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Abstract Researchers have shown that program analyses that drive software
development and maintenance tools supporting search, traceability and other
tasks can benefit from leveraging the natural language information found in
identifiers and comments. Accurate natural language information depends on
correctly splitting the identifiers into their component words and abbrevia-
tions. While conventions such as camel-casing can ease this task, conventions
are not well-defined in certain situations and may be modified to improve
readability, thus making automatic splitting more challenging. This paper de-
scribes an empirical study of state-of-the-art identifier splitting techniques and
the construction of a publicly available oracle to evaluate identifier splitting
algorithms. In addition to comparing current approaches, the results help to
guide future development and evaluation of improved identifier splitting ap-
proaches.

Keywords software engineering tools - program comprehension - identifier
names - source code text analysis

1 Introduction

While a program’s statements and structure convey the computational intent
to the compiler, the naming of program elements is used to convey domain
concepts useful to programmers reading and modifying the program. Like hu-
man programmers, software engineering tools built to support programmers
maintain software can leverage the natural language information inherent in
program identifiers and comments. In particular, tools for program search,
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concern location, code reuse, and documentation-to-source traceability can all
benefit from extracting accurate natural language information from source
code.

A key first step in analyzing the words that programmers use is to ac-
curately split each identifier into its component words, abbreviations, and
acronyms. This need arises as programmers often compose identifiers from con-
stituent words and abbreviations (e.g., AST VisitorTree, newValidatingXMLIn-
putStream, jLabel6, buildXMLforComposite). Automatic splitting of identifiers
with multiple words is straightforward when programmers follow conventions
to separate words and abbreviations, such as using non-alphabetic characters
(e.g., “7) or camel-casing, where the first letter of each word is upper case
(except for the very first letter in some cases) [5,8,16,18].

Unfortunately, camel casing is not well-defined in certain situations. For
example, no convention exists for including acronyms within camel case identi-
fiers where the whole abbreviation may be capitalized, as in ConvertASClitoUTF,
or just the first letter, as in SqlList. The decision depends on the readability
of the token. In particular, SqlList is arguably more readable than SQLList, and
more closely follows camel case guidelines than SQLIist. Strict camel casing may
be sacrificed for readability, especially for prepositions and conjunctions, as in
DAYofMONTH, convertCEtoString, or PrintPRandOSError. Thus, while splitting on the
transition from lower case to upper case letters is sufficient, it is incomplete,
creating a need for more sophisticated techniques.

The goal of an identifier-splitting algorithm is to take an identifier as input,
and output a list of substrings that partition the identifier. These substrings
can be dictionary words, where its meaning is obvious, abbreviations, which
represent a single dictionary word, or acronyms, which represents several dic-
tionary words. Research has shown that in the absence of execution data,
software engineering tools such as feature location techniques perform signifi-
cantly better with manual splitting over automatic splitters [9]. Thus, there is
a need to study, compare, and improve automatic identifier splitters. While ex-
isting splitting techniques have been individually evaluated when introduced,
there is a need for a uniform test oracle to support comparison of existing and
future techniques. To this end, the main contributions of this paper are

— construction of a publicly available test oracle to evaluate current and
future identifier splitting algorithms, and

— support for future splitter improvements based on analysis of five state-of-
the-art splitters, plus a conservative camel-case splitter as a baseline, and
investigating under what conditions each splitter performs best and where
further refinements can be made. This includes empirical results and anal-
ysis from a thorough study comparing the dictionary-based Greedy [11],
frequency-based Samurai [10], metrics-based with dictionary GenTest [15],
speech-recognition with dictionaries referred to as DTW [12], and dictionary-
based with special processing for identifiers with digits (Identifier Name
Tokeniser Tool, or INTT) [4].
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After setting up the problem in Section 2 and describing the five splitting
approaches under investigation in Section 3, Section 4 presents the construc-
tion of the test oracle. The resulting oracle can be obtained from www.cs.
loyola.edu/~binkley/ludiso, which also provides programs written in Java,
C, and C++ for reading the data and extracting subsets based on different
criteria. Next, Sections 5 and 6 detail the empirical study’s methodology and
results, followed by related work in Section 7, and concluding with a summary
and future work in Section 8.

2 The Identifier-Splitting Problem

Formally, an identifier ¢ is a sequence of characters, cg, ¢1, ¢o, ...c,,, where char-
acter ¢; represents an individual letter, digit, or special character. Empirically,
just over half of all identifiers include multiple, well-separated parts, referred
to as hard words [2]. For example, the identifier babel fish includes two hard
words: babel and fish. Hard words are identified entirely on the basis of orthog-
raphy, which provides hard evidence of the existence of a split. Two common
methods for separating hard words are the inclusion of special characters (such
as underscores or digits) and the use of camel casing. A camel case split exists
at the transition from lower case to upper case letters (e.g., getString Or setPoint).
Splitting into hard words is referred to as conservative split.

When all the hard words are words that can be found in a dictionary or are
common abbreviations, such as in getString or setGPS_Point, the identifier is split.
However, for some identifiers, separation into hard words alone is insufficient.
Specifically, some hard words are composed of multiple parts, referred to as
soft words. For example, the identifier hashtable_entry includes two hard words,
hashtable and entry. The hard word hashtable thus includes two soft words, hash
and table, while the second hard word includes the single soft word, entry.

The goal of identifier splitting is to split an identifier into its constituent
soft words such that each soft word is either a dictionary word, where its
meaning is obvious, an abbreviation, representing a single dictionary word, or
an acronym, representing several dictionary words. This task can be subtle
when the programmer has not used camel casing or underscores, and thus has
provided no hard evidence as to whether an identifier or hard word consists of
multiple words. For example, generalizing from the identifier GPSstate, which
suggests splitting on the transition from upper case to lower case, we would
errantly produce ASTV isitor from the identifier ASTVisitor. The problem of split-
ting a hard word can be divided into two sub problems: the mixed-case splitting
problem (e.g., ASTVisitor), and the same-case splitting problem (e.g., hashtable,
notype, databasefield, USERLIB, or COUNTRYCODE). The mixed-case splitting prob-
lem is particularly complicated by the use of abbreviations and acronyms (e.g.,
MAXstring or GPSstate).
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3 Identifier Splitting Techniques

An identifier splitting algorithm automatically separates an identifier into sub-
strings. Better splitting algorithms identify substrings that software engineers
associate with hard and soft words, that is, strings that the developer used to
express some concept. Although the goal of any splitter is to be 100% accurate,
in practice, some splitters perform better on particular types of identifiers. In
this section, we describe the salient features of the identifier splitting tech-
niques compared in our study, in historical order. These were the main iden-
tifier splitting techniques in existence at the time the study was performed.

Greedy. The greedy approach [11] uses a dictionary word list (from ispell),
a list of known abbreviations, and a stop list of keywords which includes pre-
defined identifiers, common library functions and variable names, and single
letters. After returning each hard word found in one of the three word lists
as a single soft word, the remaining hard words are considered for splitting.
The algorithm recursively looks for the longest prefix and suffix that appear
in one of the three lists. Whenever a substring is found in the lists, a division
marker is placed at that position to signify a split and the algorithm contin-
ues until the remainder is a dictionary word or contains no dictionary words.
Thus, the greedy approach is based on a predefined dictionary of words and
abbreviations, and splits are determined based on whether the word is found
in the dictionary, with longer words preferred.

Samurai. Inspired by mining potential expansions for abbreviations from the
source code [13], this approach [10] is based on the premise that strings com-
posing multi-word identifiers in a given program are frequently used elsewhere
in the same program or in other programs. Thus, string frequency is used to
determine identifier splits. Samurai mines string frequencies from source code,
building a program-specific frequency table and a global frequency table from
mining a large corpus of programs. The frequency tables are used in the scoring
function applied during both mixed-case splitting and same-case splitting. The
global and program-specific frequency tables are mined from hard words after
camel-case and non-alphabetic delimiters are used for splitting. The splitting
is performed as a recursive left-to-right scan, dampening the score for shorter
words.

