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1 Introduction

A proliferation in use of embedded systems is giving cause
for a rethinking of traditional methods and effects of pro-
gram optimization and how these methods and optimizations
can be adapted for these highly specialized systems. This pa-
per attempts to raise some of the issues unique to program
analysis and optimization for embedded system design and
to address some of the solutions that have been proposed to
address these specialized issues.

This paper is organized as follows: section 2 provides
pertinent background information on embedded systems, de-
lineating the special needs and problems inherent with em-
bedded system design; section 3 addresses one such inherent
problem, namely limited space for program code; section 4
discusses current approaches and open issues for code min-
imization problems; section 5 proposes a new approach to
the code minimization problem; and finally section 6 pro-
vides areas of related work to embedded systems.

2 Background

Consumers’ hunger for smaller, faster, more powerful gad-
gets in the telecommunication, multimedia, and consumer
electronics industries is pushing the integration of complete
systems onto a single chip [Lie97]. The demand for con-
sumer oriented, wireless communication and multimedia de-
vices directly impacts the design of the underlying architec-
ture for such gadgets. Embedded systems are quickly be-
coming the means to meet these consumer demands. Em-
bedded systems are much more specialized in nature than
general computing systems (e.g. desktop computers, lap-
top machines, servers, and workstations). Embedded sys-
tems are designed to serve dedicated functions (e.g. anti-
lock brake systems, digital cellular phones, video coding for
HDTV, audio coding for surround sound, etc.).

The special nature of use of these personal digital assis-
tants (PDA’s) imposes several critical criteria on their design.
These systems must:

� have low cost

� have low power consumption

� require as little physical space as possible

� meet rigid time constraints for computation completion

These requirements place constraints on the underlying
architecture’s design, which together affect compiler design
and program optimization techniques. Each of these crite-
ria must be balanced against the other, as each will have an
effect on the other (e.g. making a system smaller and faster
will typically increase its cost and power consumption). A
typical embedded system, as illustrated in figure 1, consists
of a processor core, a program ROM (Read Only Memory),
RAM (Random Access Memory), and an ASIC (Applica-
tion Specific Integrated Circuit). The cost of developing an
integrated circuit is linked to the size of the system. The
largest portion of the integrated circuit is often devoted to
the ROM for storing the application. Therefore, developing
techniques that reduce code size are extremely important in
terms of reducing the cost of producing such systems.

Unfortunately, the current state of the art in compilation
for embedded systems is somewhat left to be desired. We
live in an era where memory for the general use computer is
abundant and processing speed is remarkably fast. Thus is-
sues such as limiting code size for compiled code have taken
a back seat to other optimizations. Compiler technology for
embedded system design must support:

� compilation for low-cost, irregular architectures (in-
struction set programmable architectures) like micro-
controller units (MCU’S), Digital Signal Processors
(DSP’s), and application specific instruction set pro-
cessors (ASIC’s)

� rich data structures to support complex instruction sets
for the above

� extensive searching (helpful in register allocation,
scheduling, & code selection)
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Figure 1: A typical embedded system.

� methods for capturing architecture specific optimiza-
tions easily

All of these new requirements render current compiler
technologies at least inefficient and at most unusable for em-
bedded systems. In fact, most source codes for embedded
systems today are written in assembly, despite all the bene-
fits that come with today’s high level languages. The costs
of using these high level languages via traditional compila-
tion are too great in terms of executable code size, execution
time, and number and type of registers used. Further, a com-
piler for embedded systems must be:

� retargetable - able to compile to a number of changing
instruction sets for different architectures

� able to handle register constraints - most embedded
processors have a number of special-purpose rather than
general-purpose registers (allows for tighter instruction
coding)

� able to handle specialized arithmetic - DSP’s often have
specialized math operators which require more than 3
operands (thus rendering 3-address-code useless)

The complexity of these systems are forcing designers
who were once able to implement functions in hardware to
switch to implementing the functions in software and then
burning the program onto a chip. There is now a motiva-
tion to switch to high-level languages to program embed-
ded systems, assembly languages are being phased out be-
cause development costs are lower when using high-level
languages. One disadvantage of implementation via high-
level languages is increased code size. This is a problem

that must be addressed because embedded systems are usu-
ally constrained to relatively small memories.

