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ZEUS, developed by the Laboratory for Computational Astrophysics (LCA) of the National Center
for Supercomputing Applications, has become a standard tool in the astrophysical community for
a wide range of fluid dynamics simulations. To solve more complex problems with magnetic fields
or self-gravity and to follow the evolution of these problems over long periods of physical time,
many times the computation time of other problems is required. To ease these computation
time requirements, LCA released parallel version of the sequential ZEUS code called ZEUS-MP:
Multi-Physics, Massively-Parallel, Message-Passing code.

This paper first verifies the correctness of ZEUS-MP. The performance of ZEUS-MP is then
evaluated on two clusters of different architectures using a problem that is bundled with the
ZEUS-MP package. Performance is found to be significantly less than ideal on both Intel and
SPARC-based clusters, which is likely rooted in the lack of architecture-specific optimizations for
architectures other than SGI.

1. INTRODUCTION

ZEUS has become a popular tool in the astrophysical community for a wide range
of fluid dynamics and magneto-hydrodynamics (MHD) simulations. It has been de-
veloped over many years by the Laboratory for Computational Astrophysics (LCA)
of National Center for Supercomputing Applications (NCSA). ZEUS has been used
to simulate supernova explosions, gravitational collapse, study solar wind, or even
star formation, and for many other astrophysical problems.

Many of these problems require fine grids and consequently significant computing
time. But as the problems become more complex, for example if magnetic field or
self-gravity is included, the simulation times increase many folds. Also, astrophysi-
cists very often wish to follow the evolution of their problem over long periods of
physical time which usually corresponds to a large number of iterations. To ease this
problem LCA released a parallel version of the sequential ZEUS code called ZEUS-
MP where the MP stands for Multi-Physics, Massively-Parallel, Message-Passing
code. The current working release is 1.0.

2. MOTIVATION

This paper first examines ZEUS-MP for its performance and correctness. In order
to develop confidence in any numerical code, one has to do some tests the result of
which we know analytically, and make sure that the code gives reasonable results.
Secondly, this paper determines whether ZEUS-MP yields time savings that makes
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it worthwhile to use ZEUS-MP as opposed to the sequential implementation of
ZEUS. Finally, ZEUS-MP is evaluated for its performance on clusters of different
architectures. A Linux Beowulf cluster is given special attention due to its growing
popularity in academic settings.

3. PROBLEM STATEMENT

This evaluation considers the ZEUS-MP package with respect to compilation, con-
figuration, execution, performance, portability, and scalability.

3.1 Correctness

Running a short test problem and comparing the results to those of the ZEUS-MP
running on one processor without using MPI allowed the correctness of ZEUS-MP
to be confirmed. An isothermal solar wind problem was used for this testing. A
detailed description of this isothermal solar wind problem can be found in the Test
Problem Descriptions section.

3.2 Analysis of program structure

Parts of the source code of ZEUS-MP were analyzed to determine the techniques
that it uses to achieve parallelization. The details of the domain decompositition
that ZEUS-MP uses to distribute the problem’s data and the ways that it uses MPI
were studied with the most attention in this analysis.

3.3 Scalability

By varying the number of processors used for parallel computation the scalability
of the ZEUS-MP was studied. Speedup and efficiency were also calculated to put
timings into context.

3.4 Portability to different clusters

Running ZEUS-MP on two different clusters allowed for understanding how easily
the source code could be ported. Configuration and hardware differences between
clusters allowed the testing of different aspects of performance and scalability. One
of the clusters utilized was a Linux Beowulf cluster composed of 16 nodes, each
with a 400MHz Intel Celeron processor. The second cluster was composed of 20
Sun Ultra Enterprise 450s, each with 4 250MHz SPARC Ultra-II processors and
512MB of physical memory.

4. ANALYSIS OF PROBLEM

Since ZEUS-MP has been released for public use, we expected that it would yield
correct results. Benchmarks on the ZEUS-MP web site and in Norman [1999]
suggest that ZEUS-MP should show a near-linear speedup, and we expected to
observe the same trend in our own benchmarks. We also expected that the code
would port easily so that benchmarks could be collected for several clusters.

5. TEST PROBLEM DESCRIPTIONS
5.1 Supersonic Jet

In the initial state, the three-dimensional (3D) simulation grid is filled with a uni-
form density (of normalized value 1) and uniform pressure (also 1). This ambient
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medium is non-moving. At ¢ = 0, a supersonic, hydrodynamic jet is introduced
into the simulation. It is realized as inflow through a circular orifice in the center
of the £ = x,:, boundary plane. The orifice is 1 length unit in diameter, whereas
the physical dimensions of the y — z plane are 15 x 15. The circular shape of the
inflow boundary is approximated in Cartesian coordinates. The jet streams with
Mach 6.0 into the ambient medium, with one tenth of the density of the ambient
medium (at ten times the temperature, such that the pressures are equal).