GenTest. While Samurai focuses on the mixed-case splitting problem, Gen-
Test [15] focuses on the same-case splitting problem. Given a same-case term,
GenTest first generates all possible splittings. Assuming that hard words are
typically short, this potentially exponential number of splittings is much more
manageable in practice. Then, each potential split is scored (i.e., tested) and
the highest scoring split is selected. The scoring function works on the premise
that expanded soft words should be found co-located in the documentation or
in general text, thus a similarity metric is computed from co-occurrence data.
A set of metrics ranging over soft word characteristics, metrics using external



An Empirical Study of Identifier Splitting Techniques 5

information (dictionaries and information from non-source code artifacts), and
metrics using internal information (derived from the program itself or corpus
of programs) are computed and used by the scoring function. Some of the in-
ternal metrics are similar to Samurai’s frequency tables while dictionaries like
Greedy are used in the external metrics.

DTW. This approach [12] is based on the observation that programmers build
new identifiers by applying a set of transformation rules to words, such as
dropping all vowels or dropping one or more characters. Using a dictionary
containing words and terms belonging to an upper ontology, to the applica-
tion domain, or both, the goal is to identify a near optimal matching between
substrings of the identifier and words in the dictionary, using an approach in-
spired by speech recognition. The identifier is considered a signal of unknown
meaning described by a vector. Each dictionary word is then used as a sec-
ond (known) signal described by a feature vector. The algorithm performs a
dynamic time warping (DTW) of the two vectors to find the optimal match
between the vectors. The “time warp” part of the search allows the lengths of
the two vectors to differ and allows abbreviations to be accounted for in the
splitting domain. The optimal match is made by computing the local distances
and then choosing matches that minimize the overall distance using dynamic
programming.

INTT. The INTT approach [4] seeks to perform more accurate splitting than
previous techniques by using a specialized heuristic for handling identifiers
with digits as opposed to separating digits from the remaining text string early
in the splitting process. In particular, a large dictionary, a list of abbreviations
and acronyms, and a list of acronyms containing digits are used in dealing
with mixed-case splitting, where the greedy approach is adapted to better
split same-case hard words while reducing the original algorithm’s tendency to
over-split. The key modification is replacing greedy by two algorithms, greedy
and greedier, which can tokenize same-case identifiers without the requirement
that the identifier begin or end with a known word. The dictionaries include
120 words common in computing and Java.

Summary. Some identifier splitters use lexical clues more than others. For
example, INTT, has rules specific to dealing with digits. In contrast, DTW’s
use of a dictionary of solution- and domain-specific terms makes it more con-
ceptual. The other three techniques are similar in that they are predominantly
lexically-based approaches. Greedy, for example, favors long dictionary word
prefixes and suffixes. This leads it to split thenewestone as then ewe stone. The
observation that these three words do not often appear together led to Gen-
Test’s use of co-occurrence information. The words of the newest one co-occur
much more often. Rather than co-occurrence, Samurai exploits frequency data
in an attempt to identify words likely to be used in an identifier.
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4 Creating the Test Oracle

Any comparison of identifier splitting algorithms first requires a test oracle
(i.e., capturing ground truths in a gold set) of split identifiers. Creating the
test oracle is broken into three phases: the collection process, the organization
and analysis of the raw data, and finalizing the test oracle. The next three
subsections address these three phases.

4.1 Collecting Identifier Splitting Judgements

The collection process has two subparts: gathering a set of identifiers and
then gathering splitting judgements for those identifiers. The identifiers were
extracted from a source code corpus of 2,117 open-source programs ranging in
size from 1,423 to 3,087,545 LOC and covering a range of application domains
(e.g., accounting, operating systems, program environments, movie editing,
games, etc.) and styles (command lines, GUI, real-time, embedded, etc.). The
majority of the programs are Java codes randomly selected from a set of 9,000
open source Java programs downloaded from Source Forge. The remaining
Java, C, and C++ programs are also open source from a variety of sources.
These are described in prior studies [17,10,13].

In all, 434,392 unique C identifiers, 258,946 unique C++ identifiers, and
7,091,945 unique Java identifiers were obtained. For each language, 4,000 iden-
tifiers were randomly selected and then duplicates across languages were re-
moved. (This removal did not have a large impact on the sets. For example,
only 5% of the C identifiers were found in the C4++ collection.) Finally, the
remaining identifiers were randomly ordered.

The second part of the collection gathered splitting judgements from hu-
man annotators familiar with programming. Each judgement captures a set of
annotator-inserted splits where an annotator (who has experience! with pro-
gramming) inserted a split (denoted by a hyphen) into the hard words of an
identifier, creating two (or more) soft words. A judgement includes the origi-
nal identifier, the identifier as split by an annotator, the annotator’s self-rated
confidence, and a system-assigned random session ID. Note that from the orig-
inal and annotator-split identifiers the annotator-inserted splits can be easily
extracted. For example, the annotator who produced max-run-length from the
original identifier maxrunlength inserted two splits, creating a total of three soft
words.

Splitting judgements were gathered using a web-based Java applet that
first provided brief instructions and then gathered the annotator’s experience
level. Preferring to probe annotators’ untainted intuition and avoid bias, rather
minimal instructions were given, which appear in Appendix A. Experience was
solicited with the prompt:

1 Annotator experience ranged from second year students to practicing professionals with
almost fifty years of experience. The average experience was 13.1 years while the median
was 7.0 years and the standard deviation 12.8 years.
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Before you begin, please tell us the number of years you have been
programming.

This was the only personal information collected about each annotator. The
applet next presented the annotator with a sequence of identifiers, with a text
field pre-populated with the identifier split into hard words (using conservative
splitting), to minimize annotator workload. The annotators were instructed to
split the hard words further into their constituent soft words as they deemed
appropriate. In addition, they were asked to remove any automatically inserted
conservative splits that they deemed inappropriate. Recall that conservative
split separates an identifier into hard words by inserting splits between lower
to upper case letters, around sequences of one or more digits, and at under-
scores. After inserting additional splits between soft words (or removing hard
word splits), the annotators also rated their confidence on a scale from 0, for
no confidence, to 2, for high confidence. While an annotator could choose to
stop at any time, they were shown at most 100 identifiers before the applet
terminated.

One goal in creating the oracle was to collect sufficient identifier splittings
to support statistically significant conclusions. To collect a sufficient volume
of split identifiers requires reducing annotator workload to the extent possible.
Thus, annotators saw an isolated identifier, without its source code context.
In addition, the identifier was shown pre-split into hard words. This hopefully
reduces the annotator’s workload so that they can focus on identifying the
more challenging splits and helps avoid mistakes due to boredom. However,
pre-splitting hard words can potentially bias annotators in favor of default
hard word splits (this is considered in Sections 4.2.4 and 5.5). Furthermore,
showing the identifier in isolation potentially reduces annotation quality as
the original source is not made available. This trade-off between data set size,
annotator workload, and overall annotator quality represents a classic tradeoff
when building any similar oracle.

Annotator judgements are necessarily judgements by readers of the identi-
fiers, not the creators of the identifiers. To handle the potential ambiguity in
the judgements and its potential impact on how different identifier splitting al-
gorithms are judged, an identifier was promoted from receiving judgements to
the annotation complete status when it received three judgements with con-
fidence greater than zero, or five total judgements. By the end of the data
collection, 8,522 judgements of 2,733 promoted identifiers had been collected
during 112 different sessions. As some annotators returned for multiple ses-
sions, there were fewer than 112 annotators. The exact number of annotators
is unknown because human-subject rules do not allow the collection of identi-
fying information. Most judgements (86.2%) were of high confidence with only
3.8% being of zero confidence. As a result, 90.2% (2,466 of the 2,733 identi-
fiers) required only three judgements to promote. Of the remainder 7.7% (211)
received four judgements and 2.1% (56) five.
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No. of unique data for all data for annotations
splittings annotations  with non-zero confidence
1 2,020 74% 2,071 6%
2 624 23% 598 22%
3 86 3% 64 2%
4 2 0% 0 0%
5 1 0% 0 0%

Table 1 Number of unique splittings per identifier overall, and without zero confidence.

