
CISC 672 Advanced Compiler Construction Spring 2005

Programming Assignment IV

Due Date: Monday, April 18, 2005 (turnin email dated midnight).

Groups: You are permitted to work collaboratively as a group of 2 or 3 members. If you choose
to work in a group, your group will be assigned an overall group pre-grade based on the grading of
the assignment. Each member will complete a peer review, and your actual individual grade on the
project will be a percentage of the group pre-grade based on how well your group worked together and
your individual role in the work. If everyone worked well together in your group and participated fairly
equally, you will all receive 100% of the group grade. If a particular member did not work near as much
as the others, then their assigned grade for the project will be a percent lower than 100%.

Purpose: This project is intended to give you experience in and bring together the various issues of
semantic error checking, type checking, and symbol table manipulation discussed in class. In performing
these tasks for the Cool language, you will be performing abstract syntax tree traversals and dealing with
the inheritance hierarchy of an object-oriented language.

Project Summary: Your task is to write a semantic analysis phase for your Cool compiler.
In e�ect, you are implementing the static semantics of Cool. You will use the abstract syntax trees
(AST) built by the parser to check that a program is in conformance with the Cool speci�cation. Your
static semantic component should reject erroneous programs; for correct programs, it must gather certain
information for use by the code generator. The output of the semantic analyzer will be an attributed
AST for use by the code generator.

This assignment has much more room for design decisions than previous assignments. Your program
is correct if it checks programs against the speci�cation. There is no \right" way to do the assignment,
but there are wrong ways. There are a number of standard practices which we think make life easier and
we will try to convey them to you. However, what you do is largely up to you. Whatever you decide to
do, be prepared to justify and explain your solution.

You will need to refer to the typing rules, identi�er scoping rules, and other restrictions of Cool as
de�ned in the CoolAid. You will also need to add methods and data members to the AST class de�nitions
for this phase. The functions the tree package provides are documented in the Tour of Cool Support Code

and in the header �les cool-tree.h and tree.h (C++ version). and online javadoc (Java Version).
There is a lot of information in this handout, and you need to know most of it to write a working

semantic analyzer. Please read the handout thoroughly.

Files and Directories:
To get started, create a directory where you want to do the assignment and execute one of the

following commands in that directory. For the C++ version of the assignment, you should type

gmake -f ~pollock/public/cool02/assignments/PA4/Makefile

For Java, type:

gmake -f ~pollock/public/cool02/assignments/PA4J/Makefile

(notice the \J" in the path name). This command will copy a number of �les to your directory. Some of
the �les will be copied read-only (using symbolic links). You should not edit these �les. In fact, if you

page 1 of 6

CISC 672 Advanced Compiler Construction Spring 2005

make and modify private copies of these �les, you may �nd it impossible to complete the assignment. See
the instructions in the README �le. The �les that you will need to modify:

� semant.cc (C++ version)
This �le contains a start on a semantic analysis phase, written in C++. Put the code for your semantic
analysis phase in this �le. The skeleton only includes things required to correctly meet the interface
with the code generator. (This interface is discussed in detail below.) Very little of real interest is
included. The semantic analyzer is invoked by calling method semant() of class program. Unlike
previous assignments, this skeleton does not even compile!

� semant.h (C++ version)
This �le is the header �le for semant.cc.

� cool-tree.handcode.h and cool-tree.h (C++ version)
These �les are where user-de�ned extensions to the abstract syntax tree nodes are placed. You can
modify either �le, but you will probably �nd it easiest to modify cool-tree.h. You may add new #define

statements, but do not modify the existing declarations, except for the class EXTRA macros. You
may add nay �elds you wish to the class EXTRA macros.

� symtab.h (C++ version)
This �le contains code for a simple symbol table module. You are not required to modify these �les,
but you are free to do so if the symbol table manager does not meet your needs. For example, you
may wish to change the SymtabEntry template in symtab.h to add information to the symbol table.
Document any changes you make to the original code.

� cool-tree.java (Java version)
This �le contains the de�nitions for the AST nodes. You will need to add the code for your semantic
analysis phase in this �le. The semantic analyzer is invoked by calling method semant() of class
program. Do not modify the existing declarations.

