and explanatory comments this way; this is
our heuristic for filtering out these kinds of comments.

If the leading comment block is not eliminated, the sec-
ond step is to examine each phrase in order to filter out
non-descriptive comment phrases and then identify the main
action from the first identified descriptive phrase. We filter
out phrases as non-descriptive when they satisfy any of the
following conditions:

• The phrase starts with an IF clause. We ignore any IF
clause because it contains a condition under which to
perform some action, not the action itself.

• The phrase contains any of the verb phrases: “returns”,
“called from”, “performed by”, “performed when”,
“uses”. These phrases all indicate contextual information
rather than descriptive information about the method, and
signify a contextual phrase. Similarly, we ignore phrases
with the verb ‘see’ as it mostly suggests a notes comment.

• The phrase contains a past tense verb. An example is
“This method was added ...” From observational analysis,
we discovered that past tense verbs usually indicate
evolutionary comments, and are rarely describing the
intent of the method.

• The phrase contains certain programming language key-
words that typically signify an explanatory comment.
Some examples such as the common term “overrides”,
which is typically followed by a message about a
method’s parenting methods, or “implements” do not
explain the main intent of the method.

Otherwise, the only requirement we have to consider a
comment phrase as descriptive is that it contain an action
term either directly or indirectly followed by a noun term. The
next section describes how we identify action and noun terms.
Intuitively, our premise is that any useful English summary
that describes the main intent of a method will possess a word
order in which the verb precedes the object, indicating that an
action is being performed on some object. We process each
phrase in order until we find a suitable action description.
Based on analyzing identifiers for several years, we observed
that programmers typically write the main action within the
first descriptive phrase of the leading comment.

B. Extracting Documented Actions from Leading Comments

Assuming that we are examining a phrase that has survived
the filtering of non-descriptive phrases, we begin by iden-
tifying all potential verb-noun sequences in the phrase. We
first identify the set of potential verbs (i.e., actions) and then
determine those verbs that are followed by a word that could be
a noun. These verb-noun sequences become our set of potential
main actions documented by the descriptive comment.

We start by running Stanford’s Log-Linear Part-of-Speech
Tagger [19] on the current comment phrase under analysis.
Each word in the method signature is tagged with a part of
speech. Since the tagger is trained on English documents,
sometimes the part of speech output is incorrect when applied
to a method signature that does not follow the same sentence
structure on which the tagger relies for tagging. Thus, we
follow the tagger with a post processing step, particularly with
the goal of identifying any words in the phrase that could be
verbs in the computer science context, but not tagged as a verb
by the Stanford tagger.

We assume that any word tagged as a verb by the Stanford
tagger is a verb. However, there could be more words in the
signature that act as verbs in the computer science context. We
check if any of the non-verb tagged words in the phrase could
be a verb in any sense by checking if it could be a possible
verb according to WordNet. If so, we tag it as a potential verb.
Sometimes, words used in software are not found in WordNet
but when the prefix or suffix is ignored, they are found in
WordNet, particularly as a verb. For example, ‘unregister’
and ‘deregister’, are not found in WordNet, but ‘register’ is
a potential verb as indicated by WordNet. Similarly, ‘setup’
and ‘backup’ do not occur in WordNet, but ‘set’ and ‘back’
do occur as potential verbs after the suffix ‘up’ is removed.

Thus, we process any word with one of a fixed set of prefixes
or suffixes (e.g., re, dis, en, ex, out, re,...) and run the remaining
partial word through WordNet to see if it can be a verb. If so,
we tag it as a verb.

Sometimes putting the word into a full sentence can help
the Stanford tagger to determine whether it is a verb. Thus, we
put each remaining non-verb tagged word in the phrase into
a template sentence, run the sentence through the Stanford
tagger, and if the word is tagged as a verb in the sentence, we
consider it a verb. We also process each of the partial words
after removing the prefixes and suffixes in this way. We use
three templates that we found useful for this purpose:

This method will WORD something.
This method will WORD.
This method WORD something.