4.2 Raw judgement organization and analysis

Having collected the raw data, the second phase of the oracle construction was
to organize the gathered data. We organize the data based on the number of
unique splits, which refers to the cardinality of the set of all annotator splits
for a given identifier. For example, a uniquely split identifier has a singleton
set, and thus only one unique splitting. Table 1 presents a breakdown by the
number of unique splittings each identifier received. For example, the first row
includes identifiers for which all judgements agreed on a single splitting while
the second row includes those identifiers that received two distinct splittings.
The central columns labeled “data for all annotations” include all confidence
levels while the right columns labeled “non-zero confidence” exclude judge-
ments of zero confidence.

From the breakdown in Table 1, about three quarters of the identifiers re-
ceived unique, confident splittings. These identifiers, found in the first row of
the table, proved easier for annotators to consistently split. Notice that when
we remove zero-confidence judgements, the number of identifiers with a sin-
gle unique splitting increases. This is because annotators with low confidence
tended to introduce additional unique splittings for an identifier.

Data in the bottom two to three rows of the table, in particular under
the “all data” columns, represent identifiers with multiple and low confidence
splittings. For example, the two identifiers with four different unique splittings,
defarcangpnt and wcspbrk, and the one with five unique splittings, calcmandf-
pasmstart, are shown in Table 2 along with the correct splitting and an English
expansion of each identifier. The correct splitting was derived by examining
the source code directly (something not available to the annotators using the
applet) as well as conducting several internet searches. These identifiers are
clearly very challenging to correctly split.

The examples shown in Table 2 illustrate the complexity found in the last
two rows of the table. There is too much data summarized in the first few rows
to explain through examples; thus several key subsets are considered and com-
pared. The following analysis considers three subsets: UniqueSplit — identifiers
with one unique splitting (the first row), HC-Core — the highest-confidence
core of UniqueSplit, which contains those identifiers with one unique splitting
where all judgements received the highest confidence score, and 2UniqueSplits
— identifiers with two unique splittings (the second row).
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Unique Splits for Unique Splits for Unique Splits for
defarcangpnt wespbrk calcmandfpasmstart
def arc ang pnt x2 wc sp brk cal cmand fp asm start
def arcang pnt wc spbr k calc m and fp as m start
defarcang pnt wesp brk calc m and fp asm start
defarcangpnt wespbrk x2 calc mand fp as m start

calcm and fpasm start
Correct Splitting
def arc ang pnt w cs p brk calc mand f p asm start

English Expansion
define arc wide character string calculate Mandelbrot floating
angular point pointer break point assembler start

Table 2 Examples with multiple unique splittings. The first four characters of wcspbrk
illustrate how complex the splitting problem can become.

The remainder of this section considers four inspections of the data. The
first considers the size of three sets, 2UniqueSplits, UniqueSplit, and HC-Core,
and the second considers the language balance within these sets. Next the anal-
ysis turns to the splittings and investigates the percentage of hard words that
require further splitting overall and by language. Finally, the last subsection
considers those identifiers that had hard word splits removed by an annotator.

4.2.1 Subset Sizes

Of the 2,733 identifiers promoted by the applet from collection-of-annotations
status to the raw oracle data, UniqueSplit includes 2,071, which includes HC-
Core’s 1,758 identifiers, and 2UniqueSplits includes the 598 identifiers that
received two unique splittings. Unlike UniqueSplit, 2UniqueSplits provides a
space for understanding the aggressiveness of a splitting algorithm. More ag-
gressive approaches might prove better for techniques that incorporate nat-
ural language from non-source code sources such as the requirements. Here
introducing more splits often better matches the words found in the documen-
tation’s natural language. For example, 2UniqueSplits includes BSD_REGEX.
This identifier was split aggressively into BSD-REG-EX, which better matches
natural language phrases such as (BSD) regular expression. In contrast, the less
aggressive splitting BSD-REGEX by including REGEX, is likely closer to the
vocabulary found in documents more closely related to the code.

4.2.2 Language Balance

One of the goals of the oracle generation was to balance identifier language ori-
gin. The initial set started with 4,000 C, 4,000 C++, and 4,000 Java identifiers.
Ideally, this language balance would exist in the overall data set and the sets
UniqueSplit, HC-Core, and 2UniqueSplits. This is not guaranteed because the
identifiers were shown in a random order and only promoted after receiving
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All Identifiers UniqueSplit HC-Core 2UniqueSplits
Lang. total soft split total soft split total soft split total soft split
C 916 281 (31%) 682 173 (25%) 549 107 (19%) 406 234 (58%)
CH++ 906 240 (26%) 706 147 (21%) 618 137 (22%) 364 220 (60%)
Java 911 248 (27%) 683 142 (21%) 591 154 (26%) 426 250 (59%)
All 2,733 769 (28%) 2,071 462 (22%) 1,758 398 (23%) 1,196 704 (59%)

Table 3 Number of identifiers with annotator-inserted soft splits introduced: overall, by
language, and by level of uniqueness (UniqueSplit, HC-Core, 2UniqueSplits).

sufficient annotations. However, statistical balance was achieved in the overall
data. Formally, a x? proportions test finds no difference in the proportion of
identifiers from each of the three languages. This is also true in UniqueSplit
and its high-confidence core, HC-Core. However, it is not true for 2UniqueS-
plits where there are fewer C++ identifiers (p < 0.0001). Thus, there is some
aspect of C++ identifiers that makes their splitting more consistent. Note that
the lower consistency does not come from C++ identifiers dominating the 64
identifiers receiving three or more unique splittings, where 30 are C, 19 C4++,
and 15 Java. This difference means that care should be taken when drawing
conclusions about the uniformity of the C++ identifiers from 2UniqueSplits.

4.2.8 Need for Splitting

Having attained reasonable balance across the three languages, the next ques-
tion deals with the need to split identifiers beyond the conservative splitting
into hard words. This question is first considered overall and then broken
down by language to determine if there are any language-influenced trends. In
both cases a separate answer is provided for all identifiers, UniqueSplit, and
2UniqueSplits.

The results are summarized in Table 3, which presents counts and percent-
ages of the number of identifiers with annotator-created soft words. From the
last row in the table the overall percentage of identifiers where at least one hard
word was split into soft words is 28% for all identifiers, 22% for UniqueSplit,
23% for HC-Core, and 59% for 2UniqueSplits. Note that each identifier from
2UniqueSplits is counted twice (once for each unique split). One of the two
must differ from the original, so the percentage modified will always be greater
than 50%. This makes comparisons involving 2UniqueSplits meaningless.

The next comparison considers the average confidence for identifiers that
went unchanged compared to those into which annotators inserted one or more
splittings. As seen in Table 4, the unchanged splitting always received a higher
average confidence than the changed splitting. This difference is statistically
significant for all the data and those identifiers receiving one or two unique
splittings (p < 0.0001 — unless otherwise stated p-values are from student’s
t-test). It is not significant for the 86 identifiers with three unique splittings or
the three identifiers having four or five splittings. The lower confidence when
inserting a split may indicate a hesitancy of annotators to make changes. If
this is the case then the oracle underestimates the need for splitting.
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Unique comparison with identifier as shown
splittings all unchanged changed t-test(unchanged, changed)

all 1.82 1.90 1.66 < 0.0001
1 1.91 1.94 1.78 < 0.0001
2 1.66 1.72 1.60 < 0.0001
3 1.35 1.40 1.32 p=0.36
4 0.50 0.67 0.43 N/A
5 0.80 N/A 0.80 N/A

Table 4 Mean judgement confidence by number of unique splittings.

Turning to the by-language aspect of the question, the proportions of the
identifiers for each language requiring additional splitting were compared. For
2UniqueSplits there is no statistical difference. UniqueSplit hard words from C
identifiers receive marginally more splittings than C++ or Java (p = 0.044 and
p = 0.0045). Finally, considering all identifiers, hard words from C identifiers
received more splittings than C++ (p = 0.048), but not Java (p = 0.104).
Given the age and history of C programming this is an expected result [17].

