
Scalable Parallel FFT for Spectral Simulations

on a Beowulf Cluster

P. Dmitruk a;1, L.-P. Wang b;1, W.H. Matthaeus a;1, R. Zhang c,

D. Seckel a

aBartol Research Institute, University of Delaware, Newark, DE 19716

bDepartment of Mechanical Engineering, University of Delaware

cEXA Corporation, Lexington MA

Abstract

The implementation and performance of the multidimensional Fast Fourier Trans-

form on a distributed memory Beowulf cluster is examined. We focus on the the

three dimensional (3D) real transform, an essential computational component of

Galerkin and pseudo-spectral codes. The approach studied is a one-dimensional do-

main decomposition algorithm that relies on communication-intensive transpose op-

eration involving P processors. Communication is based upon the standard portable

message passing interface (MPI). We show that 1=P scaling for execution time at

�xed problem size N3 (i.e., linear speedup) can be obtained provided that (1) the

transpose algorithm is optimized for simultaneous block communication by all pro-

cessors; and (2) communication is arranged for non-overlapping pair-wise commu-

nication between processors, thus eliminating blocking when standard fast ethernet

interconnects are employed. This method provides the basis for implementation of

scalable and eÆcient spectral method computations of hydrodynamic and magneto-

hydrodynamic turbulence on Beowulf clusters assembled from standard commodity

components. An example is presented using a 3D passive scalar code.

Key words: Scalability, parallel FFT, spectral simulation, Beowulf Clusters,

Message passing

1 E-mail addresses: pablo@bartol.udel.edu (P. Dmitruk), lwang@me.udel.edu (L.-P.

Wang), yswhm@bartol.udel.edu (W.H. Matthaeus)

Preprint submitted to Elsevier Preprint 5 July 2000

1 Introduction

Spectral and pseudo spectral method codes have been for many years the

mainstay of turbulence research [19,3,14,7,22]. These codes make extensive

use of the multidimensional Fast Fourier Transform (FFT) in calculation of

nonlinear wavenumber space convolution sums, which are eÆciently evaluated

using transform methods [16,11]. The FFT also is central in codes based upon

related methods involving cosine, Chebyshev and other transforms [6], as well

as in image processing and other applications. The performance of these algo-

rithms has depended upon an eÆcient implementation of the FFT on a pro-

gression of computing architectures. The crafting of multidimensional FFTs

tuned to particular computing environments began in the early 1970's (using

software that made use of special hardware features, such as STACKLIB),

and advanced through pipeline and vector approached on CYBER and Cray

supercomputers [21]. FFTs have also been extensively studied on Massive-

ly Parallel Processor (MPP) architectures beginning with SIMD approaches

[15]. These approaches later evolved to the asynchronous MIMD parallel ap-

proaches that are commonplace today [2]. The latter range from shared mem-

ory multiprocessors having backplane-speed interprocessor communications,

to distributed memory networks of workstations (NOW). In recent years the

Beowulf cluster concept has emerged as a promising approach for a�ordable

and practical parallel computing [1]. An ad hoc de�nition of a Beowulf clus-

ter (see http://www.beowulf.org on the web) is a collection of \commodity"

processors, dedicated to parallel processing (unlike NOW) and communicat-

ing through the fastest and most eÆcient interconnects that are a�ordable.

Real interconnect speed, including latency, is important in the distributed

memory Beowulf approach, since communication is likely to be a bottleneck

in many applications. Fast ethernet (100 Mb/s) is a standard at present, al-

though Gigabit/s ethernet may soon replace it. In its original conception [20]

Beowulf involves some e�orts to optimize the software layers through which

the individual processors access the interconnection network.

It has been recognized for some time [9,8] that parallel implementation would

become essential in attaining high Reynolds number turbulence simulations.

The basic strategies for parallel spectral methods have been discussed in the

literature for some time [15,17] These codes are typically based upon transform

methods [16,11] that involve repetitively transforming between con�guration

space and wave vector space. On any computer architecture the eÆciency of

these codes depend upon eÆcient implementation of multidimensional FFTs,

which comprise perhaps 60 to 80 % of the total computational work. Thus

there is a clear need to describe the key speci�c issues for eÆcient implemen-

tation of 3D FFTs on a Beowulf cluster, and this is the main motivation for

the present paper.

