CISC 879 Text Analysis for Software Engineering
Fall 2013
Project #1

Assigned date: 09/17/2013 (Start Early)
Due date: Monday, 10/7/2013, 12:59pm

1. Objectives

- Gain first-hand experience implementing the Vector Space Model (VSM) for feature location
(FL)

- Gain first-hand experience executing an evaluation study

- Learn to write up a conference-paper style evaluation study report

2. Introduction

Maintenance tasks on software systems are very challenging, especially when the software
systems contain thousands or millions of lines of code, or when a developer is unfamiliar with the
system. In order to complete a maintenance task, such as fixing a bug in the software or adding a new
feature (i.e., functionality) to the system, a developer has to find the correct places (i.e., the correct
tiles, classes, methods, etc.) in the system where they should make the changes. This tedious process
is mostly done manually and it might involve the developer searching for key terms or browsing
source code files. A semi-automatic approach to this problem that could save developers substantial
effort and also make the developers more productive involves using Vector Space Model (VSM) as a
Feature Location Technique (i.e., the process of finding artifacts such as methods, classes or files that
are related to a particular maintenance task). The high level description of this process is presented in
Figure 1. The developer uses the textual description of the maintenance task (i.e., summary of the
causes or of the manifestation of the bug, or description of the new functionality that needs to be
implemented in the system) as a query for the VSM Feature Location Technique. This technique
matches the textual query against the terms contained in the methods of the software system and
returns to the developer a ranked list of methods that contain terms most similar to the maintenance
task query. The intuition is that if a query matches words from a method, the higher are the chances
that the method is the one that the developer is looking for.

Feature 1. method;
Quer Location 2. method,;
I:',V> Technique |C——> 3. method,
(e.g., VSM)

Developer Methods relevant to the query

Figure 1 The semi-automated process of locating relevant artifacts in the source code using the VSM FLT

3. Vector Space Model

Vector Space Model (VSM) is a model for representing text documents as vectors of identifiers.
More specifically, every text document and user query are represented as m-dimensional vectors,
where m is the total number of indexed terms in the corpus (i.e., the set of documents). For example,
document d can be represented as the vector d = (xy,..,xy,), where x; corresponds to the
“importance” of term i.

A collection of n documents can be represented in the VSM by a Term-Document matrix (see
Figure 2), which has n rows corresponding to the documents and m columns corresponding to the
terms. An entry w; ; in the matrix corresponds to the “weight” of the term j in the document i. The



weight 0 means that the term has no significance in the document or it simply does not exist in the

document.
t1 tZ s tm
dy W11 W12 o Wim
d, W31 W32 o Wom
dn Wn1 Whn o e Wnm

Figure 2 Term-Document matrix

The Term-Document matrix is then transformed into a weighted matrix which has as values tf-
idf! (term frequency-inverse document frequency) weights. The intuition behind using this measure
is twofold. First, the more frequent a term occurs within a document, the more relevant that term is to
the semantics of the document. Second, the less frequent a term occurs within all the documents, the
more that term has a discriminative influence. In other words, if a term appears in almost all the
documents, it should be assigned a very low importance (e.g., ‘the’, ‘an’).

The degree of similarity between a document d and a query q is calculated as the correlation
between the vectors that represent them. More specifically, we use the cosine of the angle between
these two vectors.

4. Example VSM

This section shows all the steps needed to compute the similarities between an external query
and all the documents in a corpus.

A list of all the notations used throughout this example is presented in Figure 3.