Thus, with the onslaught of embedded processors and
embedded systems, we are now forced to re-examine many
of today’s optimizations and their effect on the target code in
terms of code size, register use, instruction scheduling, and
garbage collection, among other issues.

3 Code Minimization for Embedded Systems

The whole premise of an embedded system demands that
it be small; no one wants to carry around a portable phone
that is as large as a toaster. This constraint on size means
there can be no wasted space. Put more succinctly, every-
thing from chip design to on-board memory must take as
little space as possible. To this end, a few approaches to
limiting the amount of memory needed to hold executable
code have surfaced. Some techniques look at instruction
scheduling [CS98, CSS99] and its effect on target code size.
Other techniques employ some form of pattern matching
[CM99, LDK99] to eliminate regions of repeated code. A
third genre of technique attempts to physically compress the
target code [LW98] to save on precious memory space.

An attempt to limit target code growth via efficient in-
struction scheduling was introduced by [CS98]. This tech-
nique merely tries to repair the damage (the increase in code
space requirements) normally done by instruction schedul-
ing optimization (e.g. finding another sequence of instruc-
tions that minimizes the number of ’nop’ instructions). This
is done by scheduling larger regions of code which allows a
higher degree of fine-grain parallelism (ILP) to be achieved,
thus eliminating ’nop’ or stall instructions. This technique
adds a good deal of overhead (in terms of time) to the schedul-
ing phase of compilation. Somehow finding a way to de-
crease instruction scheduling time while increasing the size
of the block of instructions to be scheduled would be wel-
comed improvements.

In [CSS99], Cooper et al. expanded the above approach
to include a series of optimizations in which genetic search
algorithms find a sequence of optimizations that produce
small codes. Genetic algorithms are search algorithms de-
signed to mimic the process of natural selection and evolu-
tion in nature. The goal of the algorithm in this case is to
search for the best optimizing sequence that creates minimal
codes. Cooper at al. validates their approach with experi-
ments using C and FORTRAN codes. The genetic algorithm
approach produces code sizes that range from 20 to 75 per-
cent smaller than unoptimized code. They also show that
the GA produces codes with 0 to 40 percent fewer static op-
erations, and that the GA can produce codes with 25 to 26
percent fewer dynamic operations. Since code for embedded
systems is often compiled once and burned onto a ROM, the
software designer will tolerate longer compile times. Ge-



netic algorithms do take a long time to run. For their results,
they ran the GA for 10 hours to find the best optimization
sequence. The GA approach typically produces small object
codes, but not always. Also, the code produced may some-
times run more slowly than the original code, but it is stated
that code speed comes secondary to code size.

The goal of Liao et al’s work is to achieve maximal code
compression while incurring very little performance penalty
[LDK99]. The basic technique uses a data compression ap-
proach where common sequences of code are extracted to
form dictionary entries and are replaced by mini subrou-
tine calls to the dictionary. Liao et al. formulate the dic-
tionary entry selection and substitution problem as a set-
covering problem. Two methods are introduced, one based
on software and the second based on hardware/software. The
automatic minimization of code size relieves the program-
mer from worrying about making programs small and allows
them to write programs in a high level language. Their re-
sults show that the hardware/software approach outperforms
the software only approach by 2-5%. The drawback of the
hardware/software approach is the requirement for special-
ized hardware. The disadvantage of both techniques is the
size/speed trade-off. The time needed to uncompress code
at run-time can be a hindrance to the benefit of the small
code size. But slow speeds are tolerated when small code
size is required due to system specifications.

Liao et al. and Cooper and McIntosh have mildly sim-
ilar approaches in code minimization techniques. Liao et
al. finds common sequences of code and inserts them into a
dictionary. The code sequence is replaced with a mini sub-
routine call to the dictionary. Cooper and McIntosh’s ap-
proach differ in that it finds regions of code that are simi-
lar and deletes all subsequently similar regions. Control is
then funneled through the first region [CM99]. This tech-
nique also employs some interesting ways to identify larger
and a greater number of regions of similar code. Here regis-
ter names and the names for the targets of branches are ab-
stracted (removed and given a generic name). For example,
if two pieces of code were similar except that they used dif-
ferent register names (and those registers could be re-ordered
without causing harm to the semantic content of the code)
then those regions could be made to use the same registers
and thus be identified as similar regions. This technique
did increase dynamic instruction count, however, which in-
creased runtime slightly. This needs to be avoided. Also,
instruction reordering should be considered to permit more
regions of code to be identified as similar.

