Inferring Method Specifications from
Natural Language APl Descriptions

Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit Paradkar

Jiang Shun, Zhongyue Huang

Research Problem

® API documents describe legal usage of reusable
software libraries

® Developers often overlook some documents and

build software systems that are inconsistent with
the legal usage of libraries.

® How can we solve this problem?

Code contracts

® A popular way of formalizing
method specifications

® (Capture pre-condition and
post-condition

® Problem: code contracts don’t
exist in a formalized form in
most existing software system

APl documents

Commonly existed and used in
software systems

Problem: documents are written
in natural language, no existing
tools can verify legal usage and it
is time consuming and labor
intensive to write code contracts
manually

Objective: inferring method specifications from APl documents

Motivation

Epublic void service(HttpServletRequest request, HttpServletResponse response) throws
: IOException{

response.setContentType("text/plain");
response.setHeader("Content-Disposition", "attachment;filename=sample.txt");
ServletContext ctx = getServletContext();

InputStream is = ctx.getResource AsStream("sample.txt");

int read=0;
byte[] bytes = new byte[BYTES_DOWNLOAD];
OutputStream os = response.getOutputStream();

while((read = is.read(bytes))!=-1){
os.write(bytes, 0, read);

¥
os.flush();

os.close(); java.lang.NullPointerException

. getResourceAsStream():
. “This method returns null if no resource exists at the specified path.”

Insight of Approach

“Inferring code contracts from method descriptions in API
documents by applying Natural Language Processing”

Challenges

~“true if path is an absolute = “This method also returns}
~ path; otherwise false” | false if path is null” |

..

““nhame can contain numbers, underscores...” and ‘‘name
consists of numbers and/or underscores”

Semantic Equivalence

Overview of Approach

Pre- Text Analysis
APl Documents |3 Parser ' processor > Engine

¥

Specifications
(FOL Expressions)

Code C Refined Y
Code Contracts oGe ontract o Specifications 4= Post-processor
en;rator (FOL Expressions) A
) Domain
Mappings Dictionaries

Parser

Extracts intermediate contents from the
method descriptions of APl documents

summary, argument, return, exception and remark descriptions

Pre-processor

® Meta-data augmentation: names/types of arguments, types
of return value/exceptions, names of classes/namespaces/

methods e.g. <param name=""prop_name'">...</param>

® Noun boosting: resolve “Program keywords” challenge by
a domain specific dictionary e.g. null -> noun

® Programming constructs and jargon handling: increasing

the accuracy of the POS tagger e.g. Facebook.Data ->
Facebook Data; max->maximum

Text Analysis Engine

Parses pre-processed sentences and builds specifications
in the form of First Order Logic (FOL) expressions

Stanford
Parser
Pre-processed » POS tagger - Shallfaw IN| FOL.
sentences i parsing expressions
Sema;ntic
templates

Post-processor

® Equivalence analysis: classify predicates by Lemmatization
(WordNet)

e.g.am, are and is -> be

® |ntermediate term elimination: remove irrelevant modifiers
e.g. (name)subject (is)verb @ (valid identifier)object-subject, Which (is no longer than 32
characters)clause

® [Expression augmentation: augment not well written
expressions
e.g. If path is null.

Code Contract Generator

Generator uses the predefined mapping of semantic classes
of the predicates to the programming constructs to produce
valid code contracts

Mapping relations: String class, Integer class, null checks, return
and throws constructs

Evaluation

® C# File System APl documents (File, Path and
Directory)

® Facebook APl documents (Data, Friends, Events,
and Comments)

Evaluation

e RQI:What are the precision and recall of the approach

identifying contract sentences!
Precision: 91.8%, Recall: 93% and F-score: 92.4% over 2717 sentences

® RQ2:What is the accuracy of the approach in inferring
specifications from contract sentences in the API

documents!?
Accuracy: 83.4% over 1600 contact sentences

e RQ3:How do the specifications inferred by the approach

compare with the human written code contracts!?
2| in common

Results

aor | #m[#s| s¢| TPl FP[FN| Pl Rl Fs| S| Ace| S| ¢| a
caareeef 133 810 320| 288| 55| 32| 84| 90| 86.9| 244| 76.3] 102 21| 0.75
el 371 215| 126 96| 10| 30| 90.6| 76.3| 82.8| 84| 66.7| 17 o| 0.83
ook o) 291 194 122 110 12 12| 90.2| 90.2| 90.2| 84| 68.9 15 0| 0.85
el 16| 96| 33| 33| 19 ol 63.5| 100| 77.7| 28| 84.9] 12 of 0.7
o 56| 795 647| 627| 15| 20| 97.7| 97| 97.3| 599| 926/ NA| NA| NA
oNED 18 99 63 48 11 15| 81.4| 76.2| 78.7 441 69.8] NA| NA[NA
ool 44| 508| 380| 371 18 ol 95.4| 97.6| 96.5| 327 86.1| NA| NA| NA
Total 333| 2717| 1691| 1573| 140| 118| 91.8| 93| 92.4| 1410 83.4| 146 21| 0.79

Conclusion

® First approach analyzes APl documents to extracts
specifications targeted towards generating code
contracts

® The evaluation results show that the approach effectively
identifies contract sentences with an average of 92%
precision and 93% recall, and infers specifications from
around | 700 contract sentences with an average
accuracy of 83%.