Thus, we reevaluate words not tagged as verbs by the Stanford
tagger using a staged postprocess which first utilizes WordNet
to verify the questioned term as a known verb form and,
for terms not found in the WordNet library, removes prefixes
and suffixes, and places the terms into template sentences to
determine potential as a verb. After we have all potential verbs
in the phrase, we use the Stanford tagging output to determine
which ones are followed immediately by a noun.

The next step is to determine which of these verb-noun
sequences is most likely to describe the main action of
the method. We process each verb-noun sequence in order,
as programmer convention suggests that the main action is
described earlier more often than later in a leading comment
block. A naive approach would be to choose the first verb-
noun phrase in the list as the main action; however, we have
observed that this is not always the case for several reasons:
mistagging of the verb, typos/bad grammar, and computer
science specific conventions. Thus, we developed a set of
rules that filter out verb-noun sequences that should not be
considered to be the main action of the leading comment
phrase, as they are encountered in order. The first verb-noun
sequence that is not filtered out will be reported as the main
action that the descriptive comment phrase is expressing.

• We always ignore verbs that are used too frequently and
too vague to be useful for potential semantically similar
word pairs. These includes verbs such as ‘perform’ and
‘do’, ‘tries’, ‘test’, ‘determine’, and linking verbs such
as ‘is’, ‘are’, ‘was’, ‘has. The linking verbs usually filter
out evolutionary comment phrases (e.g., This method was
developed for...).

• We always filter out verbs in the past participle form,
because the verb usually is acting as an adjective and
has been mistagged due to method signature context. For
example, ‘given’ in “given database query string...” is an
adjective, not a verb.

• We always filter out verbs in the past tense as they are
also being used as adjectives in the method signature
context. For example ‘stacked’ in “add stacked plot...”
is an adjective.

• Under certain contexts, we ignore verbs in the base
form. In particular, we keep as a candidate a verb-noun
sequence where the verb is in base form and occurs within
the first three words of the phrase or is preceded by a
‘to’. For example, ‘delete’ in “delete the elected tracks”
is a highly likely main action. Similarly, ‘initialize’ in
“This method is called from within the constructor to
initialize the form.” However, again, there are situations
where a word that is typically a verb is tagged as such,
but it must be ignored because it acts as an adjective. For
example, ‘delete’ in “attempt to set a delete frequency for
the collector.”

• Similarly, a verb in the third person singular form is kept
as a candidate for the main action if it occurs in the first
three words of the phrase, but filtered out otherwise. For
example, ‘populate’ in “This method populate the...” is
most likely a typo for ‘populates’. An example that should
be filtered out is ‘update’ in “...immediately before RRD
update operation starts” where ‘update’ is acting as an
adjective but mistagged as a verb.

• A gerund is kept as a candidate if it is preceded by
a preposition but filtered out otherwise. For example,
‘reading’ in “convenience methods for reading a based64-
encoded file” is most likely the main action. However,
‘spanning’ in “build a spanning tree” is being used as an
adjective, and mistagged as a verb.

C. Identifying the Main Action from a Method Signature

Several approaches to tagging method names could have
been used, including Abebe and Tonella’s [20] template-based
method name parser. However, we use a part-of-speech (POS)
tagger [21] for method names that we’ve developed indepen-
dently to address a larger set of programmer conventions.

First, through utilization of Samurai [22], we are able to
efficiently break a method into its component words. Then,
WordNet is implemented to quickly find possible word forms
for the component pieces produced by Samurai. Finally,
morphological rules are used for programming conventions
because often software developers utilize their own terminol-
ogy. For example, terms are often attached to the prefixes
‘un’ and ‘de’, such as in ‘unregister’ which is not a word
found in WordNet. Our POS tagger then assigns all possible
POS tags – from a set of 14 including singular nouns, base
verbs, adjectives, past participles, etc. – to each word and
chooses the most likely tag thereafter based on contextual
clues. For example, the word ‘fire’ is normally used as a noun
in general English, yet it is almost exclusively used as a verb
in software development. By leveraging a large collection of
compiled method and field names, we are able to determine
the most likely tag. This process is useful for situations like
‘dynamicColorsUpdate()’, where we would find update as the
verb based on similar clues. After the tagging process, we
follow our design principle of being precise and cautious in
implementing the following rules to extract the action term
from the method signature.