4.2.4 Remowved Splits

The final inspection of the data considers hard word splits removed from an
identifier by an annotator. In all, 73 identifiers had a split removed. As this is
only 2.7% of the identifiers, it is not a common occurrence. Just over half (41)
of these identifiers involved digits. The hard splitting rule for digits separates
strings of digits from surrounding letters. This correctly splits an identifier such
as err2string into the three hard words err 2 string, which corresponds to the
natural language phrase error to string. Other cases should only be split on one
side such as play3DMovie (break before) and mpegéplayer (break after). Finally,
some require no spits such as the V4L2 in V4L2_CAP_TIMEPERFRAME. As the
number of special cases involved is small, in practice, it may be appropriate
to handle these few cases using a small dictionary of digit-involving acronyms
such as mp3, p2p, and 2D (as is done by INTT).

For identifiers not involving digits, the annotator’s removal always violated
the conservative splitting rules used for the default hard word splitting. For
example, the underscore in CTL_.HOME leads to the two hard words CTL and
HOME, which were joined together by an annotator producing CTLHOME.
A similar removal was made replacing init Image Buffer (from the identifier
initlmageBuffer) with init ImageBuffer, which violates the conservative splitting
rules.

4.3 Finalizing the Oracle

Finally, from the raw data it is possible to derive several oracles that range
in how demanding they are. For example, accepting any split that is found in
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the raw data is very permissive. A more strict requirement would be to accept
only the split that had the highest confidence sum or average confidence.

To capture the full range of complexity found in the raw data without
requiring the challenge of dealing with multiple correct answers, the oracle
used in the following evaluation includes only those splittings with the highest
majority-weighted confidence. To calculate this set, the confidence scores for
each split were summed. Identifiers with multiple splits that had the same sum
were excluded from the oracle. In total 70 identifiers were removed because
of confidence sum ties. The resulting oracle of 2,663 identifiers can be used to
compare current and future splitting algorithms. In addition, we have made
the raw data available so that future researchers can systematically choose any
subset that suits their curiosity.

5 Empirical Study Methodology

Our goals in empirically studying identifier splitting algorithms are to

identify the identifier splitting algorithm that provides the best overall

effectiveness

— determine how each technique’s effectiveness varies among identifiers from
applications written in different programming languages and in different
forms

— identify key similarities and differences in how different identifier splitting
algorithms perform in different splitting situations

— determine the relative impact of dictionaries and frequency lists on splitter

performance, irrespective of splitting algorithm

One cannot predict the kinds of identifiers that may exist in a given set of
applications that the splitters are analyzing. Thus, we investigate the overall
effectiveness of the approaches, and then perform deeper analysis into how they
vary among different programming languages and different forms of identifiers
(those following camel case, those multiword identifiers with all the same case,
etc.). We also examine the identifiers that all splitters successfully split, those
that only a subset of splitters correctly split, and those that no technique
correctly splits.

In addition, the Greedy, GenTest, and Samurai splitting techniques use
similar dictionary and frequency word lists, although they used different lists in
their original publications. To study the effect of word list variations on splitter
performance, independent of splitting algorithm, we use a consistent set of
word lists that are not necessarily the lists used in training the approaches in
their original publication, as described in Table 5.

5.1 Identifier Splitters

In addition to the splitters introduced in Section 3, the experiments include
conservative splitting as a baseline, to put the results of the more advanced
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Splitting Algorithm Dictionary Frequency List
Conservative Split
DTW [12]
INTT [4]
GenTest [15] Small3, Medium®?, Large® C, C4++, Java, All
Greedy [11] Small, Medium, Large
Samurai [13] C, C++, Java, All

Table 5 Identifier splitter configurations studied. For GenTest, Greedy, and Samurai, we
investigated the degree to which dictionary size (small, medium, large) and language-based
frequency list training (C, C++, Java) affects splitter performance. These lists were held
constant across all three techniques, and are not necessarily the same lists evaluated in the
original publications.

splitters into perspective. The conservative splitting algorithm is the same as
the one used to split identifiers into the hard words shown to annotators by
the applet.

Including conservative split, we compared 22 different identifier splitter
configurations based on splitting algorithm, dictionary, and frequency list
trained by programming language®. Not all the splitting algorithms use every
configuration of dictionary or frequency list. Table 5 shows the splitter con-
figurations used in the study. Other than conservative split, each is followed
by a citation to the original publication of the algorithm, which discusses to
varying degrees the pros and cons of alternate configurations. Other than the
variations described in Table 5, each algorithm was run in its default settings.
DTW has just one configuration. INTT was used in its default configuration al-
though it is possible to replace its dictionaries and abbreviation lists. GenTest
has 12 configurations, Greedy 3, and Samurai 4. In addition to the head-to-
head comparisons of splitters, we performed both an intra-technique analysis
to determine the most competitive configurations for GenTest, Greedy, and
Samurai (sometimes selecting multiple configurations of a particular splitter),
and then compared the most successful configurations in an inter-technique
analysis.

5.2 Subject Identifiers

As subjects, we use the oracle outlined in Section 4, which consists of 2,663
identifiers with 6,912 annotator-inserted splits. The identifiers can be analyzed
in two different units: per-identifier and per-split. Per-identifier analysis con-
siders each identifier as a single unit, with zero or more splits. Per-identifier

2 Information concerning all of these splitters as well as how each split the identifiers
in the oracle can be found in the replication package at www.cs.loyola.edu/~lawrie/
id-splitting-data.

3 A dictionary with 50,276 entries defined by the concatenation of Kevin Atkinson’s
SCOWL word list sizes 10 thru 35 [1]

4 A dictionary with 98,569 entries defined by the concatenation of Kevin Atkinson’s
SCOWL word list sizes 10 thru 50

5 A dictionary with 479,625 entries distributed by Red Hat 4.1.2-14 as /usr/share/dict
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Type of Split \ C C+++  Java \ Total
Conservative Split (CS) 746 816 833 2396
Same-Case Split (SC) 252 165 155 573
Acronym Split (ACR) 27 82 91 201
Alternating Case Split (ALT) 3 7 6 16

Table 6 Number of identifiers containing different types of splits in the test oracle, by
programming language.

analysis provides information about how well an identifier splitting technique
will perform when splitting an arbitrary identifier in practice. However, it is
possible that a splitting technique will make mistakes on certain types of splits
more than others, which is obscured when analyzing the identifier as a whole
(since a single identifier may contain different types of splits). For example, a
technique may be very good at splitting acronyms in identifiers like XMLTerminal
or aRGBMap, but not as good at splitting sections of identifiers with no case
difference, like strcpy or containerinfo. To better understand these differences, we
also perform a per-split analysis of the identifiers by analyzing the following
subsets of splits, where ‘a’ and ‘u’ are used to represent a lower case letter, ‘A’
and ‘U’ to represent upper case, and ‘9’ to represent digits:

Conservative Split (CS): splits between aA, a_a, a9, 9a

Same-Case Split (SC): splits between aa, splits AAU — A-AU, and AAS
— A-A$ (where $ represents the end of the identifier)

Alternating-Case Split (ALT): splits between Aa

Acronym Split (ACR): splits AAu — A-Au

In addition to analyzing the identifiers as a whole, we also split the iden-
tifiers into different subsets to better understand the differences between the
various techniques. At the whole-identifier level, we separately analyze iden-
tifiers with and without digits, when the annotator inserted a split beyond
conservative split, and when the identifier had no split in the oracle. Table 6
shows the number of types of splits for the test oracle, separated by program-
ming language of the identifiers’ source code.

5.3 Measures

For the per-identifier analysis we use four measures: accuracy, precision, recall,
and F-measure; for the per-split analysis we use a modified version of accuracy.