2

For the one dimensional FFT [13] there exists both a binary exchange algorith-

m, in which the data required for a length N transform are distributed across

all P processors, and a transpose algorithm in which the data are manipulated

as a matrix of dimension
p
N �

p
N . Strategies for the multidimensional FFT

[10,5] are in some ways more straightforward, and can be organized accord-

ing to the degree of locality of the underlying one dimensional FFT with the

so-called transpose method being the most local [5]. In the latter approach

all FFT operations are carried out locally on individual processors, and can

be either one-dimensional or two dimensional for the 3D FFT depending up-

on whether the data decomposition is in \pencils" (2D decomposition) or in

\slabs" (1D decomposition). For the 3D FFT most relevant to turbulence cal-

culations the transpose algorithm usually admits favorable scaling properties

provided that suÆcient memory (N3=P elements per array per processor) is

available on each processor [9]. The transpose method also bene�ts from the

fact that all FFT operations are local, and only data communication for the

purpose of transposing the data matrix take place across processors. For the

transpose method it is simple to change or adapt the FFT engine that is

used locally on each processor. Optimization of the communications strategy

becomes an entirely separate issue.

Essentially all previous treatments of parallel multidimensional FFTs recog-

nize the signi�cance of communication strategy as it almost always is a con-

trolling factor in distribution of work among processors [9]. This is due to the

technological fact that tw > tc, where tw is the interprocessor communication

time per word and tc is the computation time per operation on a processor.

For spectral methods (E.g., [17]) as with most algorithms, eÆciency (E) is

(approximately) a function of the ratio tw=tc. Most of the existing literature

explores FFT communications in the context of mesh [9], torus [5] or hyper-

cube [13,17] interconnection topologies. Presumably this is a consequence of

the architecture of massively parallel computers around a decade or so ago

(e.g., CM-2, NCUBE/1). There has been also a great increase in the availabil-

ity of shared memory computers (such as SGI Origin) or distributed memory

machine with proprietary fast interconnects (IBM SP). Such fast intercon-

nects tend to minimize tw as well as latency and blockage (contention) e�ects.

In the case of Beowulf clusters however the interconnects must be thought

of somewhat di�erently. On the one hand, the growing popularity of Beowulf

clustering is driven by the rapid increase in both processing and communica-

tion speed available in commodity products [4]. It is standard practice at this

time to design a Beowulf cluster using switches that provide, in principle, a

zero contention path between any pair of processors once the connection is set

up. Until the past few years this kind of \crossbar" communication network

was thought of as prohibitively expensive and in any case available only up to

about P � 25 [10]. The availability of fast cheap switches, perhaps more than

anything else, has made Beowulf clustering a serious option for supercomput-

ing applications. On the other hand we must also bear in mind that Beowulf

3

components may bring hidden limitations that require attention be paid to

design of both the hardware and algorithms.

In the following sections we discuss optimization of multidimensional FFT on

a Beowulf cluster for use in spectral simulations of
uids. The main focus is on

optimization of the transpose method with respect to the general communica-

tion strategy. This is the topic of Section 2. Optimization of the speci�c imple-

mentation on a switched fast ethernet interconnection network is discussed in

Section 3. Benchmarks are given in Section 4, where the speedup, total com-

pute time and eÆciency are discussed. Finally in Section 5 we summarize our

results and present sample timings from 3D pseudo-spectral hydrodynamic

turbulence code with passive scalar.

2 Parallel Transpose Method

The discrete multi-dimensional Fourier Transform can be written as:

H(n1; � � �; nL) =
NL�1X
kL=0

� � �
N1�1X
k1=0

exp(2�ikLnL=NL) � � exp(2�ik1n1=N1)h(k1 � � � kL)(1)

An L-dimensional FFT can be computed by taking a sequence of nested one-

dimensional FFTs Therefore, a three-dimensional FFT calculation can be ac-

complished using either three one-dimensional FFTs or one two-dimensional

FFT plus one one-dimensional FFT.

On parallel computers with a distributed memory option, a simple parallel

strategy is to slice the computational domain in one direction, e.g. z direction

(see Fig. 1). The FFT operation in the sliced direction is relatively ineÆcient

because the information is distributed on all nodes. Thus a special transpose

is introduced. After doing a two-dimensional FFT for each plane in each node,

the y and z directions are switched and the data in z direction is converted

into y direction so that each node has the complete information needed:

h0(k1; z; k2) = h(k1; k2; z) (2)

Then after doing a one-dimensional FFT in the new second direction and

doing a transpose to interchange y and z again, the three-dimensional FFT

is complete. The last transpose can be avoided in codes that can make use of

the FFT results in no particular order, for instance, when doing convolution

products in pseudo-spectral codes. This is the case we adopted here, when

measuring times in benchmarks. The FFT is called to be in \transposed"

order.