• If a verb is found and determined to be in past tense
or past participle, we do not use it as the main verb. If
this verb is the first verb then our observations about
method naming conventions suggest that it is not an
action verb, rather it is typically adjectival and modifying
the following noun (e.g., ‘synchronizedList()’). Many of
these names are just noun phrases and typically their
action is only implicit. Additionally, past participle verbs
at the end of a method name typically describe the
situation under which the method is utilized, not what
the method actually performs (e.g., ‘mouseClicked()’).

• We ignore method names beginning with linking verbs
(e.g, ‘is’, ‘has’, ‘can’, etc) because they also do not
describe the action being performed. Often these naming
conventions are found for boolean methods in which the
method name applies to the parameter(s) being passed
(e.g., boolean canOpen(File f)).

• Methods starting with third-person singular verbs are
also ignored because they are often related to checking
if some condition holds, especially when they are of
the boolean return type. For example, the method ‘con-
tains(...)’ doesn’t describe an action, but rather ‘checks’
if some parameter is contained.

• Gerunds are also filtered out in the case where they are
followed by a past tense verb. For example, ‘rendering-
Canceled()’ hints at the state of the program, but doesn’t
describe what actions are performed.

D. Analyzing Comment-Code Word Pairs

A typical algorithmic NLP approach [24] to mining related
words between two corpuses consists of taking an input word
from one language and probabilistically determining the most
mutually-dependent term from the parallel language based on
all sentences of the input language that contain the input word.

In contrast, measuring relation between terms extracted
from separate corpuses for the same purpose has less to do
with probability than it does with frequency of occurrence. In
our work, we are extracting terms from corpuses of leading
comments and corresponding method signatures. A leading
comment phrase and the method name are normally both
expected to state the computational intent of the method, thus
correctly identifying the main action from each provides a
pair in which both terms are either the same word or different
words expressing the same action. This claim holds true only
if (1) the leading comment is both descriptive and accurate,
(2) the method is well-named with a clear action term, and
(3) our method accurately extracts the verbs from both cases.
Rather than look at all translational pairs, we consider only
pairs that we believe to be reflecting the main action of the
method which considerably suppresses unnecessary pairs. Our
hypothesis is that despite a small amount of error from the
aforementioned three sources, incorrect pairs will not occur
frequently enough to trump correct pairs, and thus a higher
frequency indicates a stronger confidence that the pair is in
fact semantically-similar.

V. EVALUATION

Since there are multiple tasks comprising the automatic
semantically-similar word finding technique, we designed our
evaluation to answer the following five research questions via
four studies:

1) How well does our automatic system determine descrip-
tive comments?

2) How well does our automatic system identify the action
word from a descriptive comment?

3) How accurate is the automatic extraction of the main
action from a method signature?

4) How well do our word-pairs reflect reasonable
semantically-similar words in computer science?

5) How well do we recall word-pairs from a human-
annotated gold set?

Subjects, Variables, and Measures. The subjects in our
study are methods from 36 open source Java programs across
multiple domains and with different developers. In total, the
projects are comprised of ∼3 million lines of code from 12,070
source files. In this dataset, there are 112,213 methods, with
20,199 methods documented by leading comments.

The independent variable is the multi-phase technique for
mining semantically-similar words. The dependent variable is
the effectiveness of each phase in terms of accuracy. We define
accuracy for each study based on the objectives of that phase
(see each study below).

Methodology. We ran each of the four phases (1: identifying
methods with descriptive leading comments, 2: extracting
action words in leading comments, 3: extracting action words
in method signatures, and 4: analyzing and ranking mined
semantically-similar word pairs) on the entire set of 36 Java
projects. We engaged 6 human annotators, who had no knowl-
edge of our techniques, were not authors on this paper, and
who have extensive prior knowledge of the Java programming
language. They performed several tasks to provide a gold set
for each phase and human opinion of automatically mined,
semantically-similar words.