Per-identifier accuracy is a binary measure, one if the splitter output is iden-
tical to the oracle, zero otherwise. The mean accuracy approximates the like-
lihood of an identifier splitter perfectly splitting an identifier. Formally, for
a given identifier 4, a splitter s and an oracle o, we define the per-identifier
accuracy to be:
o 1, 8(2) = o(i)
accuracyy(i) = {07 s(i) # o(i)
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In addition to accuracy, we calculate variations on precision and recall
adapted for the identifier splitting problem. Ideally, we would like to define
precision and recall measures in terms of the number of correctly inserted
splits. However, such definitions make identifiers with no splits difficult to
calculate, since the correct number of splits would be 0. To avoid this scenario,
we approximate the number of correctly split words by adding one to the
number of inserted splits. Thus, for a given splitting of an identifier ¢ by
splitter s, we define precision to be

1+ tps(i)
1+ n4(7)

where tps is the number of correctly inserted splits and n,(7) is the total
number of splits inserted by splitter s for identifier ¢. Intuitively, precision
approximates the degree of over-splitting by a technique, where low precision
implies that a technique tends to over-split. Similarly, for a given splitting of
an identifier ¢ by splitter s, we define recall to be

precision(i, s) =

1+ tps()

1+ ny(7)

where tp, is the number of correctly inserted splits and n, (i) is the total
number of splits inserted by the oracle, o, for identifier ¢. The F-measure
uses a harmonic mean to combine precision and recall and is high only when
precision and recall are similarly high.

recall(i, s) =

Per-split accuracy captures the percent of correct splits, regardless of how the
splits are distributed across all identifiers (in contrast, per-identifier measures
depend on the distribution of splits within an identifier). Per-split accuracy is
the total number of correct splits inserted by the splitter across all identifiers,
divided by the total number of unique splits inserted by both the tool and
the oracle. Formally, for an identifier splitter s, the set of all splits inserted
by the splitter, S, and the set of all splits inserted by the oracle, O, we define
per-split accuracy to be:

_lons| tps
T |OUS| T n,+ns —tps

accuracyps(s)

where tp; is the number of correctly inserted splits, n, is the total number of
splits inserted by the oracle, o, and n, is the total number of splits inserted
by splitter s. We define per-split accuracy not just in terms of the number
of oracle splits, but also the number of tool-inserted splits, so we can fairly
compare the accuracy of greedier techniques that tend to over-split. If we only
considered oracle splits, a technique that inserted all possible splits would have
better accuracy than a technique that inserted fewer splits in the wrong places.

The purpose of per-split accuracy is to better understand how each splitter
handles particular types of splits that may not occur in every identifier, such
as same-case, etc. The above formula can be modified to apply only to a subset
of splits, such as acronyms, same-case, splits occurring only in identifiers that
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contain digits or a particular language, etc. Because this measure is a total
calculated once over the entire data set (or per subset of type of split), rather
than a mean, it is impossible to evaluate statistical significance for per-split
analysis.

5.4 Analysis Methodology

We analyzed the per-identifier results using a combination of figures and statis-
tics. First, we created box plots for each measure and configuration to get a
high level view of the data. Next, we used the ANOVA F-Test [21] to deter-
mine if means of any of the measures were significantly different. Then we
used Tukey’s Honest Significant Difference [21] test to evaluate the degree
and direction of the mean differences. Finally, we updated the boxplots by
annotating them with significant difference information.

We define our analysis into two phases: intra-technique and inter-technique
analysis. During intra-technique analysis, we analyzed differences within the
configuration of each technique as well as selecting the most competitive con-
figurations for the inter-technique analysis phase. We selected the most com-
petitive techniques using means alone in the absence of significant differences.
Next, in the inter-technique analysis phase, we comparatively studied how the
splitters performed relative to one another.

When analyzing paired subsets of the identifiers for further comparison,
such as identifiers with and without annotator-inserted splits, we used the
Wilcoxon-Mann-Whitney u-test (a.k.a. the Wilcoxon rank sum test) [21] to
determine if the accuracy for the subsets were significantly different for each
technique. The u-test is a non-parametric alternative to the independent two-
sample t-test that does not require normally distributed data.

5.5 Threats to Validity

We attempted to ensure generalizability of the results by randomly selecting
identifiers from programs written in three different languages: C, C++4, and
Java. However, the results may not generalize to all identifiers in these lan-
guages or identifiers written in other languages. To obtain annotations of as
many identifiers as possible in the oracle, the identifiers were presented to the
annotators out of their source code context and thus the human annotators
did not have contextual information that would be available to a programmer
reading the actual source code. However, presenting the identifiers out of con-
text enabled our human annotators to give us many more identifier splitting
judgements, so our set could reflect a wider variety of identifiers. Future work
could include a hybrid design that analyzes the effects of source code context
on identifier split accuracy.

The human annotators were all volunteers who are assumed unlikely to
have direct experience with any of the identifiers seen (based on the sheer vol-
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ume of the source code considered). However, knowing where to insert iden-
tifier splits can be an ambiguous and subjective task. This is especially true
when dealing with compound words, abbreviations of common concepts, and
digits. The annotators are judging identifiers that some other developer cre-
ated to express a concept. They do not know what the developer was trying
to express or have that same context. We have tried to limit this threat by
obtaining at least three judgements per identifier with confidence greater than
zero. Sometimes, the annotators kept together substrings, such as SWTSwing,
as one concept. For some splitters, especially lexical-based ones, this causes
the splitter to over-split. For instance, there were 38 such cases where only CS
matched the annotators. In these situations, the annotators agreed that the
identifier represents a single concept.

Lastly, care must be taken in interpreting the study results, as the oracle
captures a more conceptual human interpretation of identifier name splitting
that is inherently challenging to more lexically-based splitting algorithms. For
example, this might manifest itself in a splitter over-splitting relative to an-
notators. This difference may favor some splitters over others and thus under-
scores the complexities of providing a level playing field when performing such
comparisons.

6 Empirical Results

This section begins with the intra-technique results that indicate which config-
urations of the techniques give the best overall performance. We then describe
the inter-technique results from comparing the performance among the differ-
ent techniques overall and in detailed subsets. Finally, we summarize the main
conclusions from the study.

6.1 Intra-Technique Analysis

Table 7 shows the mean accuracy, precision, recall, and F-measure, as well as
standard deviations for each configuration evaluated in the study. The tech-
niques are ordered by the mean accuracy of the best configuration, and the
configurations selected for inter-technique analysis are starred and highlighted.

From this table, we can see that the configuration can have a significant
impact on a technique’s performance. For instance, Greedy can take different
dictionaries. Our results show that a large or small dictionary provides signifi-
cantly better accuracy, precision and F-measure with no difference in recall as
compared to using a medium dictionary. Although this may seem like an un-
intuitive result, the medium dictionary adds a number of short abbreviations
that Greedy finds in identifiers. Although the large dictionary also contains
these short abbreviations, it adds technical jargon, which offsets the misdirec-
tions introduced by the medium dictionary. Thus, for inter-technique analysis,
we use Greedy with a large dictionary (Greedy_lg) and Greedy with a small
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Technique & Configuration | Acc sd P sd R sd F sd
Java 0.82 0.38 | 0.97 0.10 | 0.96 0.11 | 0.96 0.10
Samurai All* 0.82 0.38 | 097 0.10 | 096 0.12 | 0.96 0.10
C 0.81 0.39 | 098 0.08 | 0.95 0.13 | 0.96 0.10
C++* 0.81 0.39 | 098 0.08 | 0.95 0.13 | 0.96 0.10
Large, C4++ 0.80 0.40 | 0.97 0.09 | 096 0.12 | 0.96 0.10
Large, All* 0.80 0.40 | 0.97 0.09 | 096 0.12 | 0.96 0.10
Medium, All 0.80 0.40 | 0.97 0.09 | 096 0.12 | 0.96 0.10
Medium, C++ 0.80 0.40 | 097 0.09 | 096 0.12 | 0.96 0.10
Large, C 0.79 041 | 097 0.09 | 096 0.12 | 0.96 0.10
GenTest Medium, C 0.79 041 | 097 0.09 | 096 0.12 | 0.96 0.10
Small, All 0.77 042 | 096 0.10 | 0.96 0.13 | 0.95 0.10
Small, C++ 0.77 042 | 096 0.10 | 096 0.13 | 0.95 0.10
Small, C 0.76 043 | 096 0.10 | 0.96 0.13 | 0.95 0.10
Medium, Java* | 0.74 0.44 | 0.95 0.12 | 0.97 0.11 | 0.95 0.10
Large, Java 0.73 045 | 094 0.12 | 097 0.12 | 0.95 0.11
Small, Java 0.69 046 | 094 0.12 | 096 0.12 | 0.94 0.11
INTT* 0.75 043 | 0.98 0.09 | 0.93 0.14 | 0.95 0.11
Conservative Split (CS)* 0.71 045 | 1.00 0.01 | 0.90 0.18 | 0.94 0.12
DTW* 0.68 047 | 093 0.15 | 094 0.14 | 0.93 0.14
Large* 0.60 0.49 | 0.89 0.16 | 0.97 0.09 | 0.92 0.12
Greedy Small* 0.56 0.50 | 0.88 0.16 | 0.97 0.09 | 0.92 0.12
Medium 0.51 0.50 | 0.86 0.17 | 0.97 0.09 | 0.90 0.12