It takes the jet shock front about 8 time units to traverse the length of the
simulation grid. Snapshots of the fluid density, taken at intervals of 2.5 time units,
are shown in Figure 1. While the simulation boundaries are outflow at £ = Zmaxz,
and periodic in y and z directions in Figure 1, many of the timing studies below
have been carried out with outflow boundary conditions also at Ymin, Ymaz, Zmin,
and Zz;,4.- In certain domain decompositions, these boundary conditions ensure
that no extra communications are necessary to carry out the periodic boundary
conditions.

We operate the jet problem on a relatively small grid (128 x 32 x 32), and also
on an almost eight times bigger grid (248 x 58 x 58). Different ways of domain
decomposition are studied below.

5.2 Sedov Blast Wave

Like in the jet problem, a uniform medium is seeded with a discontinuous pertur-
bation. In contrast to the jet, the perturbation (a small sphere of 100-fold density
and million-fold pressure) is in the interior of the 3D simulation grid, and is allowed
to evolve. Fluid is allowed to flow out through all Cartesian boundaries. In further
contrast to the jet problem, the blast is a MHD problem, where the initial field
is uniform along the x axis and breaks the symmetry, resulting in an ellipsoidal
perturbation when time evolves. Figure 2 illustrates a blast wave.

The fast shock expansion requires only simulations short in physical time. The
simulations were performed on a 64 x 64 x 64 grid.

5.3 Isothermal solar wind

The corona of the sun is very hot in relation to its surroundings, in fact it can
reach several millions degrees Kelvin. Due to this large temperature and density
stratification, there is a significant pressure gradient present near the surface of the
sun and this pressure gradient causes an outflow of matter from the sun into its
surroundings known as the solar wind, predicted by Eugene Parker in 1958, and first
discovered in 1960. This is a purely hydrodynamics (HD) simulation represented
in spherical coordinates in one dimension and runs should take no more than a
few minutes assuming about 400 grid points equally spaced. We expect that this
problem will take longer running in ZEUS-MP because its serial runtimes are very
small. This problem is computationally easy.

6. STRATEGY FOR PARALLELIZATION

ZEUS-MP is an SPMD parallel code that utilizes the MPI message-passing library
for communication between processors. ZEUS-MP uses domain decomposition to
distribute the data from the grid of the simulation to the processors involved in
the parallel computation. Since ZEUS-MP is inherently 3D, this domain decom-
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Fig. 1. Supersonic Jet
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Fig. 2. Sedov Blast Wave

position involves partitioning the data into cubes and distributing this data to the
assigned processor once at the beginning of execution. These cubes may be dis-
torted from perfect cubes, but will always have three dimensions. Each processor’s
data includes two additional layers of data on all of its 6 boundaries, known as
ghost zones. Ghost zones serve as boundaries for the grid. Boundaries that are
physical (exterior) boundaries of the domain are handled as such. Interior bound-
aries are non-existent in the serial ZEUS version, but appear in ZEUS-MP due
to the domain decomposition. The last two active zones of one processor are al-
ways communicated to the ghost zones of the neighboring processor. In this way,
boundary values are shared between processors with MPI communication routines
throughout the duration of a simulation.

The geometry of the cubes is user-determined at runtime. There are directives
in the mpitop section of the runtime control file (zmp_inp) that control the geome-
try of the domain decomposition for the simulation. They are named ntiles(1),
ntiles(2), and ntiles(3), each representing one of the dimensions. Figures 3, 4
and 5 offer graphical representations of domain decompositions that were used in
our performance studies and their associated ntiles values in a Cartesian coordi-
nate system.
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Fig. 3. Domain Decomposition with ntiles(1)=8, ntiles(2)=1, ntiles(3)=1

Fig. 4. Domain Decomposition with ntiles(1)=4, ntiles(2)=2, ntiles(3)=1

The selection of geometry for the domain decomposition can greatly impact the
runtime of a simulation since ZEUS-MP must coordinate communication of bound-
ary values between neighboring processors. In general, minimizing the total surface
area on boundaries between processors will also minimize the number of values that
must be communicated between processors, potentially reducing runtimes. How-
ever, this greatly depends on the type of problem that ZEUS-MP is simulating
during an execution. If the problem is periodic along any boundary the edges
defining that boundary in the domain will have to be communicated to the oppos-
ing edge of the domain, introducing additional communication costs that are not
captured in the general surface area observation. Figure 6 illustrates a problem that
is periodic in z. The four processors communicate values along their boundaries
as indicated by the arrows and also across their edge boundaries in z, since this
problem is periodic in z.