We did not compare our results with Yang and Tan [16]
because their technique analyzed each project on an individual
basis, looking for word pairs that are semantically related
within a common context. For example, they retrieved pairs
including (save, do), which may be semantically related for
the project jBidWatcher in which it was found, but which is
difficult to justify as a universally semantically-related word
pair to augment WordNet.

We now present the evaluation of each of the four phases
of our automatic mining technique culminating with human
opinion of our mined word pairs.

A. Study 1: Identifying Descriptive Leading Comments

Research Question: How well does our automatic system
determine descriptive comments?

Procedure: From the set of 20,199 methods with leading
comments in our dataset, we randomly selected 150 methods.
We ensured that at least two-thirds of the comments were

TABLE II
SAMPLES OF RESULTS: IDENTIFYING DESCRIPTIVE COMMENTS

Automatic and Humans Agree
Leading Comment Descriptive? (Y/N)

Called every n bytes,
where n is defined by Settings No

Switch to specified lex state. Yes
Method used to create an about menu

item for use in this application. Yes

SWFActions interface No
Automatic and Humans Disagree

Leading Comment Descriptive? (Y/N)
Automatic Human

Torso twist to the left or right No Yes
If neither Date header nor Last-Modified
header is present, current time is taken. No Yes

Client is current player; state changed from
PLAY to PLAY1. (Dice has been rolled, or card

played.) Update interface accordingly.
No Yes

debug output for player trackers Yes No

identified as descriptive by our technique in order to promote a
reasonable sample size for the evaluation in the second study:
main action extraction from descriptive comments.

Each of the six annotators was given 50 of these methods
with leading comments. To limit the potential subjectivity,
each of the 150 methods was examined by two annotators.
In the case of a disagreement, an annotator who had not
previously evaluated the method was utilized to break the
impasse. This tie-break scenario was seen in 15 cases. We
take the majority opinion as the annotation. For each annotated
method, we asked:

1) Given the definition of a descriptive leading comment, do
you believe the leading comment is descriptive, where
we define a descriptive comment as ‘a comment that
describes the intent of the code succinctly’?

2) If yes, identify the main action of the descriptive leading
comment.

Results: Over all 150 methods, the annotators agreed with
our automated technique in 131, or 87.33% of the cases. Of the
19 cases where the human annotators and automated technique
disagreed, 14 were cases where the human annotators said
the leading comment was descriptive, while our technique
labeled it non-descriptive. Only 5 of the cases of disagreement
between our automatic technique and the annotators were
cases where we would have a high chance of incorrectly
mining a descriptive action from a comment that in fact is
believed to be non-descriptive of the main intent of the method.

Table II shows some examples of agreements and dis-
agreements on descriptive comment classifications between the
automated system and annotators. In the agreements, row 3, we
see that the use of the preceding ‘to’ rule helped in identifying
the action verb ‘create’. Contrastingly, our automated approach
may have made a misjudgment for a case such as the 4th row
of disagreements, where it seems ambiguous on whether debug
was meant to be an action term or noun phrase. These results
suggest that our approach to identifying descriptive comments
has fairly high accuracy, and the inaccuracy is mostly due

TABLE III
SAMPLES OF RESULTS: EXTRACTING MAIN ACTION FROM COMMENT

Automatic and Humans Agree
Leading Comment Extracted Action

This method is called from within the
constructor to initialize the form. WARNING:
Do NOT modify this code. The content of this

method is always regenerated by the Form
Editor.

initialize

Loads a tree description file. loads
Immediately render the given VisualItem
to the screen. This method bypasses the

Display’s offscreen buffer.
render

An abstract method that splits a
line up into tokens. It should parse the line,
and call addToken() to add syntax tokens to

the token list. Then, it should return the
initial token type for the next line.

splits

Automatic and Humans Disagree

Leading Comment Extracted Action
Automatic Human

Verifies that document.write() sends content
to the correct destination (always somewhere
in the body), and that script elements written

to the document are executed in the
correct order.

verifies execute

Create a duplicate of this object. create duplicate
Regression test for bug 3017719: a 302

redirect should change the page url. redirect test

Drive the consumer by reading one tag drive reading

to mistakenly filtering out descriptive comments, which only
leads to missed examples for mining.