Table 7 Mean per-identifier accuracy (Acc), precision (P), recall (R), F-measure (F), and
standard deviations (sd) for each configuration, ordered by best mean accuracy within each
technique. * Configurations selected for inter-technique analysis.

dictionary (Greedy_sm). Similar to Greedy, GenTest can be configured with
different dictionaries and frequency lists. Since the combination that provides
the highest precision is a large dictionary with the union of all frequency lists,
for inter-technique analysis we use GenTest_lg all as one configuration and
GenTest_med_Java as the configuration providing the highest recall.

For Samurai, the main configurable factor is the frequency list. In compar-
ing C, C++4, Java, and the union of these frequency lists, there are tradeoffs
between precision and recall. For inter-technique analysis, we use Samurai with
the C++ frequency list (Samurai_cpp), which provides significantly higher pre-
cision. Although the Java frequency list provides significantly higher recall, for
inter-technique analysis we also chose Samurai with the union of all frequency
lists (Samurai_all) because it has very similar recall and this choice makes it
more consistent with the configurations of the other techniques. The remain-
ing techniques (DTW, INTT, CS) do not require any external dictionary or
frequency list, and thus only one configuration was considered. It is possible
with INTT for a user to replace the tool’s dictionaries and abbreviation lists.

6.2 Overall Inter-Technique Analysis
Figure 1 shows box plots of the accuracy, precision, recall, and F-measure

results for the nine techniques in the inter-technique comparison. Each data
point represents the accuracy, precision, recall, and F-measure calculation,
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1 Overall Inter-Technique Analysis Results. Techniques labelled with the same line

calculate the mean, median, and quartiles for each splitting technique. The

box represents the inner 50% of the data, the heavy middle line represents the
Figure 1(a), aside from a few outliers, both versions of Samurai, GenTest_lg,

and INTT have perfect accuracy for more than 75% of the identifiers in the

respectively, for a single identifier, with a total of 2,663 data points used to
median, the plus represents the mean, and ‘o’ indicates outliers. As shown in

are not significantly different.

Fig.
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study. Because accuracy is a binary measure, the mean accuracy captures
what percentage of the time each identifier splitter correctly splits an entire
identifier.

In each figure, the lines under the technique labels are used to indicate
statistical significance: techniques connected by a line are not significantly dif-
ferent at o = 0.05. For example, in Figure 1(a), both versions of Samurai
and GenTest_lg perform similarly, and outperform the remaining six tech-
niques with statistical significance (o = 0.05). Although GenTest_med is not
significantly different from INTT or ConservativeSplit (CS), it significantly
outperforms DTW and the greedy techniques. Likewise, INTT significantly
outperforms CS, DTW, and the greedy techniques for accuracy.

The approach that yields the highest precision is CS, followed by Samurai
and INTT. On the other hand, for recall, Greedy and GenTest appear to be the
best performing systems. If the goal is to consider both recall and precision in
terms of accuracy and F-measure, then GenTest_lg and Samurai_all perform
the best. While INTT is never the best in terms of raw mean, it is often
not significantly different from Samurai or GenTest. Greedy and CS are not
competitive unless the focus is only on recall or precision, respectively.

6.3 Detailed Inter-Technique Analysis

This section explores the results when all or none of the techniques cor-
rectly split the identifiers and when only one technique correctly splits iden-
tifiers. There are 656 (25%) identifiers that were correctly split by all the
techniques. These identifiers predominantly involve camel case, underscore,
and cases where the individual split strings are common, well-known words.
For example, identifiers such as ASE_KeyMESH_ANIMATION, GetFrontWindowOfClass,
CERT _DecodeCertificatePoliciesExtension, and AddBorderPaddingToMaxElementSize are all
easily split by camel casing and consist of well-known or frequently-occurring
words in source code. In addition, there are 43 cases where no technique cor-
rectly splits the identifier, all due to same-case splits. Although each technique
has mechanisms to handle same-case splits, these examples involve uncommon
words that are unlikely to occur in dictionaries or frequency lists, making them
especially challenging. For example,

PL.strdup (PL-str-dup),

NS_UNICODETOMACROMAN_CONTRACTID

(NS-UNICODE-TO-MACRO-MAN-CONTRACT-ID), and

COMPUTIME_FORMAT (COMPU-TIME-FORMAT).
However, some identifiers such as

audio_strerror (audio—str—error) and

IID_IHTMLElementCollection (IID—I—HTML—EIement—CoIIection)7
which contain commonly occurring words, are also not correctly split by any
technique.

We examined cases where only a single technique correctly splits the iden-

tifier. For all techniques except DTW, there were only a handful of such cases
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Technique All C CH++ Java
Samurai_all 0.82 | 0.79 0.85 0.83
Samurai_cpp 0.81 | 0.77 0.85 0.81
GenTest_lg_all 0.80 | 0.78 0.82 0.78
INTT 0.75 | 0.70 0.78 0.78
GenTest_med_java 0.74 | 0.75 0.77  0.71
Cs 0.71 | 0.68 0.72 0.72
DTW 0.69 | 0.75 0.66  0.65
Greedy_lg 0.60 | 0.59 0.66  0.54
Greedy_sm 0.56 | 0.58 0.59 0.51
Count 2663 885 887 891
% of data 100% | 33% 33%  33%

Table 8 Mean per-identifier accuracy for each programming language subset.

and no obvious pattern of characteristics of those examples emerged. How-
ever, DTW is the only correct technique for 24 identifiers, due to a carefully
handcrafted dictionary which enables splitting of same-case identifiers with
system-customized abbreviations such as req, imap, num, cpy, ffe, id, and cpu.
In addition, there are 38 cases where only CS correctly splits the identifier.
These involve identifiers that contain soft words beginning with multiple con-
secutive upper case letters, such as XPath, SWTSwing, and XShm. Multiple an-
notators have chosen to view each of these as single concepts (i.e., compound
words) and kept them together, while the other techniques chose to split them
into X-Path, SWT-Swing, and X-Shm.

6.4 Subsets by Programming Language

Tables 8 and 9 show the per-identifier accuracy, precision, recall, and F-
measure results for each programming language subset of identifiers. Samurai,
INTT, and CS are less accurate for C than for identifiers from other languages.
We hypothesize this is due to the fact that they were predominantly designed
for Java. In addition, both versions of Samurai perform better on C++ rather
than Java identifiers, which we suspect is due to better performance on iden-
tifiers containing acronym and same-case splits for these languages. GenTest
performs about the same on all languages, performing slightly better on C++.
In our per-split accuracy analysis, we find that INTT performs the best on
C++ identifiers overall, although performing much worse on same-case splits
for C++ as compared to the other languages and techniques.