The only approach to try to physically compress the tar-
get code is [LW98]. Here the target code is compressed
cache line, by cache line. The non-sequential nature of ob-
ject code (ability to branch and jump to different regions
of code) precludes compression at the file level, it must be
done at some smaller granularity. Decompression occurs
when there is a cache miss. With this technique, on each

cache miss, the cache line is fetched from memory and sent
through a decoder before it is given to the cache. Thus, de-
compression is done on the fly at run time. They present two
algorithms for compression using such an approach. Their
results show that these approaches achieve good code com-
pression results, comparable to UNIX Compress and gzip.
The difference is that their approach can be performed sep-
arate from compilation. This approach does require special
hardware, and there is some increase in cache miss penalty
as decompression must also be included with each cache
miss.

An application of code compression is shown in the work
by [YRE98]. They are trying to compress the Java machine
in order to make it feasible to run on the Inferno OS (an OS
for distributed devices). They do not introduce any new tech-
niques, but show that Java programs are capable of running
on small devices. This paper addresses the issues of code
size and memory needed for execution in terms of building a
Java implementation to run on the Inferno OS. Their design
had several goals, namely, the size of the OS should not be
affected in order to run Java, running Java should use as lit-
tle memory as possible and run as fast as possible, and the
resulting code should be completely portable. They imple-
mented their design which resulted in the OS size increasing
by only 11Kb. This is not the fastest Java engine, but it is
small both statically and dynamically and it allows for Java
to be used in places it otherwise could not.

4 Current Approaches and Their Open Issues

Cooper and Schielke attempt to reduce code size during com-
piler instruction scheduling by finding larger regions of code
to schedule [CS98]. Scheduling larger regions of code en-
ables greater instruction level parallelism, which reduces the
number of NOP instructions needed. Cooper and Schielke
describe several possible improvements to their work. One
such improvement would be to quickly generate larger acyclic
code regions which may lead to reduced run times while still
limiting code growth. Another possible improvement, con-
cluded from their results is to find a speedier implementation
for dominator path scheduling (DPS) as DPS yields the best
improvement for minimizing code size.

Lekatas and Wolfe reduce code size by compressing code
in cache-line size chunks in memory [LW98]. This tech-
nique utilizes specialized hardware to perform code decom-
pression between memory and cache, but there is no insight
as to how costly the decompression phase is in terms of run
time. With each cache miss, a cache-line goes through de-
coding first, then it is read into cache. Their insights into
improving their technique are to find a way to generate the
best Markov model for a given code (for SAMC), or pro-
ducing better dictionary entries (for SADC), thus improv-
ing compression efficiency for the two methods. Building



better/faster decompression hardware would improve run-
time performance but again, since runtime performance is
not mentioned in the paper, we are not sure of the costs (thus
the desirability) of this method.

Cooper and McIntosh reduce code size by coalescing re-
peated sequences of code identified via a pattern matching
mechanism [CM99]. This technique is similar in nature to
Liao et al. who reduce code size by replacing repeated se-
quences of code with dictionary entries [LDK99]. The key
open issues discussed in [CM99], include applying the same
register name abstraction technique to constants, this should
allow more code to be identified as repeat code. Instruc-
tion reordering before pattern matching is applied could also
prove to be useful. For example, if two code segments are
mostly the same except for the order of some operations and
the two code segments are semantically equivalent, then the
current algorithm will not mark these segments as repeat
code. If these instructions are reordered to match between
the two segments, then these segments could be identified
as repeat code. Performing compression before register al-
location would also permit more code to be identified as re-
peat code (since registers could be freely assigned/changed
at that point). But this approach could complicate register
assignment quite a bit. Liao et al. also discuss the idea of
improving the code generator in order to create more com-
pressible codes. The trade-offs of using different code gen-
eration techniques and applying different heuristics to these
techniques should be explored in order to improve compres-
sion methods.