7. IMPLEMENTATION DETAILS

The initial decomposition of the domain across all processors participating in a
simulation is handled by the code in the subroutine mstart.F that handles the
bookkeeping of the domain decomposition. Below is an excerpt of the code from
this source file mstart.F that defines the initial domain decomposition. Much of
the work is done by the MPI_CART_CREATE procedure, which accepts the topology
(defined by the ntiles values in zmp_inp), periodicity for each dimension (defined
by the periodic values in zmp_inp and creates a new Cartesian communicator
that arranges the processors in the topology to allow for the most efficient com-
munication. This relies heavily on knowledge that the MPI implementation has of
the cluster’s hardware, especially costs associated with transferring communicated
data across the network that connects the processors. The calls to MPI_CART _SHIFT

Fig. 5. Domain Decomposition with ntiles(1)=2, ntiles(2)=2, ntiles(3)=2
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Fig. 6. Additional communication introduced in periodic problems

allow the node to locate the rank of its neighbors in the Cartesian communicator
created by MPI_CART_CREATE. The call to MPI_CART_COORDS allows the node to find
its coordinates within the same Cartesian communicator.
c
c Create a virtual Cartesian topology for the domain decomposition.
c
call MPI_CART_CREATE( MPI_COMM_WORLD, 3, ntiles, periodic
& , reorder, comm3d, ierr )
call MPI _COMM RANK( comm3d, myid, ierr )
call MPI COMM SIZE( comm3d, nprocs, ierr )
e
c Find the ranks of my neighbors; find my virtual Cartesian coords.
e
call MPI CART SHIFT( comm3d, O, 1, nlm, nlp, ierr )
call MPI CART SHIFT( comm3d, 1, 1, n2m, n2p, ierr )
call MPI _CART_SHIFT( comm3d, 2, 1, n3m, n3p, ierr )
c
call MPI_CART_COORDS( comm3d, myid, 3, coords, ierr )

Once the domain decomposition is complete the real calculation begins. At each
timestep, communication between tiles is initiated along one particular axis. Once
this is complete computation along that axis is performed. To ensure that all
the processors remain synchronized, calls to MPT_BARRIER are used. Subsequently,
calculations along the remaining two axes are performed. An alternate method to
achieve the same result could be to communicate between tiles along all three axes,
then perform the numerical calculations. The authors of ZEUS-MP found that
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this was not as efficient as the method actually used. Another important step in
simulation is calculating the timestep, dt. One has to make sure that all the tiles
use the same dt. Each tile calls a subroutine called nudt to calculate dt, which uses
a Courant condition to find the next timestep. MPI_ALL_REDUCE is then used to find
the minimum of all these timesteps. This new minimum dt is then communicated
to all the processors, and a new iteration can then begin [Fiedler 1997].

8. TESTING AND PERFORMANCE
8.1 Correctness

Correctness was tested by using the solar wind problem in ZEUS-MP first running
one one processor without using MPTI and then on four processors. ZEUS-MP run-
ning one one processor does not involve the complexities of domain decomposition
and boundary conditions between tiles. The results of these two runs are plotted in
Figure 7. The results from the two runs are overlayed, confirming that the results
from the two runs are identical. Additionally, simulations on multiple processors
using MPI yielded the same results even as the number of processors and domain
decomposition guidelines were changed.

8.2 Scalability

Scaling timings from runs of the jet hydrodynamics simulation with a (relatively
small) grid size of 128 x 32 x 32 grid points with y and z periodic on a Linux
Beowulf cluster are illustrated by Figure 8. The speedup derived from the timings
of Figure 8 are presented in Figure 9. The runtimes and speedup do not show a
linear speedup as suggested by the ideal line on each plot. This is much different
than the observations made in Norman [1999] where near-ideal scaling is found.

These near-ideal scalings were observed in an environment that is significantly
different from the results presented here. The near-ideal results were found with
simulations ranging up to 256 processors for grid sizes of up to 5123 grid points,
making those problems much larger and solved by many more processors than used
for the study presented in this paper. The near-ideal benchmarks were also per-
formed on an SGI Origin 2000 with presumably very fast inter-processor communi-
cations. SGI is the preferred target architecture for ZEUS-MP since optimizations
in the source code have been tailored specifically for this architecture. Loop opti-
mizations including data prefetching are used to increase cache performance [Fiedler
1997].

