
CISC 672 Advanced Compiler Construction Spring 2005

Programming Assignment V

Due Date: May 22, 2005 (turnin email dated midnight).

Purpose: This project is intended to give you experience in writing a code generator as well as bring
together the various issues of code generation discussed in the text and in class.

Project Summary: Your task is to implement a code generator for Cool. This assignment is
the end of the line: when completed, you will have a fully functional Cool compiler, and you will have
achieved full Compiler Wizardry status! This is a group project, and peer reviews will be used as in other
projects during evaluation.

The code generator makes use of the AST constructed in PA3 and static analysis performed in PA4.
Your code generator should produce MIPS assembly code that faithfully implements any correct Cool
program. There is no error recovery in code generation|all erroneous Cool programs have been detected
by the front-end phases of the compiler.

As with the static analysis assignment, this assignment has considerable room for design decisions.
Your program is correct if it generates correct code; how you achieve that goal is up to you. We will
suggest certain conventions that we believe will make your life easier, but you don't have to take our
advice. As always, explain and justify your design decisions in the README �le. This assignment is
comparable in size and di�culty to the previous programming assignment. Start early!

Files and Directories:
To get started, create a directory where you want to do the assignment and execute one of the

following commands in that directory. For the C++ version of the assignment, you should type

gmake -f ~pollock/public/cool02/assignments/PA5/Makefile

For Java, type:

gmake -f ~pollock/public/cool02/assignments/PA5J/Makefile

(notice the \J" in the path name). This command will copy a number of �les to your directory. Some of
the �les will be copied read-only (using symbolic links). You should not edit these �les. In fact, if you
make and modify private copies of these �les, you may �nd it impossible to complete the assignment. See
the instructions in the README �le. The �les that you will need to modify:

� cgen.cc (C++ version)
This �le will contain your code generator. We have provided an implementation of some aspects of
code generation; studying this code will help you write the rest of the code generator. It includes a
call to code that will build an inheritance graph from the provided AST. You can use the provided
code or replace it with your own.

� cgen.h (C++ version)
This �le is the header for the code generator. You may add anything you like to this �le. It provides
classes for implementing the inheritance graph. You may replace or modify them as you wish.

� emit.h (C++ version)
This �le contains code generation macros. You may modify this �le.

page 1 of 5



CISC 672 Advanced Compiler Construction Spring 2005

� cool-tree.h and cool-tree.handcode.h (C++ version)
As usual, these �les contain the declarations of classes for AST nodes. You can add �eld declarations
to the classes in cool-tree.h or cool-tree.handcode.h. The de�nitions of the methods should be added
to cgen.cc.

� cgen supp.cc (C++ version) / CgenSupport.java (Java version)
This �le contains general support code for the code generator. You will �nd a number of handy
functions here. Modify the �le as you see �t, but don't change anything that's already there.

� CgenClassTable.java and CgenNode.java (Java version)
These �les provide an implementation of the inheritance graph for the code generator. You will need
to complete CgenClassTable in order to build your code generator.

� StringSymbol.java, IntSymbol.java, and BoolConst.java (Java version)
These �les provide support for Cool constants. You will need to complete the method for generating
constant de�nitions.

� cool-tree.java (Java version)
This �le contains the de�nitions for the AST nodes. You will need to add code generation routines
for Cool expressions in this �le. The code generator is invoked by calling method cgen() of class
program. Do not modify the existing declarations.

� TreeConstants.java (Java version)
As before, this �le de�nes some useful symbol constants. Feel free to add your own as you see �t.

� example.cl
This �le should contain a test program of your own design. Test as many features of the code generator
as you can manage to �t into one �le.

� README This �le will contain the write-up for your assignment. It is critical that you explain design
decisions, how your code is structured, and why you believe your design is a good one (i.e., why it
leads to a correct and robust program). It is part of the assignment to explain things in text as well
as to comment your code.

As usual, there are other �les used in the assignment that are symbolically linked to your directory
or are included from ~pollock/public/cool02/include/PA5. You should not modify these �les. Almost all
of these �les have been described in previous assignments.

Important: All software supplied with this assignment is supported on Solaris SPARC, Solaris x86,
and Linux x86 machines. Remember to run gmake clean if you switch architectures.

Testing your Code Generator: You will need a working scanner, parser, and semantic
analyzer to test your code generator analyzer. You may use either your own components or the compo-
nents from coolc. By default, the coolc components are used. To change that, replace the lexer and/or
parser and/or semant executable (which are symbolic links in your project directory) with your own scan-
ner/parser. Even if you use your own components, it is wise to test your semantic analyzer with the coolc
scanner, parser, and semantic analyzer at least once, because we will grade your semantic analyzer using
coolc's version.

You will run your code generator using mycoolc, a shell script that \glues" together the generator
with the rest of compiler phases. Note that mycoolc takes a -c 
ag for debugging the code generator;

page 2 of 5



CISC 672 Advanced Compiler Construction Spring 2005

using this 
ag merely causes cgen debug (a global variable in the C++ version and a static �eld of class
Flags in the Java version) to be set. Adding the actual code to produce useful debugging information is
up to you. See the project README for details.

Designing your Code Generator: There are many possible ways to write the code gen-
erator. One reasonable strategy is to perform code generation in two passes. The �rst pass decides the
object layout for each class, particularly the o�set at which each attribute is stored in an object. Using
this information, the second pass recursively walks each feature and generates stack machine code for
each expression.

There are a number of things you must keep in mind while designing your code generator:

� Your code generator must work correctly with the Cool runtime system, which is explained in the Cool
Tour manual.