Finally, Cooper et al. explore techniques that utilize ge-
netic algorithms to search sequences of optimizations to find
the particular sequence that yields the smallest code size
[CSS99]. They conclude that more experimentation needs
to be performed by using different optimizations, changing
the number of optimizations available, as well as applying
different optimizations to different sections of the program.

5 Proposed Approach and Evaluation

All the above approaches to code minimization suffer from
the same flaw, they all address the problem of shrinking code
size after it has been generated with (potentially) flawed op-
timizations as measured in terms of producing small target
code. Historically, optimization has focused on producing
fast code; code size has largely been neglected.

Our general approach focuses on how solutions to var-
ious optimization problems affect code size and to make
these solutions cognizant of these effects. This would be
a pro-active approach to code minimization rather than reac-
tively fixing the code expansion produced by previous opti-
mizations. This multi-tiered framework is broken into three
separate strategies: a reconsideration of the effects of pro-
gram optimization, a look at the usefulness of different pro-

gram representations, and the impact that various program-
ming language features have on code size.

5.1 Program Optimizations

Current optimizations need to be re-examined in terms of
their effect on code size, not just on runtime efficiency. We
will examine these optimizations to determine portions that
can be attributed to increased code size. These portions of
any problematic optimizations will be tweaked to yield less
offensive results. After each optimization has been repaired,
methods from the above papers can be combined to produce
even smaller target code. For example, the genetic search
algorithm can be applied to the new and improved optimiza-
tions to find the best sequence for minimized code. The
output of this process could then be sent through the com-
pression methods of [LDK99], [CSS99], [CM99], or some
combination of these three.

This first approach will be evaluated in the following
manner. Care must be taken to explore the possibility that
gains in one optimization could adversely affect other opti-
mizations.

1. Generate a generic target code. This code is our base
case, which contains no optimizations (other than dead
code elimination, and any other optimizations that trim
code from a given program), assumes an infinite num-
ber of available registers, and no data, structural, or
control hazards. This yields an artificially small tar-
get code that can be used to compare target codes and
identify the positive and negative effects of each opti-
mization (and combination of optimizations).

2. Look at optimizations to determine which optimiza-
tions affect code size in a positive or negative manner
(via comparison to the above artificially small target
code). Once an optimization is found to be code size
unfriendly, some heuristic can be applied to attempt to
change that optimization without harming the intended
effects of that optimization. Part of this evaluation will
consider various heuristics that yield the best results.

3. Use the genetic algorithm approach to further reduce
code size.

5.2 Program Representations

Another area of exploration is to examine various program
representation forms in order to determine if some particular
program representation can bring more power to any code
minimization technique. For example, any methods that uti-
lize pattern matching techniques on the target code, may
benefit from and create more opportunities for code mini-
mization by utilizing an intermediate program representa-



tion. Different program representation may be beneficial in
finding regions of repeated code, or larger basic blocks.

This second approach will be evaluated in the following
manner.

1. Study the advantages and disadvantages of program
representations applicable to code minimization.

2. After determining which program representations to
use, or augmenting or creating a new representation,
build old optimizations on top of these new program
representations in hopes to discover new opportunities
for code minimization.

5.3 Programming Style

Perhaps the features of the source code language also con-
tribute to target code growth. We will explore the effects
of different high-level programming languages and language
features with respect to how they affect code size. It should
be determined if certain features of a language that explode
code size can be removed or avoided without impairing an
otherwise desirable language.

The third approach will be evaluated in the following
manner.

1. Identify features of a language that create opportunities
for code growth. For example, which features are most
the costly in terms of space, and which are the most
efficient in terms of space.

2. Identify alternatives for costly features.

3. Identify alternative languages should the above approach
prove unsuccessful by studying the features of differ-
ent languages.

5.4 Summary

All of our approaches try to identify problems that help in
reducing code size at an earlier stage in the compilation pro-
cess. Each approach tries to identify areas where code growth
occurs and subsequently to alleviate the problem at that point.
We think this is a more efficient approach rather than trying
minimize the code at the end of the compilation process.

6 Related Work

Other work related to embedded systems has also been in-
vestigated. Such work includes other optimizations geared
towards performance and code minimization. Also, run-time
issues have been investigated such as garbage collection for
embedded systems as well as performance analysis.