B. Study 2: Extracting Actions from Leading Comments
Research Question: How well does our automatic system

identify the action word from a descriptive comment?
Procedure: Of the 131 agreements on descriptive comment

classifications between humans and automatic system, 118
of those were agreements on the comment being labeled
as descriptive, while the remaining cases were agreements
that the comments were non-descriptive. This study focused
on evaluating the automated system’s extraction of the main
action from the 118 cases where there was agreement on the
comment being descriptive.

When the annotators indicated that a comment was de-
scriptive, they were then asked to indicate the word from the
comment that they believed to be describing the main intent
of the method. Thus, through our procedure from study 1, we
ensured that we obtained at least 2 annotations of main actions
from each of these comments.

Results: From the 118 cases where the annotators and
automatic system agreed that the leading comment was in fact
descriptive, there were 106 (or 89.93%) cases in which the
automatic system agreed with at least one of the annotators.
At least two annotators agreed on the same word for the main
action in 93 comments. Of those 93 cases, they chose the same
word as the automatic system for the main action 88 times (or
94.62%).

Table III shows some examples of agreements and disagree-
ments on the main action word in descriptive comments be-
tween the automated system and annotators. In the agreements,
it is clear that our automated approach correctly identified the

TABLE IV
SAMPLES OF RESULTS: EXTRACTING MAIN ACTION FROM SIGNATURE

Automatic and Humans Agree
Method Signature Extracted Action

void scheduleRedrawTimer() schedule
int binarySearch(Object[] a, Object key,

Comparator cp, int begin, int end) search

void jsxFunction collapse(boolean toStart) collapse
void resetClick() reset

Automatic and Humans Disagree

Method Signature Extracted Action
Automatic Human

void renderingCanceled() canceled
SWFShape tagDefineShape2(int id,

Rect outline) define tag

void makeTrade(int offering, int accepting) make trade
void fireToolStarted(DrawingView view) fire

action terms despite various tenses and phrasal patterns. In the
disagreements, our automated approach struggled with tough
cases. For example, in the 3rd row of the disagreements, our
approach chose the action ‘create’ while the human annotators
chose a more descriptive action of ‘duplicate’. Despite these
tough cases, our automatic extraction of the main action from
descriptive leading comments has high accuracy.

C. Study 3: Identifying the Main Action from a Signature

Research Question: How accurate is the automatic extrac-
tion of the main action from a method signature?

Procedure: In total, 150 randomly selected method signa-
tures were evaluated, each by two annotators. In the case of
a disagreement, we broke the tie using critical judgement.
The same 6 annotators also evaluated the signature action
extraction process. Each annotator was given 50 of the 150
method signatures with any leading comments stripped off.
They were asked to select the word from each signature that
was equivalent to the main action, or none, if there was no
term that they believed to be suitable.

Results: Over all 150 methods, there were 122 cases where
both humans agreed on the action term from the signature,
and 28 cases where they disagreed. For the 28 disagreements,
the authors collaborated to distinguish the automated system’s
performance. Overall, the automated extraction identified the
same main action of the signature as at least one of the
annotators in 137 of 150 cases, for an accuracy of 91.33%.

Table IV presents a sampling of our results, with the original
method signature and the automatically and human extracted
main action words, for both agreement and disagreement
cases. In row 3 of the disagreements, our automatic approach
correctly identified a satisfactory action ‘make’; however, the
human annotators correctly identified a more descriptive term
‘trade’ which is more thoroughly indicative of the action. This
result indicates that the automatic extraction of main actions
from method signatures has a high accuracy.