Notation Explanation
fij frequency of term j in document i
max {f;} maximum frequency of any term in document i
tf; = fl—] term frequency of term j in document i (normalized term
7 max {f;} frequency)
dfj document frequency of term j (i.e., number of documents

containing term j)

. inverse document frequency of term j (where N is the total
idf; =In|-+
af; number of documents)
W = tf,; « idf; = tf,; * In N t.f-.idf (term frequency — inverse document frequency) of term
’ ’ ’ df; j in document i
d;, = (Wi,b Wi 2 wen) Wl-‘M) cosine similarity between two documents, d; and d; (M is the
dj = (Wj1,Wj2, -, Wjn) total number of terms)
| d; - d;
sim(d;, d;)) = ———— =
ld:ll| ;|

M
Y=t Wi * Wit

i \/ZItW:l(Wi,t)z * \/th\il(wj.t)z

Figure 3 VSM notations and their significance

Input Data:
As an input, we consider:

1 http://en.wikipedia.org/wiki/Tf-idf

2 httn-/lwww iedit oro/




* the corpus presented in Figure 4, which is composed of 4 documents (d, ...,d,) and 8

unique terms (ty, ..., tg).
* the external textual query is “t, t; t;”
Documents Terms
dy by, by, ts, t3, U3, Uy, Ly, Ly, Ly, Le, Lo, Lo, Lo, Egy Uy, gy L, Ug
d, t,, ty, ty, ta, ta, te, te, te, te, te, Ly, trr o
ds b1, by, by, by, t3, t3, B3, B3, B3, Uy, Us, Ly Loy Ly Bp, B, Br, Bg0 By
dy b1, 6y, by, by, by, U3, U3, te, te, Ley Ley Ley Uy, Uy, Uy, Uy, tg, By, g, g, L, Ug, Ug) Ug

Figure 4 Example corpus

Step 1: Generate Term-Document matrix

The Term-Document matrix (see Figure 5) that models the corpus has 4 rows (each row
corresponding to one document) and 8 columns (each column corresponding to one term). The
elements of the matrix f; ; represent the frequency of term j in document i.

t L 3 ty ts 3 ty g
d, 0 2 3 4 0 4 0 5
d, 0 3 2 0 4 1 3 0
d; 3 1 5 1 1 3 5 0
dy 2 3 2 0 0 5 3 9

Figure 5 Term-Document matrix ( f i_]-)

Step 2: Normalize the Term-Document matrix

The Term-Document matrix has to be normalized (see Figure 6), and each element is of the form
tf;; (i.e., the term-frequency of term j in document i). Each frequency f; ; is divided by the maximum
frequency of any term inside a document (i.e., max {f;}).

(51 #) i3 Ly ls 53 7 lg
d, 0 0.4000 | 0.6000 | 0.8000 0 0.8000 0 1.0000
d, 0 0.7500 | 0.5000 0 1.0000 | 0.2500 | 0.7500 0
d; 0.6000 | 0.2000 | 1.0000 | 0.2000 | 0.2000 | 0.6000 | 1.0000 0
dy 0.2222 | 0.3333 | 0.2222 0 0 0.5556 | 0.3333 | 1.0000

Figure 6 Normalized matrix (tf l-,]-)

Step 3: Compute document frequencies

Next we compute the document frequencies df; of each term (see Figure 7). In other words, for

each term, we count the number of documents that contain that term.

J

| 1

2

| 3

4

5

6

df;

| 2

4

|4

2

2

4

Figure 7 Document Frequency of term j (df;)

Step 4: Compute inverse document frequencies
The next step is to compute the inverse document frequency idf; of each term (see Figure 8)

using the formula idf; = In <%>, where N is the total number of documents and In is the natural
J

logarithm.
J

| 1

2

| 3

4

5

6

7

8

idf; | 0.6931 |

0

|0

| 0.6931 | 0.6931 |

0

Figure 8 Inverse Document Frequency of term j (idf;)

| 0.2877 | 0.6931



Step 5: Generate tf-idf weighted matrix

The weighted matrix (see Figure 9) is generated by combining the term frequencies (see Step 2)
and the inverse document frequencies (see Step 4). The tf-idf w;; of term j in document i is

computed using the formula w; ; = tf; ; * idf; = tf;; * ln( N )

af;
t L 3 ty ts 3 ty g
d, 0 0 0 0.5545 0 0 0 0.6931
d, 0 0 0 0 0.6931 0 0.2158 0
d; 0.4159 0 0 0.1386 | 0.1386 0 0.2877 0
dy 0.1540 0 0 0 0 0 0.0959 | 0.6931