4

Since the communication between nodes is the most time-consuming part of

this parallel computation, a fully parallel communications algorithm is neces-

sary for the �rst transpose. On a switched Beowulf cluster maximum eÆciency

demands that all the communications channels be kept full. To accomplish this

we adopt an algorithm in which the transpose is accomplished in two stages.

First, blocks of data are transposed between processors, storing the result in

a temporary array. Then the transpose is completed by locally rearranging

each transmitted block as it is copied from the temporary array to the main

storage array. Fig. 1 demonstrates the algorithm based on four nodes. Since

the diagonal blocks a0; b1; c2; d3 only need to convert data inside each node,

so a total of n�1 times are needed to convert those blocks by message passing

for each node (total (n2 � 2n)=2). In the �rst step, the data moves in blocks

from b0 to a1, c1 to b2, d2 to c3, and a3 to d0. Secondly, the data moves from

c0 to a2, d1 to b3, a2 to c0, and b3 to d1. Finally, the data moves from d0 to

a3, a1 to b0, b2 to c1, and c3 to d2. After accomplishing the block transform

across nodes, the transpose is completed by converting data inside each block.

This strategy for the parallel FFT does not take into account any speci�c opti-

mization that may be done regarding the local FFT calculation on each node.

This is in principle an advantage to this approach, as it adapts quite easily

to whatever increased eÆciency can be gained by improvement of the local

FFT calculation. In the usual way we can develop an approximate quantita-

tive model for execution time (or complexity) of the message passing parallel

3D FFT on a square grid of size N3 using P processors. The total time per

FFT per node is

T = TCOMP + TCOMM (3)

where the �rst term represents computation time per node, the second repre-

sents communication time per channel including latency.

The computation time per node is the sum of the contribution from calcula-

tion of the local FFTs and the contribution from rearrangement of the local

temporary array. Based upon standard operation counts for the FFT [18] and

temporal array construction needed for the transposing routine, we may esti-

mate

TCOMP =
5

2

N3 log2 (N
3)

P
tc + (3P � 1)(N + 2)(

N

P
)2ta (4)

where tc is the single processor computation time per word and ta is the time

for memory-to-memory copy of a word.

The size of a block that a processor has to send to (or receive from) another is

(N +2)N2=P words (the N +2 factor, instead of N , comes from the fact that

5

in a complex-to-real FFTs 2 extra locations are required in real arrays). Each

processor needs to send and receive a block of this size from the other P � 1

processors, so the total communication time per processor may be estimated

as

TCOMM = 2(P � 1)(N + 2)

�
N

P

�2
tw + 2(P � 1)ts (5)

where tw is time for transmission of a single word between nodes and ts is the

startup or latency time for a message. For large N and P the per processor

time becomes

T ! tc
15

2

N3log2(N)

P
+ ta3

N3

P
+ tw2

N3

P
+ ts2P (6)

A model for time estimation like this one can be very useful in performance

analysis and projections for di�erent size N , number of processors P and

hardware or network parameters like tc, tw and ts.

We will turn now to characterization of the performance of the block trans-

pose 3D FFT on a small Beowulf cluster. An additional important feature

pertaining to the sequence of message passing calls will be discussed in the

context of the \experimental" evaluation.

3 Evaluation and Testing

EÆcient and scalable performance of the block transpose method can be read-

ily demonstrated even on a small Beowulf cluster. Here we employ a 16 n-

ode dedicated cluster, each node consisting of a 400 MHz Celeron proces-

sor with 128 MB local random access memory (RAM). The nodes are linked

by standard fast ethernet (100 Mb/s nominal speed) and a 16-port switch.

The Linux operating system is employed, using the GNU Fortran compil-

er and the portable MPI message passing system ([12] and http://www-

unix.mcs.anl.gov/mpi/mpich). For the local FFT in each processor we used the

public available FFTW (http://www.�tw.org) by M. Frigo and S.G. Johnson.