D. Study 4: Generating Comment-Code Word Pairs as
Semantically-Similar

Research Question: How well do our word-pairs reflect
reasonable semantically-similar words in computer science?

TABLE V
ACCURACY OF PAIRS AT VARIOUS THRESHOLDS

Frequency 4+ Rated Pairs Total Pairs Accuracy
10+ 26 33 78.79%
7–9 13 17 76.47%
5–6 23 47 48.94%
<5 Were not annotated

Procedure: We gave 2 annotators – one from the aforemen-
tioned group and one author – a set of all 97 generated word
pairs that had a frequency of occurrence of 5 or more via our
automated mining system. The annotators were charged with
the task of rating the pairs on a Likert scale from 1 to 5 based
on their semantic-similarity, 1 representing no relation at all, 3
representing an unclear determination, and 5 representing inar-
guable semantic similarity. We used frequency thresholds to
measure our approach’s ability to find legitimate semantically-
similar pairs. To study the usefulness of our approach in
expanding lexical databases, we only considered word pairs
that were not found to have semantic similarity in WordNet.

Results: Table V presents the results for a set of different
frequency thresholds for a word pair to be considered seman-
tically similar. For each threshold, we considered the number
of annotated ratings that indicated positive semantic-similarity
(i.e., a 4 or 5) against the total number of ratings for the pairs
in that frequency range to determine its accuracy. Pairs at high
frequency that did not receive a positive rating include (show,
select), (modify, control), and (edit, present). In some situa-
tions, the poorly rated pairs were due to overloaded methods
with identical comments. A sample of these 15 highly frequent
pairs are shown in the top portion of Table VI. Overall, these
results indicate that the accuracy in semantic-similarity in our
generated pairs indeed increases with frequency and implies
more reliable mining with a larger dataset.

Research Question: How well do we recall word-pairs from
a human-annotated gold set?

Procedure: In addition to measuring the accuracy of our
semantically-similar pairs, we compared our pairs to a gold set
established by taking all 24 verb-pairs from various techniques
tabulated in Table 4 of Sridhara et. al’s [12] analysis. All verb-
pairs taken were used in the evaluation of their work.

Results: In total, our technique successfully recalled 19 (or
79.17%) of the 24 pairs in the gold set. The bottom portion
of Table VI shows 15 of these 19, since 4 pairs with high
frequency are already listed in the top portion. The 5 missed
cases from the gold set were (save, output), (flush, write),
(reset, remove), (remove, cleanup), and (sort, compare). These
results indicate that our automatic method recalls word-pairs
from the gold set in large proportions.

E. Threats to Validity

We gathered a large collection of Java programs that would
be reflective of code contexts and usages on a global level;
however, the fact that only Java was used indicates that
some programming language specific terms (e.g., ‘malloc’ in
C/C++) may never be found. Additionally, the extensiveness of
mining pairs relies directly on the quantity and variety of the

TABLE VI
SAMPLE OF AUTOMATICALLY MINED SEMANTICALLY-SIMILAR WORDS

Mined Word-pairs not in WordNet
add - register export - dump fire - notify
find - search finalize - clean parse - read

handle - respond fill - draw clone - create
init - initialize undo - restore quit - close
paint - draw display - print reset - clear

Mined Pairs also in Gold Set Related Verb-pairs in Sridhara [12]
display - show determine - check write - save
add - append make - create start - begin

remove - delete compare - equal store - add
locate - find add - put remove - clear
write - print open - start output - print

data set. For example, pair frequency could be relatively large
on our data set, yet relatively low had we simply analyzed
more projects or if we used an alternate data set of equal size.

As with all subjective tasks, it is possible that the human
annotators did not correctly identify descriptive comments and
actions, method signature actions, and semantically-similar
word pairs. In some cases, a method’s purpose or its leading
comment description could be interpreted differently by sep-
arate annotators. It may also be possible that the annotators
misinterpreted what were software-related terms or ideas that
they were unfamiliar with. To limit this threat, we chose the
annotators based on their experiences with software develop-
ment, specifically in the Java domain.