The scaling trends observed running the same jet hydrodynamics simulation on
the Linux Beowulf and the Sun clusters were very similar. Speedup observed on
the Sun cluster is presented in Figure 11. Memory limitations prevented us from
obtaining a single processor timing for the Sun cluster. The single processor baseline
for calculating speedup was estimated by dividing the time for 2 processors by 2.
This leads to an ideal speedup at 2 processors, which is artificially introduced by
this estimation. The 16 processor run is also inconsistent.

8.3 Geometric Effects

Selection of different topologies for the distribution of the domain to each processor
can have significant impact on the runtime of a simulation on ZEUS-MP. Table
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Table 1. 8 Processor Jet Domain Decomposition (no periodicity)
128 x 32 x 32 grid 248 x 58 x 58 grid
topology | elapsed time | points/comm | elapsed time | points/comm
4x2x1 2439 7168 9456 24476
8x1x1 2009 7168 1026 23548
2X2x2 2868 9216 1115 32132

1 presents runtimes utilizing 8 processors on a Linux Beowulf cluster. The table
presents runtimes for two grid sizes, each in three topologies. The results illustrate
that as the problem size increases, different topologies may yield better runtimes.
Some calculations can be performed to understand these trends. For the 8 x 1 x 1
topology in the 128 x 32 x 32 grid, each processor’s domain is 16 x 32 x 32 grid
points. During each timestep boundary values must be communicated to each
processor’s neighbors. In the 8 x 1 x 1 topology there are 7 boundaries that require
communication. The number of grid points communicated at each time step can
be found as 32 x 32 x 7 = 7168 grid points. This value can be found similarly for
the other topologies for the 128 x 32 x 32 grid size. The 2 x 2 x 2 topology has per
processor domains of 64 x 16 x 16 grid points in size. There are eight boundaries
that communicate 64 x 16 grid points and four boundaries that communicate 16 x 16
grid points. The number of grid points communicated at each time step is 8 x 64 x
16 + 4 x 16 x 16 = 9216. The 4 x 2 x 1 topology has per processor domains of
32 x 16 x 32 grid points in size. There are four boundaries that communicate 32 x 32
grid points and six boundaries that communicate 16 x 32 grid points. The number
of grid points communicated at each time step is 4 x 32x32+6x 16 x 32 = 7168 grid
points. In all of these calculations two factors of 2 could have been included for each
term. One of these factors accounts for the fact that communication is bidirectional
across each boundary, so twice the data accounted for above is communicated. The
second factor of 2 would account for the two ghost zones in each processors domain
instead of the one used above. Since these two factors of 2 would be included in
each term, they can be left out for simplicity.

All of these calculations of the number of grid points communicated per time step
are included in Table 1 in the column labeled “points/comm”. For the 128 x 32 x 32
grid, the number of grid points communicated per time step for the 4 x 2 x 1
and 8 x 1 x 1 topologies are the same. This is because the geometry of the per
processor domains are the same, just rotated. Due to the great flexibility that
ZEUS-MP offers, it is difficult to clearly determine why the timings for these two
geometries are different while the grid points communicated per time step are the
same. One speculation might be that there are 7 total boundaries in the 8 x 1 x 1
topology meaning that there are 14 total communications per time step (recalling
that the communications are bidirectional). In the 4 x 2 x 1 topology, there are 10
boundaries leading to 20 total communications. Since the number of grid points
per communication are the same it would seem that the 8 x 1 x 1 topology should
perform better, and this is the case as shown in Table 1. Following from this, the
2 x 2 x 2 topology communicates more grid points per communication and needs
to perform more communications per time step (12 bidirectional boundaries leads
to 24 communications) and does have the longest runtime.

These previous speculations do not seem to apply in the case of the larger (248 x
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58 x 58) grid. In this case the 8 x 1 x 1 topology has the fewest grid points
communicated per time step and the fewest communications per time step, yet its
runtime is greater than that for the 4 x 2 x 1 topology. Although the total number
of communications for the 8 x 1 x 1 topology is fewer, they each involve more grid
points than some of the communications of the 4 x 2 x 1 topology. The additional
number of communications in the 4 x2x 1 topology may allow those communications
to complete more in parallel because there are more processors involved that do not
share boundaries. Even though the number of grid points communicated is greater,
less waiting during communications might lead to the shorter runtime. Once again,
the 2 x 2 X 2 topology has the most grid points per communication, and the most
communications per time step and consistently has the longest runtime.