In discussing the performance of the FFT algorithm it will be convenient

to describe performance in terms of the formal estimates given above in E-

qs. (4,5). For a particular con�guration this requires that we know tc, ta, ts,

and tw. These can be determined empirically. tc � 6:5ns, ta � 70ns are readily

determined by running standard loops on a single processor (1=tc � 153 106

correspond to the cpu
oating point operations per second). These values cor-

respond to the intermediate size N = 128; slightly di�erent values can be

6

obtained for di�erent N , due to details on how the arrays for computation-

s are handled both at a software level (code and compiler) and in the local

memory management (cache, main memory). In this sense, the computational

time model of equation (4) has to be taken as a �rst approximation, since tc,

ta are not strictly independent of N or P .

The communications parameters can be found by performing simple numerical

experiments on the cluster, as is illustrated for our cluster in Fig. 2. Setting

up a simple exchange of a data array between two nodes, we can vary the data

length, performing each transfer many times for accuracy. For large message

sizes, we �nd a near linear relationship of time to message length. The slope

85�s=Kbyte of this line corresponds to a time per word (where 1 word =

4 Bytes = 32 bit in single precision computation) tw � 0:34�s=word. This

also corresponds to a bandwidth of 94Mb=s on our commodity fast ethernet

interconnects. This estimate is obtained for two processors alone with the

others silent, so it does not include blocking e�ects that may be associated,

for example, with the architecture of the switch or of the ethernet interfaces.

Below we will consider these e�ects, which have nontrivial consequences. Also

from Fig. 2 we can estimate the y-intercept, which gives the latency or startup

time ts � 100�s.

The performance of the 3D FFT under optimal conditions can be compared

for varying problems size, and this is illustrated in Fig. 3. Also shown is a

comparison with the performance estimates. Test cases are shown for three

problem sizes, N = 64; 128 and 256. The processor number is varied from 1

to 16 for these tests. A fully switched network with optimal message passing

strategy (discussed further below) is employed. The 3D FFT time is shown

as a total amount and broken down into computational and communications

timings. It can be seen from the �gure that the scaling with P works as

expected especially at the larger processor numbers. This provides con�dence

that the naive timing estimates are not far o�, and therefore quite useful in

planning and managing runs done on the cluster.

The eÆciency is the ratio of total time on one processor to P times the P

processor total time, E = T1=PTP , for a �xed size problem. We show the

eÆciency as a function of P for the FFT problem of sizes N = 64; 128 and

256, in Fig. 4. It is apparent that E is maintained at reasonable levels for the

parameters considered. There is also a suggestion that eÆciency is better for

larger problem size.

This is related to the estimate of speedup S = T1=TP = PE that can be

derived from the performance expressions, as

S =
P

1 + 4

5

tw

tc
log2 (N

3) + 4

5

ts

tc

P
2

N
3 log2 (N

3)

(7)

7

Extrapolating this expression to larger numbers of processors, we illustrate, in

Fig. 5 the projection of 3D FFT performance out to 128 processors. It can be

clearly seen that the performance of the 643 problem degrades beyond about

30 processors, an e�ect attributable according to Eq. (7) to the latency time.

The same e�ect can be seen for 1283 problem size, but the good performance

prevails up to P = 100 in this case. For the largest problem size the speedup

remains nearly linear indicating high eÆciency and overall good performance.

This e�ect is also manifest in the calculated M
ops rate (million
oating point

operations per second, calculated as 5

2
N3log2(N

3)=TP) achieved by the test

runs. These are shown in Fig. 6. The 3D FFT code achieves sustained rates

of up to 800 M
ops for the 2563 problem on sixteen processors, but only 600

M
ops for the 643 problem on the same number of processors. However it is

clear that for any �xed problem size the M
ops will reach some maximum as

P is increased, again because of latency.

Equation (7) is also useful to estimate the e�ect on performance when im-

proving single processor CPU speed (which decrease tc) and/or increasing

network bandwidth (for instance, a gigabit network would decrease tw by ap-

proximately a factor 10 with respect to the fast ethernet network). Decisions

for improvement in the hardware, at least for a project involving these kind

of problems, can be made taking into account these e�ects in performance.

