
Inferring Method Specifications from
Natural Language API Descriptions

Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit Paradkar

Jiang Shun, Zhongyue Huang

���1

Research Problem

• API documents describe legal usage of reusable
software libraries	

• Developers often overlook some documents and
build software systems that are inconsistent with
the legal usage of libraries.	

• How can we solve this problem?

���2

Code contracts

• A popular way of formalizing
method specifications	

• Capture pre-condition and
post-condition	

• Problem: code contracts don’t
exist in a formalized form in
most existing software system

API documents

• Commonly existed and used in
software systems	

• Problem: documents are written
in natural language, no existing
tools can verify legal usage and it
is time consuming and labor
intensive to write code contracts
manually

Objective: inferring method specifications from API documents

���3

Motivation
public void service(HttpServletRequest request, HttpServletResponse response) throws
IOException{	

!
 response.setContentType("text/plain");	

 response.setHeader("Content-Disposition", "attachment;filename=sample.txt");	

 ServletContext ctx = getServletContext();	

 InputStream is = ctx.getResourceAsStream("sample.txt");	

!
 int read=0;	

 byte[] bytes = new byte[BYTES_DOWNLOAD];	

 OutputStream os = response.getOutputStream();	

!
 while((read = is.read(bytes))!= -1){	

 os.write(bytes, 0, read);	

 }	

 os.flush();	

 os.close();	

}

java.lang.NullPointerException

getResourceAsStream():	

“This method returns null if no resource exists at the specified path.”

���4

Insight of Approach

“Inferring code contracts from method descriptions in API
documents by applying Natural Language Processing”

���5

Challenges

“true if path is an absolute
path; otherwise false”

Ambiguity

“This method also returns
false if path is null”

Programming Keywords

“name can contain numbers, underscores...” and “name
consists of numbers and/or underscores”

Semantic Equivalence

���6

Overview of Approach

API Documents Parser
Pre-

processor
Text Analysis

Engine

Specifications
(FOL Expressions)

Post-processor

Domain
Dictionaries

Refined
Specifications

(FOL Expressions)

Code Contract
Generator

Code Contracts

Mappings

���7

Parser

Extracts intermediate contents from the
method descriptions of API documents

summary, argument, return, exception and remark descriptions

���8

Pre-processor

• Meta-data augmentation: names/types of arguments, types
of return value/exceptions, names of classes/namespaces/

methods e.g. <param name=``prop_name``>...</param>	

• Noun boosting: resolve “Program keywords” challenge by
a domain specific dictionary e.g. null -> noun	

• Programming constructs and jargon handling: increasing
the accuracy of the POS tagger e.g. Facebook.Data ->
Facebook_Data; max->maximum

���9

Text Analysis Engine

Parses pre-processed sentences and builds specifications
in the form of First Order Logic (FOL) expressions

Pre-processed
sentences

POS tagger Shallow
parsing

Semantic
templates

FOL
expressions

The (path)subject (can not be)verb nullobject

Stanford
Parser

���10

Post-processor

• Equivalence analysis: classify predicates by Lemmatization
(WordNet)  
e.g. am, are and is -> be	

• Intermediate term elimination: remove irrelevant modifiers 
e.g. (name)subject (is)verb a (valid identifier)object-subject, which (is no longer than 32
characters)clause	

• Expression augmentation: augment not well written
expressions 
e.g. If path is null.  

���11

Code Contract Generator

Generator uses the predefined mapping of semantic classes
of the predicates to the programming constructs to produce

valid code contracts

Mapping relations: String class, Integer class, null checks, return
and throws constructs

“Greater ” -> length method in String class -> Requires(!name.length() > 32)

���12

Evaluation

• C# File System API documents (File, Path and
Directory)	

• Facebook API documents (Data, Friends, Events,
and Comments)

���13

Evaluation

• RQ1: What are the precision and recall of the approach
identifying contract sentences? 
Precision: 91.8%, Recall: 93% and F-score: 92.4% over 2717 sentences	

• RQ2: What is the accuracy of the approach in inferring
specifications from contract sentences in the API
documents? 
Accuracy: 83.4% over 1600 contact sentences	

• RQ3: How do the specifications inferred by the approach
compare with the human written code contracts?  
21 in common

���14

Results

Class
[API
Library]

#M #S SC TP FP FN P R FS SI Acc SD C Q

Data[Faceboo
k.Rest] 133 810 320 288 55 32 84 90 86.9 244 76.3 102 21 0.75

Friends[Faceb
ook.Rest] 37 215 126 96 10 30 90.6 76.3 82.8 84 66.7 17 0 0.83

Events[Faceb
ook.Rest] 29 194 122 110 12 12 90.2 90.2 90.2 84 68.9 15 0 0.85

Comments[Fa
cebook.Rest] 16 96 33 33 19 0 63.5 100 77.7 28 84.9 12 0 0.7

File[System.I
O(.NET)] 56 795 647 627 15 20 97.7 97 97.3 599 92.6 NA NA NA

Path[System.I
O(.NET)] 18 99 63 48 11 15 81.4 76.2 78.7 44 69.8 NA NA NA

Directory[Syst
em.IO(.NET)] 44 508 380 371 18 9 95.4 97.6 96.5 327 86.1 NA NA NA

Total 333 2717 1691 1573 140 118 91.8 93 92.4 1410 83.4 146 21 0.79

���15

Conclusion

• First approach analyzes API documents to extracts
specifications targeted towards generating code
contracts	

• The evaluation results show that the approach effectively
identifies contract sentences with an average of 92%
precision and 93% recall, and infers specifications from
around 1700 contract sentences with an average
accuracy of 83%.

���16

