
Making Sense of Online
Code Snippets

Liangju Li

Motivation

During the SD and SE…

We might have some problems …

• Reuse existing libraries and frameworks
!
• Many frameworks are complex
!
• Lack of documentation or examples

For example…!
Google Play Service API for Android…

• Some documents are out of date.
!
• Few code examples.

• Some documents are out of date.
!
• Few code examples.
!
• Time consuming.

For example…!
Google Play Service API for Android…

• High quality source code.
!
• Many, many…
!

• 87% of all Android API classes are post
!
• 56% covered by code examples
!

• 77% of all Java API classes
!
!

• 87% of all Android API classes are post
!
• 56% covered by code examples
!

• 77% of all Java API classes
!
• Good resource.
!
!
!
!

However…

• Most answers have code snippets (65%).
!
• Most snippets are not complete files (83%).
!
• Missing class or method declaration.
!
• Treats snippets as plain text (lexical search only).
!

• Methods in different classes share similar names.
!
• Types are implicitly used but are never explicitly named.
!
• Type usage examples can be lost
!
!
!

Problems…

For example…

• 6 methods named !

• Type information goes unnoticed.!

An Extreme Example…

Method named describeContents in Android API…
!

An Extreme Example…

Method named describeContents in Android API…
!

200 types!

• Fail to utilize any structural information.
!

• Mask good API usage examples.
!
• Difficult for a user to identify relevant results

Lexical search…

Ideally we prefer to…

• More than just lexical search
!
• Identify all the relevant information about the API usage.
!
• Use structural information

Approach

Properties of snippets…

• Incomplete
!

• Extend on details provided in the question
!
• Often skip certain aspects (like variable declarations)
!
• Often with explanations
!
• Spread across several code blocks
!
• Complicated to analysis

Their approach…

• A partial program analysis framework.
- Works on arbitrarily small code fragments

!
• A simple oracle that describes the API space
!

• Two Steps:
- Parsing Snippets
- Inferring API Usage

!
• Case study on Android.
!
!
!

Parsing Snippets

• Constructs an Abstract Syntax Tree (AST) for each snippet:
- Each code block as a snippet
- Greater than 2 LOC
- Marked as solutions

!
• Use Eclipse JDT with DOM representation of AST

- Wrap free standing snippets before parsing
!
!

!
!
!
!

Inferring API Usage

A simple set of heuristic
- Traverse the AST for type information
- Use type information to resolve method calls

‣Oracle gives list of candidates
‣Annotate invocation in the AST with candidates

- A list of candidate return types for chained method invocations
- Similar techniques for anonymous class declaration
- Identify overridden methods to infer interfaces and superclasses
!

- If a method has no corresponding reference
‣Predict
‣Provide a list of all possible candidates

!
!
!
!

!

Evaluate

• Android-tagged posts
!
• 21,250 source code snippets
!
• 253,137 API classes and methods

- 75,388 API methods
- 17,7799 API classes

Experiment

• 75,338/75,338 methods with only one candidate
• 17,799/17,799 classes with only one candidate

Yields an 100% API match

Snippet Search Data

 Analyze the most commonly used API elements in Android

Snippet Search Data

• 24,545 total method declarations (excluding constructors)
- Only 6,720 are unique
- 1,7825 clashes with on average 33 others

!
• 23,239 instances could not fully disambiguate

Comparison

• Randomly select 30 code snippets
!

• Identify the exact method names
!
• Compare with lexical approach

Decrease mis-reported results at most 51%

Conclusion

!
• Accepted solution are more like to find “best practice” usage
!

• Their approach effectively identify API usage