VI. RELATED WORK

Beyond the most closely related work of Sridhara et.al [12]
and Yang and Tan [16], several software maintenance tools
have been developed that use some notion of synonyms.
Shepherd et al. [2] developed FindConcept, a tool that expands
search queries with synonyms to locate concerns more accu-
rately in code. FindConcept obtains synonyms from WordNet,
a lexical database of word relations that was manually con-
structed for English text.

A second maintenance tool that uses synonyms is iCom-
ment [25]. iComment is a tool that automatically expands
queries with similar topic words to resolve inconsistencies
between comments and code and therefore helps to auto-
matically locate bugs. Their lexical database of word rela-
tions was automatically mined from the comments of two
large programs. Their approach of automatically mining topic
relations from code tacitly assumes that existing tools for
semantic similarity on English text are insufficient when
applied to software. To detect bugs, aComment [26] leverages
semantically related words to identify comments that have
similar meanings in order to check these comments against
source code. aComment requires its users to manually specify
synonyms and paraphrases. This is challenging because users
must have domain knowledge about the target software, thus
they are likely to miss important synonyms and paraphrases.

This work is somewhat related to strategies that auto-
matically map comments to code by calculating a similar-
ity measure between the set of words in both the method
and the comment [27], [28]. Fluri et al. use a set-based

similarity metric to explore how comments and code evolve
over time [27]. Lawrie et al. compute the similarity between
comments and code to assess code quality [28]. Their approach
uses cosine similarity to calculate overlapping word usage
between comments and methods, but does not map comment
words to method words to calculate similarity.

There is also research that avoids explicitly handling se-
mantic similarity by using an information retrieval (IR) tech-
nique that embeds semantic similarity information [29]. Latent
Semantic Indexing is an IR technique that uses the co-
occurrences of words in documents to discover hidden seman-
tic relations between words. Since the technique is based on
co-occurrences of words, the resulting word relations are not
guaranteed to be semantically similar. LSI is also dependent
on the set of documents (i.e., set of programs) from which the
word co-occurrences are observed.

VII. CONCLUSIONS AND FUTURE WORK

We demonstrate the many challenges in actually designing
a system based on the simple observation that leading de-
scriptive comments and the documented method names should
indeed describe the same action. Our automatic miner of
semantically-similar verbs has high accuracy in all its phases:
87% accuracy in identifying descriptive comments, with most
inaccuracy due to filtering out descriptive comments which
only leads to missed examples, 94% accuracy in extracting
the correct main action word from a descriptive comment,
91% accuracy in identifying the main action word within the
method signature, and finally agreeing with human opinion of
the mined semantically-similar word pairs 78% of the time at a
frequency threshold of 10 or more occurrences. Our hypothesis
that accuracy in semantically-similar word pairs mined by our
system increases with overall frequency is indeed justified.

We have some planned improvements that we have seen
through our analysis of the results. Also, the work could
be extended to make better choices when there are multiple
actions with a conjunction, although this does not occur often.
We also plan to investigate other potential opportunities for
mining other word relations to improve client software tools.

ACKNOWLEDGEMENTS

We thank the whole Natural Language Program Analysis
research group, particularly Giriprasad Sridhara, at University
of Delaware.

REFERENCES

[1] C. D. Manning, P. Raghavan, and H. Schuetze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[2] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker, “Using
natural language program analysis to locate and understand action-
oriented concerns,” in AOSD ’07: Proceedings of the 6th International
Conference on Aspect-oriented Software Development, 2007.

[3] C. Fellbaum, WordNet: An Electronic Lexical Database. MIT Press,
1998.

[4] E. Hill, L. Pollock, and K. Vijay-Shanker, “Exploring the neighborhood
with Dora to expedite software maintenance,” in 22nd IEEE Interna-
tional Conference on Automated Software Engineering (ASE), 2007.