Figure 9 Weighted matrix with tf-idf (wi‘]- =tf;j* idf]-)

Step 6: Compute similarities between a query and all documents
To compute the similarity between an external query (i.e., “t, t; t;”) and all the documents in the
corpus, we follow these steps:

Step 6 (a): Represent a query as a vector
First, we represent the textual query (i.e., “t, t; t;”) as a vector (see Figure 10) with the weights
equal to the number of times the word appears in the query. For example, t; has weight 2 because it
appears twice in the query, t, has weight 1 because it appears once in the query and the other terms
have weight 0 because they are missing from the query. Note that the query vector has the same
dimension as all the other documents from the weighted matrix. That dimension is the number of
unique terms found in the corpus.
| 6 | & | & |t | &5 | 8 |t | ts
Query, 0 | o | o | 1 | o | o | 2 | o

Figure 10 Representing query “t, t; t;” as a vector

Step 6 (b): Compute cosine similarity
The next step is to compute the cosine similarity between the query vector and each other

document which is already represented as a vector in the weighted matrix.
sim(dy, Query) = 0.2794
sim(d,, Query) = 0.2658
sim(d;, Query) = 0.5887
sim(dy, Query) = 0.1197

Step 6 (c): Generate ranked list
The final step is to sort the documents into descending order based on their textual similarities to
the query (see Figure 11). This is the ranked list of documents most similar to the external query.
Note that d; is ranked the highest because it contains both terms t, and t;, whereas the other
documents contain only one of these terms.
Position Document Similarity

1 ds 0.5887
2 d, 0.2794
3 d, 0.2658
4 d, 0.1197

Figure 11 Ranked list of documents for query “t, t, t;”

5. Using VSM as an FLT
In order to apply the VSM as an FLT, we must construct a corpus where each document is a
method of the system (for a coarser approximation, a file or a class could be used as a document).



After that, the VSM FLT will use the corpus of methods and the user query to rank the methods
based on their relevance to the user query.

Generating the corpus

Figure 12 presents an overview of the process of constructing the corpus.

First, a parser extracts all the methods of a software system. The information extracted from a
method includes its comments, return type, name, signature and body. Each method is associated
with an identifier, called methodID, which consists of the full method name (i.e., package, class,
method name and signature).

The second step is to preprocess the corpus extracted from the source code, using the following
techniques:

* Remove non-literals: all the special characters are eliminated. Only the letters and the

underscore character (“_") are kept (see Figure 12, next to last corpus)

* Split identifiers: all the compound terms are split into their basic terms using some simple

heuristics, such as the camel case notation (e.g., “addNumbers”) and the underscore notation
(e.g., “add_numbers”). For example, these words are going to be split into the words “add”
and “numbers” (see Figure 12, last corpus)

* Lower case: all the words are transformed into lower case letters

* Stemming: all the words are transformed into their root form (i.e., their suffixes are removed

using some heuristics). For example, the words “documents” or “documenting” will be
reduced to the form “document”

Using the corpus and the user query to generate relevant results

The corpus obtained after preprocessing will be used to construct the Term-Document matrix,
which in turn is used to construct the weighted tf-idf matrix. After that, a query generated by a
developer is transformed into a vector, and the cosine similarity between that query vector and all the
other documents (i.e., methods) is computed. Finally, the list of methods is sorted into descending
order based on their cosine similarities, and this ranked list is presented to the developer. In other
words, the methods in the ranked list are the most similar methods to the query and theoretically, the
top ranked methods should be the ones of most interest to the developer.