As a �nal issue of importance to attaining optimal communication eÆcien-

cy, we examine brie
y two features of our interconnections { �rst the switch

con�guration and secondly, the communication pairings. The �rst of these

is rather more obvious. The cluster is expected to function most eÆciently

when it is fully switched. In this case there is no blocking of messages due

to contention of traÆc on the network. This is the idealized case represented

above in our performance studies. Indeed we have seen above that for fully

switched interconnections, ideal performance is very nearly achieved. However

it is worthwhile to examine the degradation of the interconnect performance

as the level of switching is decreased. This can be achieved experimentally by

recon�guring the cluster's private network, employing hubs instead of switches

for each set of several nodes. The hubs cause the nodes to share bandwidth,

increasing the frequency of network contention and the possibility of message

packets collisions. Results of such a test are shown in Fig. 7. For a N = 1283

test the results for the fully switched con�guration are compared with result-

s for interconnect setups with 2 nodes per hub, and with 4 nodes per hub.

The results are shown for varying P . The more nodes per hub the greater

the network contention. It is clear that the switched interconnect is the best

performing and that network contention ruins the theoretical scaling, which

agreed well with the switched interconnect case.

The �nal remark we wish to make about communications strategy is somewhat

more subtle. In our �rst attempts at veri�cation of the theoretical performance

8

scalings, we employed the following communication strategy: A sequential list

of processors is established. Each processor �rst passes data to the processor

below it on the list, while receiving data from a processor just above it on the

list. Next, processors send data to the second element down the list, and so on,

wrapping the end of the list back to the top. One might expect this \cyclic"

strategy to be optimal, but it is not. Comparisons with the theoretical scaling

in this case implies a blocking factor B > 1 such that tc ! Btc.

It turns out that a superior approach is to enforce pairwise communication, so

that, each node is sending to the same node from which it receiving. Suitable

algorithms can be constructed for generate a list of such pairings so that each

node forms a temporary pairing with every other one, keeping the full network

bandwidth occupied . An example of this would be an algorithm that gener-

ates \round robin" tournament pairings in a single elimination tournament.

This round robin schedule can be established initially, keeping a list of \con-

tenders" for each processor in a list array ready for use in the communication

part of the FFT. We carried out a comparison of the cyclic and pairwise com-

munication strategies, the results of which are portrayed in Fig. 8. Shown are

communications time for N = 256 3D FFT test runs for these two cases. A

third set of runs is also shown that employs the MPI \all-to-all" operator [12]

for the communications step. It is evident that the pairwise method gives the

best performance. For smaller problem sizes (N = 64; 128) these di�erences

still exist at intermediate number of processors (P = 4; 8), but tend to dimin-

ish as the number of processors increase, which indicates that di�erences in

communication strategies tend to be less important when message packets are

small.

4 Hydrodynamic Passive Scalar Code

To demonstrate performance of an application that relies heavily upon the 3D

FFT we present performance data for a hydrodynamic passive scalar code. The

code addresses the standard homogeneous turbulence problem { solution of the

3D incompressible Navier Stokes equations in cartesian periodic geometry. In

addition to the incompressible Navier-Stokes equations, a passive scalar �eld

is solved according to

@

@t
+r � (v) = �r2 ; (8)

where � is the scalar di�usivity. See, for example, [23] for additional details.

The numerical method is a pseudo-spectral (or, collocation) scheme, employing

a second order time integration. In the native Fourier representation employed

by the code, spatial derivatives are evaluated algebraically by multiplication by

9

factors involving the wave vector k. This property ensures both accuracy and

eÆciency. Advancing the velocity and scalar �elds at each time step involves

the computation of nonlinear terms such as Z � r � (v) that appears in

Eq. (8). Such terms are convolutions in the k-space. In the pseudo-spectral

method they are evaluated eÆciently by computing the product in the x space

but then performing the spatial derivatives in the k-space. Thus to evaluate

Z, one transforms (k) ! (x) and v(k) ! v(x). The second transform is

a part of the hydrodynamics simulation. The product v(x) (x) is computed

in the x space and then transformed back to the k-space. The divergence

operation is performed in the k-space which completes the evaluation of Z(k).

The speci�c number of required 3D transforms per time step depends upon

the particular way the equations are written. Following the method of [23],

the number of 3D FFTs per time step is 13 (9 for the solution of the Navier

Stokes equations and 4 for the scalar �eld). The computational eÆciency of

the 3D FFT is crucial for the performance of the code.