� You should have a clear picture of the runtime semantics of Cool programs. The semantics are
described informally in the �rst part of the CoolAid, and a precise description of how Cool programs
should behave is given in Section 13 of the manual.

� You should understand the MIPS instruction set. An overview of MIPS operations is given in the spim
documentation, which is in the course handout and on the class Web page.

� You should decide what invariants your generated code will observe and expect; i.e., what registers
will be saved, which might be overwritten, etc. You may also �nd it useful to refer to information on
code generation in the lecture notes and portions of the text, primarily ASU Chapter 9.

With this in mind, one possible organization for your code generator is:

1. compute the inheritance graph
2. assign tags to all classes in depth-�rst order
3. determine the layout of attributes, temporaries, and dispatch tables for each class
4. generate code for global data: constants, dispatch tables,...
5. generate code for each feature

Your code generator has to select MIPS instructions to emit, do some kind of register allocation
(very simple is �ne), and layout the memory for the runtime. You need to decide what strategy to use
for each of these within the passes your code generator makes over the AST.

Hints on Getting Started: Before you dive into writing your code generator, we strongly
recommend that you write some small Cool programs, compile them with Coolc, and carefully examine
the relationship between the Cool program and the MIPS assembly program. That is particularly helpful
when planning how to produce code for method calls, parameter passing, and other control constructs.
Also, write your code generator in an incremental manner, generating code for very simple programs,
getting them working, and then incrementally adding other more complex constructs to your code gen-
erator and corresponding test cases. Note that you do not have to generate the exact same code as that
produced by Coolc. It just needs to maintain the semantics of the Cool program being compiled.

Garbage Collection: To receive full credit for this assignment, your code generator must work
correctly with the generational garbage collector in the Cool runtime system. The skeletons contain
functions code select gc (C++) and CgenSupport.codeSelectGC (Java) that generate code that sets GC

page 3 of 5



CISC 672 Advanced Compiler Construction Spring 2005

options from command line 
ags. The command line 
ags that a�ect garbage collection are -g, -t, and
-T. Garbage collection is disabled by default; the 
ag -g enables it. When enabled, the garbage collector
not only reclaims memory, but also veri�es that \-1" separates all objects in the heap, thus checking that
the program (or the collector!) has not accidentally overwritten the end of an object. The -t and -T

ags are used for additional testing. With -t the collector performs collections very frequently (on every
allocation). The garbage collector does not directly use -T; in coolc the -T option causes extra code to be
generated that performs more runtime validity checks. You are free to use (or not use) -T for whatever
you wish.

For your implementation, the simplest way to start is not to use the collector at all (this is the
default). When you decide to use the collector, be sure to carefully review the garbage collection interface
described in the Cool Tour. Ensuring that your code generator correctly works with the garbage collector
in all circumstances is not trivial.

Spim and XSpim: You will �nd spim and xspim useful for debugging your generated code. xspim
works like spim in that it lets you run MIPS assembly programs. However, it has many features that allow
you to examine the virtual machine's state, including the memory locations, registers, data segment, and
code segment of the program. You can also set breakpoints and single step your program. Look at the
documentation for spim/xspim in the course handout or in the course web page.

Warning: One thing that makes debugging with spim di�cult is that spim is an interpreter for
assembly code and not a true assembler. If your code or data de�nitions refer to unde�ned labels, the
error shows up only if the executing code actually refers to such a label. Moreover, an error is reported
only for unde�ned labels that appear in the code section of your program. If you have constant data
de�nitions that refer to unde�ned labels, spim won't tell you anything. It will just assume the value 0 for
such unde�ned labels.

Extra Credit:
You may earn extra credit by implementing some optimization in your compiler. Extra credit will

be awarded for projects that, in addition to code generation, perform some signi�cant optimization of
the code. The amount of extra credit depends on how well the optimization is written, documented,
and demonstrated. Two critical factors are: (1) correctness (the optimizations don't result in incorrect
programs) and (2) the percentage speedup your optimized code achieves over coolc, as measured in the
number of instructions executed on spim over a suite of benchmarks of our choosing.

The total extra credit for optimization will not exceed 5% of the grade for PA5. In other words, if
you elect not to do an optimization phase, you will not be at a disadvantage in the �nal grading with
respect to those who do.

This extra-credit option is open-ended; you can do as much as you like. We will award credit for
results. For example, a project that merely attempts, but does not complete, an optimization phase may
receive as little as no extra credit.

There are many possible optimizations to implement; see the ASU chapters 9 and 10 for ideas.
Assuming your initial code generator is straightforward (like coolc's), then two directions that may yield
signi�cant improvement are (1) improving register usage and (2) specializing the implementation of the
basic classes Int and String.

WARNING.We have not implemented an optimization phase in coolc, so we have no skeleton code
to give you|you are on your own. If you want to do an optimization phase, you are encouraged to talk
it over with one of the course sta� �rst. Under absolutely no circumstances should you try optimization

before your code generator is �nished!!

There is a -O 
ag that controls the global variable cgen optimize (C++) and Flags.cgen optimize

page 4 of 5



CISC 672 Advanced Compiler Construction Spring 2005

(Java). If you do an optimization phase, it should have no e�ect unless cgen optimize is on. We will
grade your code generator �rst with optimization o�; this will prevent you from losing points due to bugs
in your optimizer.

What to Turn In: Follow the TA's instructions, similar to PA4, unless otherwise noti�ed by the
TA.

page 5 of 5