Software Unprocessed corpus extracted from source code. Corpus after eliminating ~ Corpus after splitting
System Each document (method) has an ID non-literals identifiers
file,[my | /*comment #1 */ comment int comment int
m, int addNumbers(int First, int second){ addNumbers int add  numbers
return First + second; First int second int first int
— } return First second return
file;| m; = = second —p |[first second
m;
L //comment 2 comment int comment int
o int divide_numbers(int dividend, int divisor){ divide_numbers divide numbers
file,| my if (divisor==0) int dividend int int dividend int
{ divisor if divisor divisor if
[0 | divisor

Figure 12 Overview of building the corpus

6. Evaluation
To demonstrate the usefulness of the VSM FLT, we must evaluate it. The evaluation process (see
Figure 13) is only possible by having the following historical data about a software system:

* aset of maintenance tasks, such as fixing a bug or adding a new feature; in this evaluation, we
call these tasks “features”, and each of these features has a unique identifier, called featureID
(see in Figure 13 the gray text f; (i.e., featurelD #1) and f; (i.e., featurelD #q))

* textual description of the feature; in this evaluation, we call it “textual query” or simply
“query”



* a list of methods that were modified or used in order to address the feature (i.e., either fix the
bug or implement the new functionality); in this evaluation, we call this set of methods the
“gold set”

* note that each featureID has associated with it a query and a gold set

Ranked methods based  Effectiveness all methods

N\ on similarities to queries (method — position)
Preprocessed :> Term-Document I:> Weighted tf-idf 1.m, m; — N/A
corpus matrix matrix 2. my, m; — 4
Similarities 3.my, m,— 1
; Queries as vectors > between 4.m:
Text Queries queries and all = 4
query, (qu,ll R qu,m) documents 5.Mys my — 5
query, (Wag, o) wqq,m)) n.ms,
N Effectiveness best method
(method — position)
Methods relevant to the m,— 1
feature (i.e., “gold set”) 1.my5
m; 2.m, m, — 2
m; 3.m,
my 4. My
5.m,
mp
m, n.Myg

Figure 13 Overview of the evaluation process of the VSM FLT
The steps to evaluate the VSM FLT are the following:

From the preprocessed corpus (i.e., the corpus after removing non-literals, splitting identifiers and
stemming), build a Term-Document matrix and then a weighted tf-idf matrix (see Figure 13, the
three top-left boxes).
Transform the textual queries into their vector forms. Note that there are m unique terms in the
corpus, which means that each query will have m weights (see Figure 13, the “Text Queries” and
“Queries as vectors” boxes). Any other terms of the query that do not appear in the m unique
terms of the corpus will be discarded.
For each query represented as a vector, compute the cosine similarity between that query and all
the documents in the corpus. This will result in a list of document identifiers (i.e., methodIDs) and
a cosine similarity which is in the [-1, 1] interval. All these similarities are associated with that
query, which means that they are associated with the featurelD the query is associated with (see
Figure 13, the “Similarities between queries and all documents” box).
For each feature featurelD, their corresponding methods are sorted in descending order based on
their similarities. This will produce a ranked list of methods that are most similar to the query
associated with that feature. For example, in Figure 13, sorting the methods for feature f;
produces the list m;, (on position 1), m;, (on position 2), ..., ms, (on position n). Note that there
are n documents in the corpus.
For each feature featurelD, using the ranked list of methods most similar to a query (produced at
Step 4) and the methods from the gold set which are associated with that feature (see Figure 13,
the bottom-left box), we can identify the position of the methods from the gold set in the ranked
list of all the methods. This position is called the effectiveness measure. The effectiveness
measure can be computed in two ways:
* effectiveness all methods, which are the positions of all the methods from the gold set. For
example, in Figure 13, the methods from the gold set of feature f;, which are m;, m; and my,
are ranked on the following positions: m; on position 4, m; on position 1 and m; does not have



a position (N/A). Note that there might be cases where a method from the gold set cannot be
found in the ranked list, because the methods from the gold set and from the corpus are
generated from two different sources (often independent) and some inaccuracies may occur.