� ClassTable.java (Java version)
This class is a placeholder for some useful methods (including error reporting and initialization of basic
classes). You may wish to enhance it for use in your analyzer.

� TreeConstants.java (Java version)
This �le de�nes some useful symbol constants.

� good.cl bad.cl
These �les test a few semantic features. You should add tests to ensure that good.cl exercises as many
legal semantic combinations as possible and that bad.cl exercises as many kinds of semantic errors as
possible. It is not possible to exercise all possible combinations in one �le; you are only responsible
for achieving reasonable coverage. Explain your tests in these �les and put any overall comments in
the README �le.

� README
This �le will contain the write-up for your assignment. For this assignment it is critical that you
explain design decisions, how your code is structured, and why you believe that the design is a good
one (i.e., why it leads to a correct and robust program). It is part of the assignment to explain things
in text as well as to comment your code. Inadequate README �les will be penalized more heavily in
this assignment, as the README is the major guideline we have to understanding your code.

page 2 of 6

CISC 672 Advanced Compiler Construction Spring 2005

Make sure that the name of each group member is in the README �le.

As usual, there are other �les used in the assignment that are symbolically linked to your directory
or are included from ~pollock/public/cool02/include/PA4. You should not modify these �les. Almost all of
these �les have have been described in previous assignments. The exceptions are ast.
ex and ast.y, which
implement lexical analysis and parsing for a textual representation of Cool ASTs. Recall that there are
two versions of coolc: a normal executable and a shell script that glues separate parser, semantic analysis,
and code generation phases together via pipes. Each phase uses dumptype to print the AST to the pipe,
and the next phase uses the AST parser to reconstruct the tree data structure.1

Testing the Semantic Analyzer:
You will need a working scanner and parser to test your semantic analyzer. You may use either your

own scanner/parser or the coolc scanner/parser. By default, the coolc phases are used; to change that,
replace the lexer and/or parser executable (which are symbolic links in your project directory) with your
own scanner/parser. Even if you use your own scanner and/or parser, it is wise to test your semantic
analyzer with the coolc scanner and parser at least once, because we will grade your semantic analyzer
using coolc's scanner and parser.

You will run your semantic analyzer using mysemant, a shell script that \glues" together the analyzer
with the parser and the scanner. Note that mysemant takes a -s
ag for debugging the analyzer; using
this
ag merely causes semant debug (a global variable in the C++ version and a static �eld of class
Flags in the Java version) to be set. Adding the actual code to produce useful debugging information is
up to you. See the project README for details.

Once you are con�dent that your semantic analyzer is working, try running mycoolc to invoke your
analyzer together with other compiler phases. You should test this compiler on both good and bad inputs
to see if everything is working. Remember, bugs in the semantic analyzer may manifest themselves in
the code generated or only when the compiled program is executed under spim.

AST Traverals:
As a result of assignment 3, your parser builds abstract syntax trees. The method

dump with types, de�ned on most AST nodes, illustrates how to traverse the AST and gather in-
formation from it. This algorithmic style|a recursive traversal of a complex tree structure|is very
important, because it is a very natural way to structure many computations on ASTs.

Your programming task for this assignment is to 1) traverse the tree, 2) manage various pieces of
information that you glean from the tree, and 3) use that information to enforce the semantics of Cool.
One traversal of the AST is called a \pass". You will probably need to make at least two passes over the
AST to check everything.

As an example approach, the coolc compiler performs three passes as follows:
Pass 1: This is not a true pass, as only the classes are inspected. The inheritance graph is built

and checked for errors. There are two "sub"-passes: check that classes are not rede�ned and inherit only
from de�ned classes, and check for cycles in the inheritance graph. Compilation is halted if an error is
detected between the sub-passes.

Pass 2: Symbol tables are built for each class. This step is done separately because methods and
attributes have global scope|therefore, bindings for all methods and attributes must be known before
type checking can be done.

1One may wonder: Why have two versions of coolc? The \phased" version of coolc greatly simpli�es the structure of the

programming assignments by removing the need to guarantee that your code for one phase links with all components for

other phases of the course compiler.

page 3 of 6

CISC 672 Advanced Compiler Construction Spring 2005

Pass 3: The inheritance graph|which is known to be a tree if there are no cycles|is traversed
again, starting from the root class Object. For each class, each attribute and method is typechecked.
Simultaneously, identi�ers are checked for correct de�nition/use and for multiple de�nitions. An invariant
is maintained that all parents of a class are checked before a class is checked.