Here we illustrate the code's performance using the block transpose FFT op-

timized for the current Beowulf cluster as we described above. Several runs

were done, at resolutions varying from 643, 1283 and 2563. We ran the code

on P = 1; 2; 4; 8 and 16 processors on the Beowulf cluster. Fig. 9 shows the

code performance in terms of total time for 643 size (the only one for which

runs with P = 1 can be done, due to single processor memory limitations).

One can see that the scaling properties are very similar to those of the FFT

itself. This method enables codes of this type, usually run on supercomput-

ers and expensive shared memory computers, to be e�ectively run on small

commodity class Beowulf clusters.

Further test data performed on a larger Beowulf cluster at ICASE of NASA

Langley are shown in Figure 10. Here each single CPU node is a Pentium II

400 MHz processor and has 384 MB of RAM, and therefore 1283 simulation

can also be conducted on a single node. As many as 32 CPU nodes with fast

ethernet network and switch were used. The overall computation eÆciency

increase with problem size (N) and decrease with P , as expected. An eÆciency

of 0:57 is achieved on 32 nodes for 1283 simulation. A better eÆciency is

achievable for higher mesh resolutions.

For a problem requiring extensive nonlocal communications, this level of s-

calability is quite satisfactory and has not been demonstrated for Beowulf

clusters.

Speedup for this test run is also shown in Fig. 10, indicating good performance

for the 1283 case up to the highest number of processors and some degradation

for the 643 around 32 processors, due to latency e�ects as we mentioned in

the FFT tests.

10

5 Conclusions

We have described parallel FFT algorithm based on a block transpose ap-

proach using MPI on a distributed-memory multiple-computer system inter-

connected by fast ethernet. Simple tests quantitatively measured scalability of

the computation time and communication time. We studied several questions

related to the communication load: How does the communication time depend

on the system and problem parameters { communication bandwidth, number

of nodes, and problem size? How does the communication time depend on the

communication scheme (non-overlapping pairing versus cyclic scheme)? What

is the e�ect of communication hardware con�guration? We also developed a

model for scheduling non-overlapping pairings for the optimum communica-

tion mode. Finally we integrated the MPI FFT scheme into a spectral code

and demonstrated its performance.

Our main conclusions are as follows. (1) The communication time and compu-

tation time can be described analytically; (2) For a given problem size, CPU

speed, and communication bandwidth, there exists an optimum node number

for the overall execution time (a single FFT or the simulation of full passive

scalar turbulence). A model for this has been developed. This allows for pro-

jection of performance on future distributed memory multicomputer Beowulf

systems. (3) Communication hardware con�guration can substantially a�ect

the performance.

Acknowledgements

This research supported in part by the NSF Major Research Infrastructure

program under grants PHYS-9601834, and ATM-9977692., and by NASA un-

der grant NAG5-7164. Part of the test data were obtained using the computing

facility at ICASE, NASA Langley. L.P. Wang thanks Dr. L-S. Luo for arrang-

ing his visit to ICASE.

References

[1] M. Atiquzzaman and P.K. Srimani, Parallel computing on clusters of

workstations (Guest editorial), Parallel Computing, 26 (2000), 175-177.

[2] A. Averbuch and E. Gabber, Portable parallel FFT for MIMD

multiprocessors, Concurrency: practice and experience, 10 (1998), 583-605.

11

[3] M.E. Brachet, M. Meneguzzi, H. Politano, and P. Sulem, The dynamics

of freely decaying two-dimensional turbulence, J. Fluid Mech., 194 (1988),

333-349.

[4] R. Brightwell, L.A. Fisk, D.S. Greenberg, T. Hudson, M. Levenhagen,

A.B. Maccabe, R. Riesen, Massively parallel computing using commodity

components, Parallel Computing, 26 (2000), 243-266.

[5] C. Calvin, Implementation of parallel FFT algorithms on distributed

memory machines with a minimum overhead of communication Parallel

Computing, 22 (1996), 1255-1279.

[6] C. Canuto, M. Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods

in Fluid Dynamics (Springer, New York, 1988).

[7] S. Chen and X. Shan, High resolution turbulence simulations using the

Connection Machine-2, Comput. Phys., 6 (1992), 643-646.

[8] A.T. Degani and G.C. Fox, Parallel multigrid computation of the unsteady

incompressible Navier-Stokes equations J. Comp. Phys., 128 (1996), 223-

236.

[9] P.F. Fischer and A.T. Patera, Parallel simulation of viscous incompressible

ows, Ann. Rev. Fluid Mech., 26 (1994), 483-527.