» effectiveness best method, which is the best position (i.e., best rank) of all the methods from
the gold set. For example, in Figure 13, the best position among all the methods from the gold
set for feature f; is position 1 (for method m;), and the best position among all the methods
from the gold set for feature f; is position 2 (for method m,.).

It is intuitive that a method from the gold set found on a lower position (i.e., higher rank) is better

than a method found on a higher position. This is because a developer who usually starts
investigating the methods from the top of the list will find a relevant method in less time.

7. Project Requirements
For this project, you are required to:
1. Implement the VSM FLT
2. Evaluate the effectiveness of the VSM FLT on the jEdit? system, which is a popular textual
editor written in Java
3. Write a report describing the VSM FLT, your evaluation, and the results.
Note that along with this project description, you will receive an archive called
Homework1AdditionalFiles.zip, which contains the necessary files to complete this project. The list of
files and their explanation is discussed in Sections 7.2 and 7.3.

1. Implement the VSM FLT

You are required to write a suite of programs that implement the functionality of using the
Vector Space Model as a Feature Location Technique. You are free to use any programming language,
such as Java, C, C++, C#, Python, Perl, Linux Scripts, etc.

You are required to use the SVN version control system on the mlb.acad.ece.udel.edu (see
https://www.eecis.udel.edu/wiki/ececis-docs/index.php/FAQ/Subversion#toct). Make available all
your source code required to implement this assignment, and give to the instructor access to your
SVN repository.

Your application should take as input data from the jEdit version 4.3 system (i.e., the data that
will be provided to you). The output of your application should be in the format explained in the next
section.

2. Evaluate the effectiveness of the VSM FLT

Your VSM FLT implementation should have the following input and output data.

Input Data:

The jEdit4.3.zip archive (from Homework1AdditionalFiles.zip) contains the following files:

* The file CorpusMethods-jEdit4.3-AfterSplitStopStem.txt contains the preprocessed corpus (i.e.,
after removing non-literals, after splitting identifiers and stemming the words) of the jEdit
system. Each line of this file represents a document (i.e., a method).

* The file CorpusMethods-jEdit4.3.mapping contains the methodIDs (i.e., the identifier of the
method consisting of the package name, class name, method name and signature) from the
corpus. The methodID from line i corresponds to the method on line i from the file
CorpusMethods-jEdit4.3-AfterSplitStopStem.txt.

2 http://www jedit.org/




* The file jEdit4.3ListOfFeaturelDs.txt contains the featureIlDs of 150 features (i.e., maintenance
tasks, such as bug fixes or features) that will be used in the evaluation. The featurelDs are
represented by a unique number (e.g., “950961”, “1193683”, etc.).

* The file CorpusQueries-jEdit4.3-AfterSplitStopStem.txt contains the queries (i.e., set of words
describing the maintenance tasks). Each query is associated with a unique feature. The query
on line i is associated with the feature that has the featureID on line i in file
jEdit4.3ListOfFeaturelDs.txt.

* The folder jEdit4.3GoldSets contains 150 files with the name GoldSet[featurelD].txt (e.g.,
“GoldSet950961.txt"). The featureID is one of the featureIDs found in the file
jEdit4.3ListOfFeaturelDs.txt. Each of the 150 files contains a list of methodIDs (same as the ones
found in the file CorpusMethods-jEdit4.3.mapping) which are related to the feature featurelD.

Note that there are 6,413 documents (methods) in the corpus, which means that there are 6,413
lines in the files CorpusMethods-jEdit4.3-AfterSplitStopStem.txt and CorpusMethods-jEdit4.3.mapping.

Note that the files GoldSet[featurelD].txt contain some methodIDs that are not found in the
CorpusMethods-jEdit4.3.mapping file. These discrepancies are due to inaccuracies introduced during
the data collection process, which also used different sources of information. The solution to the
problem of having methodIDs from the files GoldSet[featurelD].txt that do not appear in the
CorpusMethods-jEdit4.3.mapping file is to discard them.