Although not the best performing technique on C identifiers, DTW is much
more accurate for C identifiers than for other languages. This is due to two rea-
sons. First, DTW uses a customized dictionary for C, which includes system-
like abbreviations that are common in C programs, allowing DTW to correctly
handle same-case splits. Because same-case splits are more prevalent in the C
identifiers than the other two languages in the oracle, we believe this accounts
for DTW’s increased performance on C. The per-split data shows that DTW
has 50% accuracy on same-case identifiers for C, and just 40% and 30% accu-
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Technique Measure All C CH++ Java
0.97 | 0.96 0.98 0.98
0.96 | 0.94 0.97 0.97
0.96 | 0.95 0.97 0.97
0.98 | 0.98 0.98 0.98
0.95 | 0.93 0.96 0.96
0.96 | 0.94 0.97 0.97
0.97 | 0.97 0.97  0.96
0.96 | 0.94 0.96 0.98
0.96 | 0.95 0.96 0.96
0.98 | 0.97 0.99 0.98
093 | 091 0.94 0.95
0.95 | 0.93 0.95 0.96
0.95 | 0.95 0.95 0.94
0.97 | 0.96 0.97 0.98
0.95 | 0.95 0.95 0.95
1.00 | 1.00 1.00 1.00

Samurai_all

Samurai_cpp

GenTest_lg-all

INTT

GenTest_med_java

CS 0.90 | 0.88 0.90 0.91
0.94 | 0.92 0.94 0.95
0.93 | 0.94 0.92 0.92
DTW 0.94 | 0.96 0.91  0.95
0.93 | 0.95 0.91 0.93
0.89 | 0.89 0.91  0.86
Greedy_lg 0.97 | 0.96 0.98 0.98
0.92 | 0.91 0.94 0.91
0.88 | 0.89 0.90 0.86
Greedy_sm 0.97 | 0.96 0.98 0.98

S l=Bav| Bes li=vEav] Res li=viiav] Re> li=v liav] R [i=v ] Re>[i=viine] > T=viine] e =viiae] e T=viiae!

0.92 | 0.91 0.93 091

Table 9 Mean precision (P), recall (R), and F-measure (F) for each programming language
subset, ordered by mean overall accuracy.

racy for C++ and Java, respectively. Secondly, DTW does not take advantage
of camel case rules, causing it to perform poorly on C++ and Java identifiers,
where conservative splitting is prevalent.

Greedy has poorer per-identifier precision and accuracy for Java than C
and C++. We believe this is due to Greedy’s poor performance on same-case
Java identifiers. In terms of per-split accuracy analysis, Greedy_lg has just 30%
accuracy for Java same-case splits, whereas it achieves 33% and 40% accuracy
on same-case splits for C and C++, respectively.

6.5 Subsets by Form of Identifier

In this section we analyze the results in different contexts, including identifiers
with and without digits (Digit and NoDigit, respectively). We analyzed when
the annotator made no changes beyond the conservatively split hard words
(NoChg), and analyzed when the annotator either removed hard word splits
or inserted additional soft word splits (Change). Finally, we analyzed when
the identifier had no split in the oracle (NoSplit vs Split). Table 10 shows the
relative accuracy of each technique for these subsets.
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Technique / Subset All | NoDigit Digit | Split NoSplit | NoChg Change
Samurai_all 0.82 0.82 0.83 0.83 0.61 0.94 0.54
Samurai_cpp 0.81 0.81 0.83 0.81 0.81 0.95 0.48
GenTest_lg_all 0.80 0.80 0.80 0.79 0.88 0.87 0.61
INTT 0.75 0.79 0.29 0.76 0.67 0.91 0.39
GenTest_med_java 0.74 0.74 0.75 0.74 0.77 0.79 0.63
CS 0.71 0.70 0.78 0.70 1.00 1.00 0.00
DTW 0.68 0.68 0.59 0.68 0.54 0.69 0.64
Greedy_lg 0.60 0.62 0.31 0.61 0.26 0.61 0.56
Greedy_sm 0.56 0.59 0.16 0.57 0.38 0.55 0.60
Count 2663 2483 180 | 2594 69 1887 776
% of data 100% 93% 7% 97% 3% 1% 29%

Table 10 Mean per-identifier accuracy for subsets of identifiers.

As expected, most of the techniques perform worse when the human ora-
cle inserts a split beyond CS (Change), as these are the more difficult cases
to split correctly. In fact, some of the highest performing techniques (Samurai
and INTT) have the worst performance on the Change set, except for GenTest.
This is likely because Samurai and INTT were originally developed on Java,
whereas GenTest was originally developed on C, C++, and Java. All of the
techniques compared in this study perform worse on the Change set with sta-
tistical significance, except for Greedy_sm, which performs significantly better
(o = 0.05, u-test). It is interesting to note that DTW has the best overall
accuracy for these difficult cases. Perhaps a hybrid approach using camel case
followed by DTW would yield better results. The Change set comprises 30%
of the identifiers in our test set, making it an important subset for further
study.

The NoSplit set contains the cases where the annotators inserted no splits
(i.e. the identifier consisted of a single atomic concept), and serves to evaluate
how greedy each technique is and the degree of false positives. As expected,
the greedy techniques perform poorly on this set, with Samurai_all, DTW,
and INTT also significantly less accurate on this set (o = 0.05, u-test). The
exception is GenTest and Samurai_cpp, the two techniques trained on non-
Java identifiers. CS gets 100% accuracy on this set since it inserts no splits
and the oracle contains no splits. Note that there are only 69 identifiers (3%)
with no splits in our test set.

Finally, we also analyze the performance of the identifiers with and with-
out digits. Digits are particularly challenging for splitting since determining
whether a digit should be tokenized with a word as a concept can vary. For
example, it may make sense to leave mp3 together, but not convert 2 string.
Thus, we have separated out this analysis to better help researchers select the
appropriate splitting technique based on the needs of their data. Note that
there are only 180 identifiers (7%) containing digits in our test set. Although
Samurai, GenTest, and CS separate out all digits by default, they have the
highest accuracy on this subset (between 75-85%). In contrast, INTT, DTW,
and Greedy perform significantly worse on the subset of identifiers containing
digits (o = 0.05, u-test).
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Technique / Split Type All CS ALT ACR SC
Samurai_all 0.91 1.00 0.25 0.82 0.38
Samurai_cpp 0.91 1.00 0.06 0.81 0.32
GenTest_lg_all 0.90 1.00 0.21 0.79 0.37
INTT 0.87 0.98 0.21 0.80 0.19
GenTest_med_java 0.88 1.00 0.31 0.80 0.34
Cs 0.86 1.00 0.00 0.00 0.00
DTW 0.81 0.93 0.07 0.73 0.39
Greedy_lg 0.77 0.98 0.12 0.83 0.24
Greedy_sm 0.78 0.96 0.18 0.82 0.29
Count 6912 5969 16 206 721
% of data 100.0% | 86.4% 0.2% 3.0% 10.4%

Table 11 Per-split accuracy, ordered by mean overall accuracy, for all splits (All), con-
servative splits (CS), alternating-case splits (ALT), acronym splits (ACR), and same-case
splits (SC).

6.6 Per-Split Analysis

While Table 6 shows the number of identifiers containing each type of split
and Tables 9 and 10 report mean per-identifier accuracy across all identifiers,
Table 11 shows the overall per-split accuracy of each technique for each type
of split, regardless of how the splits are distributed among the identifiers.

All the techniques do extremely well on CS. Although DTW does not use
letter casing in its split analysis, it still has 93% accuracy for the CS splits
across all identifiers. The next most prevalent split case is SC, representing 10%
of the data. All the techniques uniformly perform poorly on same-case situa-
tions, all below 40% accuracy. However, DTW, Samurai_all, and GenTest_lg_all
perform the best overall for SC. Although mixed-case (ALT + ACR) comprises
just 3% of the splits in our test set, Samurai_all, GenTest, and INTT all per-
form competitively.