[10] I.T. Foster, Designing and Building Parallel Programs (Addison-Wesley,

Reading, Massachusetts, 1995).

[11] D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods:

Theory and Application, (SIAM, Philadelphia, 1977).

[12] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel

Programming with the Message Passing Interface (MIT Press, 1995).

[13] A. Gupta and V. Kumar, The scalability of FFT on parallel computers,

IEEE Trans. on Parallel and Distributed Systems, 4 (1993), 922-932.

[14] W.H. Matthaeus, W.T. Stribling, D. Martinez, S. Oughton and D.

Montgomery, Phys. Rev. Lett., 66 (1991), 2731-2734.

[15] P. Moin and J. Kim, Numerical investigation of turbulent channel
ow, J.

Fluid Mech., 118 (1982), 341-377.

[16] G.S. Patterson and S.A. Orszag, Spectral calculations of isotropic

turbulence: EÆcient removal of aliasing interactions, Phys. Fluids, 14

(1971), 2538-2541.

[17] R.B. Pelz, The parallel Fourier pseudospectral method, J. Comp. Phys., 92

(1991), 296-312.

[18] W. Press, B. Flannery, S. Teukolsky and W. Vetterling, Numerical Recipes,

The Art of Scienti�c Computing (Cambridge University Press, Cambridge,

UK, 1986).

12

[19] R.S. Rogallo, P. Moin, Numerical simulation of turbulent
ows, Ann. Rev.

Fluid Mech., 16 (1984), 99-137.

[20] T.L. Sterling, J. Salmon, D.J. Becker and D.F. Savarese, How to Build a

Beowulf: A Guide to the Implementation and Application of PC Clusters

(MIT Press, 1999).

[21] C. Temperton, Self-sorting mixed radix Fast Fourier Transforms, J. Comp.

Phys., 52 (1983), 1-23.

[22] L.-P. Wang, S. Chen, J.G. Brasseur and J.C. Wyngaard, Examination of

hypotheses in the Kolmogorov re�ned turbulence theory through high-

resolution simulations. Part 1. Velocity �eld, J. Fluid Mech., 309 (1996),

113-156.

[23] L.-P. Wang, S. Chen and J.G. Brasseur, Examination of hypotheses in the

Kolmogorov re�ned turbulence theory through high-resolution simulations.

Part 2. Passive scalar �eld, J. Fluid Mech., 400 (1999), 163-197.

13

14

z

y

0 1 2 3

c

d

a

b

Fig. 1. The illustration of the block transpose algorithm. The computational domain

in this example is sliced into four pieces in z direction. The data is exchanged

between corresponding blocks in a parallel manner.

15

Fig. 2. Communication time between two nodes as a function of length of the data

transmitted. The slope of this line gives tw, the communication time per word. The

y-intercept gives the latency time.

16

Fig. 3. FFT times (total, computation and communication) as function of number

of processors P for sizes (a) 1283, (b) 643, (c) 2563. The points (plus signs, triangles

and stars) correspond to measured times, the lines are the theoretical estimates

from Eqs. (4, 5).

17

Fig. 4. FFT eÆciency as function of number of processors P for sizes 643, 1283 and

2563. The lines here are only to connect measured values.

Fig. 5. FFT speedup projections based on the estimates of Eqs. (4, 5) extrapolated

up to 128 processors. Problem sizes of 643, 1283 and 2563 are shown.

18

Fig. 6. Measured FFT MFLOPS (million
oating point operations per second) as

function of number of processors P for sizes 643, 1283 and 2563. The lines here are

only to connect measured values.

19

Fig. 7. Measured FFT communication times as function of number of processors

at problem size 1283 for di�erent network con�gurations. Plus signs correspond to

a fully switched interconnection, triangles and stars correspond to con�gurations

with hubs that cause nodes to share bandwidth.

Fig. 8. Measured FFT communication times as function of number of processors

at problem size 2563 for di�erent communication strategies. Plus signs correspond

to a pairwise scheduling, triangles correspond to a cyclic scheme and stars are the

communication times when using the MPI alltoall directive.

20

Fig. 9. Measured time per timestep and speedup as function of number of processors

for a hydrodynamic 3D pseudo-spectral simulation.

21

Fig. 10. EÆciency and speedup as function of number of processors for a hydrody-

namic 3D pseudo-spectral simulation performed on a larger Beowulf cluster

22