6.1 Other Code Optimizations

Register allocation is another challenging task for code gen-
eration of embedded systems. Embedded systems typically
have a small number of registers, of which several are des-
ignated for special use. The focus of the work by Kolson et
al. is to find optimal register assignments in loops in order
to profit from the fact that statements in a loop execute more
often than other portions of the code [KNDK96]. Their work
focused on embedded system architectures that are charac-
terized by a single register file and then extended the work
for architectures that are characterize by distributed mem-
ories. Liao et al. also address the problems of register al-
location for embedded systems [LDK � 95]. They focus on
processors which exhibit highly irregular data-paths, such as
Texas Instruments’ TMS320C25 which is an accumulator-
based machine. Such processors display different character-
istics than RISC based machines. Scheduling and register
allocation have typically been solved as separate problems.
They present optimal and heuristic algorithms that determine
an instruction schedule while simultaneously optimizing ac-
cumulator spilling and mode selection.

Data partitioning optimization has also been investigated
in embedded systems [AP98], particularly data partitioning
for arrays on limited memory embedded systems. Many em-
bedded applications are memory intensive. The data seg-
ment of code is often split between the on-chip and off-chip
memory, therefore remote memory references which occur
due to this situation can lead to significant degradation in
real time response to these systems. The goal of this com-
piler optimization is to analyze loops and partition data ef-
ficiently within the loop based on the frequency of gener-
ated references. They use an efficient algorithm based on
the 0/1 knapsack problem where they map partitions on lo-
cal/remote memory. The main contributions is the identifi-
cation of the data footprint of each reference (memory de-
mands) and the framework for its 0/1 solution. The disad-
vantage of this approach is that it does not always work well
when there is extremely low memory available.

Another use of partitioning in embedded systems is for
defining the boundaries of hardware and software function-
alities. Agrawal and Gupta use data-flow analysis within
a graph partitioning framework to more efficiently estimate
communication costs between software and hardware parti-
tions within an embedded system [AG97].

6.2 Run-Time Issues

The runtime performance or analysis of embedded systems
bring about new issues concerning include garbage collec-
tion and performance analysis.

Garbage collection methods designed for traditional hard-
ware/software systems are not necessarily suited for embed-
ded systems. Unique factors of embedded systems such as



limited memory and hardware support drive the decision of
which garbage collection algorithm to choose for the spe-
cific embedded system. In [PBT98], they discuss factors
that must be considered when choosing garbage collection
algorithms for embedded systems. In particular, they dis-
cuss the issues necessary for garbage collection in Embed-
ded Java. Garbage collection is an essential part of the Java
language. In order for such a language to be used in embed-
ded systems the unpredictability of garbage collection needs
to be addressed. Persson presents techniques for predict-
ing the maximum amount of live memory in object-oriented
languages [Per99]. The reason for predicting the maximum
amount of live memory stems from the need to predict the
worst-case execution time of a program in order to guaran-
tee that the system will fulfill timing constraints for a real-
time embedded system. Kim et al. also address the chal-
lenges due to garbage collection of real-time embedded sys-
tems [KCKS99]. They propose a new algorithm that sched-
ules both a garbage collector and real time mutator tasks.
This approach attempts to reduce the amount of system mem-
ory requirements.

The problem of determining the extreme (worst and base)
case bounds on the running time of a program is addressed
in [LM97]. This problem is important in embedded systems
due to real-time constraints that must be satisfied on a large
number of embedded systems. Li and Malik use implicit
path enumeration to determine which paths in the program
are exercised. Previous techniques have used explicit paths.

Benchmarks are commonly used to evaluate the perfor-
mance and functionality of program analysis tools. The same
benchmarks used for general use desktop systems are used
for embedded systems, whose characteristics differ vastly
from such systems. In particular the SpecInt95 benchmark
suite is often used. Englom addresses “the gut feeling” in the
embedded system community that the SpecInt95 benchmark
suite is not appropriate for evaluating applications running
on embedded systems [Eng99]. The study concludes that the
static properties of real embedded programs are quite differ-
ent than those found in SpecInt95 programs and should not
be used to evaluate application used for embedded systems.
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