6.7 Summary

From this evaluation, we observe that a splitter’s configuration can have a
significant impact on performance. We observed that 25% of the identifiers are
correctly split by all techniques. These identifiers predominantly involve camel
case, underscore, and cases where the individual split strings are common,
well-known words. Across all the techniques, we found that in terms of per-
identifier accuracy and F-measure, GenTest and Samurai appear to perform
the best overall. While INTT is never the best in terms of raw mean, it is
often not significantly different from Samurai or GenTest. Greedy and CS
are not competitive unless the focus is only on recall or precision, respectively.
DTW would likely perform better across all identifiers if it pre-split hard words
following camel case rules.

In terms of programming language, Samurai, GenTest, and INTT perform
the best for C++4 and Java identifiers. These three techniques also perform
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the best when splitting C identifiers, with DTW also doing well, and CS and
Greedy performing particularly poorly on this subset.

For identifiers that are difficult to split (have splits beyond conservative
splitting), DTW, GenTest, and Greedy with a small dictionary perform the
best overall. For same-case splits across all identifiers, DTW, Samurai, and
GenTest perform the best. Given that GenTest is also one of the most accurate
techniques, it would make a good overall splitter for hard-to-split code bases.
For codes that more closely follow naming conventions, Samurai’s slight edge
in overall accuracy might be better suited.

There were 43 identifiers that were not split correctly by any technique (all
due to same-case splitting mistakes). This observation motivates considering
a hybrid approach that can call on the other approaches. In the ideal scenario,
the hybrid algorithm would produce the correct splitting if any of the splitters
it can call upon produced the correct splitting. Such a hybrid splitter would
only be wrong in 43 of more than 2600 cases (less than 2%). Thus, for example,
it might be interesting to train a genetic algorithm to select between the
different splits in an attempt to achieve this potential 98% correctness.

7 Related Work

The work most closely related to identifier splitting deals with identifier ex-
pansion. This section describes four existing expansion algorithms. It does not
discuss splitting techniques, which were considered in Section 3. Nor does it
consider the multitude of techniques that have used some form of splitting.

The process of vocabulary normalization (bringing the vocabulary of source
code into line with that of other software artifacts such as requirements) both
splits an identifier into its constituent parts and then expands each part into
one or more full dictionary words. The result better matches the vocabulary
found in other software artifacts. This section considers the expansion part of
vocabulary normalization.

The need to normalize vocabulary in support of IR-based tools was first
noted by Feild, et al. [11,16]. This early work incorporated a limited form of
wildcard expansion: words from source code and then a dictionary are searched
using a pattern based on the soft word. For example, the pattern a*v¥*g* is
used for the abbreviation avg (here a “*’ matches any sequence of characters).
When there is a single match, it is returned as the expansion for a soft word.
Despite the algorithm simply failing when zero or more than one match occurs,
it correctly expanded 40% of a sample of 64 identifiers. Two similar approaches
have been considered. One expands soft-words using a manually created dic-
tionary of common abbreviations [22]. The other restructures identifiers to
conform to a standard in both the lexicon of the composed words and in syn-
tactic composition [6]. In the latter, identifiers are split and then each soft
word is looked for in a standard dictionary and a synonym dictionary. Similar
to the approach taken by Feild, et al., no automatic abbreviation expansion is
attempted.
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Since this initial work, four improvements have been investigated. The first
improvement, AMAP, works with Java code, where it applies a specific series of
regular expression searches in an ever-expanding syntactic context [13]. This
starts with the JavaDoc comments where, for example, the pattern

©@param abbreviation abbreviation[a-z0-9A-Z]*

is used to expand an abbreviation formed by truncating the expanded word.
For example, this search succeeds in expanding the abbreviation len when the
JavaDoc includes the comment @param len - length of the wall. This approach
works well, correctly expanding 60% of 250 non-dictionary soft words extracted
from Java identifiers. Increasing the correctness would be possible if the vo-
cabulary needed for an expansion could be selectively acquired. For example,
such vocabulary is often found in a class or file defining a type rather than
at the type’s point-of-use. The challenge with incorporating wider sources of
information is filtering out irrelevant vocabulary.

The second improvement applies dynamic time warping (i.e., DTW) to
split and expand identifiers [19]. Dynamic time warping aligns two signals
(classically two speech utterances) by “warping” the time when certain key
attributes of the speech occur. Applied to an abbreviation and a potential
expansion, the warping is used to align the letters of the abbreviation with
those of a potential expansion. The technique requires a reasonably precise
dictionary because an abbreviation such as len is easier to warp into lent than
length.

The Normalize algorithm breaks an identifier into parts and then expands
any abbreviations and acronyms to full words [14,15]. Non-dictionary soft
words are assumed to be abbreviations or acronyms. The heart of expansion is
a similarity metric computed based on co-occurrence data derived from a gen-
eral text data set of over a trillion words extracted by Google and distributed
by the Linguistic Data Consortium [3]. This data is used because it has proven
useful in resolving translation ambiguity [20]. In other words, Normalize relies
on the fact that expanded soft words should be found co-located in general
text. To further guide the selection, co-occurrence with context information is
also considered. For example, the soft word dir may expand to direction or di-
rectory. If the local context includes the words forward and backward, a higher
probability of these words co-occurring with direction, as compared to their
co-occurring with directory, is expected to lead to direction being selected as
the correct expansion. Thus, this information helps to ground the expansions
to a context. It also enables expansion of singleton soft words (i.e., where the
entire identifier is a single soft word such as num). In the algorithm, the set
of context words is simply the dictionary words found in close proximity to
the identifier. The current implementation takes “close proximity” to be the
identifier’s surrounding function.

Recently, the LINSEN approach was developed [7]. Like Normalize and
DTW, LINSEN splits identifiers and expands abbreviations. LINSEN uses an
efficient approximate string matching algorithm, BYP, in conjunction with
nested context-based dictionaries that represent both high-level and domain-
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dependent words. Initial results show that for identifier splitting, improvements
range from 3-37% over Normalize and 1-4% over DTW.

8 Conclusion and Future Directions

In this paper, we present an empirical study comparing five state-of-the-art
identifier splitting techniques (Samurai, GenTest, INTT, DTW, and Greedy)
and a commonly used baseline (conservative split, or CS). Our data is based
on over 2,600 identifiers and 6,900 annotator-inserted splits collected from
112 different splitting sessions. Our results show that Samurai and GenTest
perform the best overall, with INTT performing comparably. GenTest and
DTW perform best on the most challenging cases (i.e., identifiers where the
human oracle inserted a split beyond conservative splitting). DTW would likely
perform better across all identifiers if it pre-split hard words using camel case
or Samurai.

What does future work hold for identifier splitting research? Digits and
splits beyond conservative splitting, such as same-case splits, remain open
problems that future identifier splitters need to address. In addition, the im-
pact of identifier splitting techniques on specific software engineering problems
needs to be further evaluated [9]. As overall identifier splitting accuracy im-
proves, further gains may come by making the splitting approaches customiz-
able for specific software engineering tasks, programming languages, natural
languages, and types of software artifacts. In addition, answers to some more
foundational questions might be of value to the software engineering commu-
nity. For example, a per-program study of the percentage of camel case and
underscores using identifiers that require no soft word splitting.
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A Instructions to Annotators

The following rather minimal instructions were given to the annotators when asking them
to provide the oracle version of the split of the identifiers:

What: Please split some program identifiers into atomic units by adding spaces.
We consider atomic units to be individual words or abbreviations. Some splits are
easily recognized from artifacts in the identifier. Those splits will be automatically
inserted. Here are some examples:

— “theblueHouse” — “the blue House”

— “FDARequirement” — “FDA Requirement”

— “unparse_voidptr” — “unparse void ptr”
Some are easy. Some are hard. So let us know when you guess.

Purpose: We are developing algorithms to automatically determine the most likely
splits of program identifiers. An automatic identifier splitter is the first important
step in a variety of automatic analysis of software natural language. Your splitting
decisions will help to guide and evaluate our research on automatic identifier split-
ting. The split collection of identifiers will be made publicly available.

Disclaimer: Your identity will not be revealed.

Thanks for helping us out!

Dave, Dawn, Emily, Lori, and Vijay