Also, there are 150 features, which means there are 150 queries (in the file CorpusQueries-jEdit4.3-
AfterSplitStopStem.txt) and 150 sets of methods associated with these features (found in the folder
jEdit4.3GoldSets).

Output data:

Your implementation of the VSM FLT should produce a Comma-Separated Values (CSV) file that
uses a tab character (\t) to separate between its values. The *.csv file will contain 5 columns, and their
headers are:

* featurelD - represents the number from the jEdit4.3ListOfFeaturelDs.txtfile (e.g., “950961")

* GoldSetMethodID Position - represents the position (i.e., the line number) of the gold set
method in the file CorpusMethods-jEdit4.3.mapping. The value -1 indicates that the gold set
method does not appear in the file CorpusMethods-jEdit4.3.mapping

* GoldSetMethodID - represents the methodID of the gold set method (i.e., the name of the
package, class, method and signature). This column represents the methodIDs from the
GoldSet[featurelD].txt files, and it should list these methods in the same order as they appear in
the GoldSet[featurelD].txt file

*  VSM GoldSetMethodID Rank - All Ranks - represents the rank (i.e., position) of the gold set
method in the list of methods returned by VSM, when ranking the corpus methods based on
their similarities to the featurelD query

* VSM GoldSetMethodID Rank - Best Rank - represents the best rank among all the methods
from the gold set for feature featurelD, when using VSM to rank the corpus methods based on
their similarities to the featurelD query

Figure 14 illustrates an excerpt from the output *.csv file. For example, featurelD 1533473 (see
column 1) has two methods in its gold set, namely org.gjt.sp.jedit.EditPane.saveCaretInfo() and
org.gjt.sp.jedit.EditPane.loadCaretInfo() (see column 3). These two methods appear in the file
CorpusMethods-jEdit4.3.mapping on positions 1,555 and 1,556 respectively (see column 2). Based on the
similarities between the query 1533473 and all the other methods from the file CorpusMethods-
jEdit4.3.mapping, these two methods are ranked on positions 376 and 181, respectively (see column 4).
The best rank among these two methods from the gold set of feature 1533473 is 181 (see column 5).



Note that some values in the *.csv file are intentionally left empty (see light gray cells in columns
1 and 5 in Figure 14) in cases where a feature has more than one method in the gold set. In addition,
some values in the *.csv file are intentionally left blank (see dark gray cells in column 4) if the method
from the gold set is not found in the file CorpusMethods-jEdit4.3.mapping, in which case its
corresponding value in column 2 will be set to -1. For example, for feature 1538051, method
org.gjt.sp.jedit.gui.StatusBar.MemoryStatus.getToolTipText() does not appear in the file
CorpusMethods-jEdit4.3.mapping, thus its corresponding value for column 2 will be set to -1.

You can use the values from Figure 14 to verify if your implementation produces the correct
results (the lines with content ”[...] ” denote intentionally omitted values from the table with results).

The archive Homework1lAdditionalFiles.zip includes the file Sample_VSM_Effectiveness.csv, which
contains the output illustrated in Figure 14 in the format required for the assignment.