8.4 Platform Effects

As a simple comparison, a run of the jet hydrodynamics simulation ran 2291 seconds
on the Linux Beowulf cluster and 9297 seconds on the Sun cluster. The designs
of these clusters are significantly different so no additional meaningful conclusions
can be drawn from this timing comparison. The speedup obtained on both clusters
(Figures 9 and 11) is similar. This indicates that there is nothing inherently different
in the way the simulations are running on each cluster and that if the hardware
were closer matched runtimes might be more similar than they are. As a reminder,
it is believed that there are no architecture-specific optimizations for the hardware
in either of these clusters.

9. REFLECTION

One of the initial goals of this project was to build ZEUS-MP for each of the test
clusters. Generally, applications developed on *nix platforms are fairly portable,
but ZEUS-MP was much more of a challenge to build for different platforms than
ever imagined. ZEUS-MP has been implemented with cross platform compatibility
in mind, but it was apparent that ZEUS-MP had never been built for the Linux,
DEC, and Sun platforms that we planned to test with. There were several hurdles
that made this cross platform compilation more difficult than it generally is.

9.1 System Libraries

Multiple system libraries were required to compile the package. No documentation
exists with the package to indicate which libraries were required (and where they
could be found), nor is there a configure script to search for the required libraries,
reconfigure the makefile, or tell the user what they are missing. We found that the
FFTW-2.1.2, HDF4.1R3, and MPICH-1.2.1 libraries were required for the modules
of ZEUS-MP that we used. Additionally, particularly in the case of DEC, we
encountered fatal errors linking against the required libraries.

9.2 System Dependencies

This was not a serious problem, since precompiler directives for SGI, Sun, and DEC
(as well as others) were already defined in the ZEUS-MP package. Precompiler
directives for Linux were missing.
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9.3 Precompiler directives

To make the code feature rich and portable the developers utilized large numbers
of precompiler directives. Unfortunately, we found that due to inconsistencies with
comments in the FORTRAN code combined with using a C precompiler lead to
much confusion. In some cases it was necessary to edit the FORTRAN source
to allow for successful precompilation. Lines that began with ‘¢’ (a comment in
FORTRAN), especially if that line contained unbalanced single or double quotes
(“routine’s handling”, for example) required editing.

9.4 FORTRAN compilers and syntax standards

This was perhaps the most difficult problem we faced and the only one that pre-
vented us from compiling ZEUS-MP for the DEC cluster, and almost prevented
compiling it for the Linux Beowulf cluster. Using the DEC FORTRAN compil-
ers problems encountered were quote matches in comment lines, line lengths, code
spanning multiple lines, and variable placement, among others. Careful editing of
the code eventually allowed the generation of object code but the code and libraries
never successfully linked to create a binary.

To compile the package for Linux Beowulf the GNU F77 front end to the GNU
compiler was used. At the current time, this is the only F77 compiler freely avail-
able and it is not actively being developed and hasn’t yet made it out of BETA
versioning. The current version, 0.5.24, really only had problems with the quote
matches in the comment lines. Some careful editing of the code and amiss a flurry
of warnings, the GNU compiler did eventually build and link the code. These warn-
ings mostly dealt with MPI routines being called with argument lists of differing
length, or calls to the same MPI routine with arguments in the same position having
a different type.

10. FUTURE DIRECTIONS

Through our observations, ZEUS-MP appeared to yield correct results and per-
form reasonably well for those architectures that were were able to build a binary.
However, the package still seems to be in its infancy.

Certain combinations of input parameters caused consistent crashes, and other
input parameters caused less reliable crashes, which are even more difficult to pin-
point. As a rewrite of the serial implementation of ZEUS, it is believed that addi-
tional bugs have been introduced into this code as well. Resolution of these bugs
could build confidence in the package.

The large number of required libraries coupled with inconsistencies with FOR-
TRAN compilers and code and the lack of documentation with the package make
porting the existing code non-trivial. Consolidating the experiences that people
have had porting this code and streamlining the building process with information
from different platforms could help the adoption of this package.

The code is noted as being optimized in terms of the code on each node and
also in the MPI calls that are used to communicate between nodes. Following from
the limited portability, it does not appear that there are any architecture-specific
optimizations for architectures other than SGI. It is very likely that our scaling
results were not as ideal as those found by others because they were benchmarking
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ZEUS-MP on SGI clusters.

Overall, ZEUS-MP has promise as a tool that will allow for solving large prob-
lems in a much more timely fashion than the serial implementation of ZEUS. The
problems we encountered with ZEUS-MP were mainly rooted in using clusters not
composed of SGI hardware. Hopefully, future releases of ZEUS-MP will bring
smoother portability and optimizations for additional architectures.
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