[5] M. P. Robillard, “Automatic generation of suggestions for program
investigation,” in 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2005.

[6] Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird, “Recommending
random walks,” in Proceedings of the European Software Engineering
Conference, 2007.

[7] J. Krinke, “Identifying similar code with program dependence graphs,”
in Eighth Working Conference on Reverse Engineering (WCRE), 2001.

[8] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: a search engine for open source code supporting
structure-based search,” in OOPSLA: Companion to the 21st ACM
SIGPLAN.

[9] R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in 27th International Conference on Software
Engineering, 2005.

[10] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”
in ICSE ’06: Proceedings of the 28th Int. Conference on Software
Engineering, 2006.

[11] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A differencing
algorithm for object-oriented programs,” in 19th IEEE International
Conference on Automated Software Engineering, 2004.

[12] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker, “Identifying word
relations in software: A comparative study of semantic similarity tools,”
in Proceedings of the 2008 The 16th IEEE International Conference on
Program Comprehension. IEEE Computer Society, 2008, pp. 123–132.

[13] A. Budanitsky and G. Hirst, “Evaluating WordNet-based Measures
of Lexical Semantic Relatedness,” Computational Linguistics, vol. 32,
no. 1, 2006.

[14] D. Jurafsky and J. H. Martin, Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, Second Edition. Prentice Hall, 2008.

[15] T. Pedersen, S. Banerjee, and S. Patwardhan, “Maximizing semantic
relatedness to perform word sense disambiguation,” University of Min-
nesota, Duluth, Tech. Rep., 2005.

[16] J. Yang and L. Tan, “Inferring semantically related words from software
context,” in Proceedings of the Working Conference on Mining Software
Repositories (MSR’12), June 2012.

[17] G. Sridhara, “Automatic generation of descriptive summary comments
for methods in object-oriented programs,” Ph.D. dissertation, University
of Delaware, Jan 2012.

[18] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “Todo or
to bug: exploring how task annotations play a role in the work prac-
tices of software developers,” in Proceedings of the 30th international
conference on Software engineering, ser. ICSE ’08, 2008.

[19] K. Toutanova, D. Klein, C. Manning, and Y. Singer, “Feature-rich part-
of-speech tagging with a cyclic dependency network,” in Proceedings
of HLT-NAACL 2003, 2003, pp. 252–259.

[20] S. L. Abebe and P. Tonella, “Natural language parsing of program
element names for concept extraction,” in Proceedings of the 2010 IEEE
18th International Conference on Program Comprehension, ser. ICPC
’10, 2010, pp. 156–159.

[21] S. Gupta, K. Vijay-Shanker, and L. Pollock, “Part-of-speech tagging of
method names,” U of Delaware, Tech. Rep. UD-CIS; 2013-002, February
2013.

[22] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source
code to automatically split identifiers for software analysis,” in 6th IEEE
Working Conference on Mining Software Repositories (MSR), May 2009.

[23] U. Germann. (2001) Aligned hansards of the 36th cana-
dian parliament. [Online]. Available: http://www.isi.edu/natural-
language/download/hansard/index.html

[24] C. D. Manning and H. Schuetze, Foundations of Statistical Natural
Language Processing. The MIT Press, 1999.

[25] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/*iComment: Bugs or bad
comments?*/,” in SOSP ’07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles. ACM, 2007, pp. 145–158.

[26] L. Tan, Y. Zhou, and Y. Padioleau, “aComment: mining annotations
from comments and code to detect interrupt related concurrency bugs,”
in 33rd International Conference on Software Engineering.

[27] B. Fluri, M. Würsch, and H. C. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes,” in
14th Working Conference on Reverse Engineering (WCRE), 2007.

[28] D. J. Lawrie, H. Feild, and D. Binkley, “Leveraged quality assessment
using information retrieval techniques,” in Proceedings of the 14th IEEE
International Conference on Program Comprehension (ICPC’06), 2006.

[29] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in 11th Working
Conference on Reverse Engineering (WCRE’04), 2004.