GoldSet VSM VSM
featureID | MethodID GoldSetMethodID GoldSetMethodID | GoldSetMethodID
Position Rank - All Ranks Rank - Best Rank
[..]
1533473 1555 org.gjt.sp.jedit.EditPane.saveCaretInfo() 376 181
1556 org.gjt.sp.jedit.EditPane.loadCaretInfo() 181
1536064 2054 org.gjt.sp.jedit. GUIUtilities.requestFocus(Window,Component) 370 370
1538051 2776 org.gjt.sp.jedit.jEdit.showMemoryDialog(View) 2 2
5012 org.gjt.sp.jedit.gui.StatusBar.propertiesChanged)() 1805
5015 org.gjt.sp.jedit.gui.StatusBar.statusUpdate(WorkThreadPool,int) 978
5021 org.gjt.sp.jedit.gui.StatusBar.updateBufferStatus() 5716
-1 org.gjt.sp.jedit.gui.StatusBar.MemoryStatus.getTool TipText()
-1 org.gjt.sp.jedit.gui.StatusBar. MemoryStatus.paintComponent(Graphics)
1538702 2042 org.gjt.sp.jedit. GUIUtilities.load Geometry(Window, Container,String) 871 1
2043 org.gjt.sp.jedit. GUIUtilities.load Geometry(Window,String) 991
2049 org.gjt.sp.jedit. GUIUtilities.saveGeometry(Window,String) 1170
2050 org.gjt.sp.jedit. GUIUtilities.saveGeometry(Window,Container,String) 1019
-1 org.gjt.sp.jedit. GUIUtilities.addSizeSaver(Window,String)
-1 org.gjt.sp.jedit. GUIUtilities.addSizeSaver(Window,Container,String)
[..]

Figure 14 Sample output data and format for the *.csv file

3. Write report
You are required to write a report (minimum 2 pages and maximum 5 pages) describing:
* The motivation for the problem that you are addressing;
* The actual problem that you are addressing;
* The solution that you have implemented;
* Some details about the implementation, including some decisions or assumptions made on the
input data or on the implementation
* The evaluation:
o Design of the case study
* Systems and benchmarks used
* Data analysis
o Results
» Descriptive statistics for the effectiveness of all methods and for the
effectiveness best method. These statistics include minimum, lower quartile
(Q1), median (Q2), upper quartile (Q3), maximum, average and standard
deviation. The statistics should be presented in a table format, as well as box-plot
chart®.
o Discussion about the interpretation of the results

3 http://en.wikipedia.org/wiki/Box_plot




* Conclusions

The report should use the IEEE template* as a format. You can edit these IEEE templates as
Microsoft Word or Latex documents. However, your final report should be converted into a PDF
document. You will need to submit both PDF documents and the sources (e.g., *.doc or *.tex).

The file Homework1SampleReport.pdf (from the archive Homework1AdditionalFiles.zip) is a sample
paper report that contains some guidelines and some subsections that your final paper should have.
You are welcome to add your own sections or subsections, or rename any of the existing sections.

You can use any statistical analysis packages to analyze and present the results (e.g., Microsoft
Excel, MATLAB, R, etc.). The file SampleBoxPlots.xls (from the archive Homework1AdditionalFiles.zip)
contains some sample rankings and their associated box-plots.

8. Project submission
You are required to give the instructor access to your implementation that is hosted on an SVN
repository as indicated above. Your implementation should take as input the data described in
Section 7.1 — Input Data, and produce the VSM_Effectiveness.csv file described in Section 7.2 — Output
Data.
You are required to create an archive called HWI-[LASTNAME]J-[FIRSTNAME].zip, which
contains the following files:
* VSM_Effectiveness.csv (see Section 7.2 — Output Data, for more details and the format)
* HWI-[LASTNAME]|-[FIRSTNAME].pdf, which is the .pdf report in IEEE format for this
homework (see Section 7.3 and the file Homework1SampleReport.pdf for more information)
* HWI-[LASTNAME]-[FIRSTNAME].doc or HW1-[LASTNAME]-[FIRSTNAME].tex, which is
the source file required to generate the HWI1-[LASTNAME]-[FIRSTNAME].pdf report.
You should upload HWI1-[LASTNAME]-[FIRSTNAME].zip onto sakai by the deadline.
You can access the grading rubric for this project in the projectl directory on
mlb.acad.ece.udel.edu with the other files.

4 http://www.ieee.org/web/publications/pubservices/confpub/AuthorTools/conferenceTemplates.html