You will most likely need to attach customized information to the AST nodes. To do so, you may
edit cool-tree.h (C++) or cool-tree.java (Java) directly. In the C++ version, any method de�nitions you
wish to add should go into semant.cc.

Inheritance:
Inheritance relationships specify a directed graph of class dependencies. A typical requirement of

most languages with inheritance is that the inheritance graph be acyclic. It is up to your semantic checker
to enforce this requirement. One fairly easy way to do this is to construct a representation of the type
graph and then check for cycles.

In addition, Cool has restrictions on inheriting from the basic classes (see the manual). It is also an
error if class A inherits from class B but class B is not de�ned.

The project skeleton includes appropriate de�nitions of all the basic classes. You will need to
incorporate these classes into the inheritance hierarchy.

We suggest that you divide your semantic analysis phase into two smaller components. First, check
that the inheritance graph is well-de�ned, meaning that all the restrictions on inheritance are satis�ed. If
the inheritance graph is not well-de�ned, it is acceptable to abort compilation (after printing appropriate
error messages, of course!). Second, check all the other semantic conditions. It is much easier to implement
this second component if one knows the inheritance graph and that it is legal.

Naming and Scoping:
A major portion of any semantic checker is the management of names. The speci�c problem is

determining which declaration is in e�ect for each use of an identi�er, especially when names can be
reused. For example, if i is declared in two let expressions, one nested within the other, then wherever
i is referenced the semantics of the language specify which declaration is in e�ect. It is the job of the
semantic checker to keep track of which declaration a name refers to.

As discussed in class, a symbol table is a convenient data structure for managing names and scoping.
You may use our implementation of symbol tables for your project. Our implementation provides methods
for entering, exiting, and augmenting scopes as needed. You are also free to implement your own symbol
table, of course.

Besides the identi�er self, which is implicitly bound in every class, there are four ways that an object
name can be introduced in Cool:

� attribute de�nitions

� formal parameters of methods

� let expressions

� branches of case statements

In addition to object names, there are also method names and class names. It is, of course, an error
to use any name that has no matching declaration.

Remember that neither classes, methods, nor attributes need be declared before use. Think about
how this a�ects your analysis.

page 4 of 6

CISC 672 Advanced Compiler Construction Spring 2005

Type Checking:
Type checking is another major function of the semantic analyzer. The semantic analyzer must

check that valid types are declared where required. For example, the return types of methods must be
declared. Using this information, the semantic analyzer must also verify that every expression has a valid
type according to the type rules. The type rules are discussed in detail in the CoolAid and the course
lecture notes.

One di�cult issue is what to do if an expression doesn't have a valid type according to the rules.
First, an error message should be printed with the line number and a description of what went wrong. It
is relatively easy to give informative error messages in the semantic analysis phase, because it is generally
obvious what the error is. We expect you to give informative error messages. Second, the semantic
analyzer should attempt to recover and continue. A good semantic analyzer will avoid cascading errors
using any of several standard techniques. We do expect your semantic analyzer to recover, but we do
not expect it to avoid cascading errors. A simple recovery mechanism is to assign the type Object to any
expression that cannot otherwise be given a type (we used this method in coolc).

Code Generator Interface:
For the semantic analyzer to work correctly with the rest of the coolc compiler, some care must be

taken to adhere to the interface with the code generator. We have deliberately adopted a very simple,
na��ve interface to avoid cramping your creative impulses in semantic analysis. However, there is one thing
you must do. For every expression node, its type �eld must be set to the Symbol naming the type inferred
by your type checker. This Symbol must be the result of the add string (C++) or addString (Java) method
of the idtable. The special expression no expr must be assigned the type No type which is a prede�ned
symbol in the project skeleton.

Output and Grading:
For incorrect programs, the output of semantic analysis is error messages. You are expected to

recover from all errors except for ill-formed class hierarchies. You are also expected to produce complete
and informative errors. Assuming the inheritance hierarchy is well-formed, the semantic checker should
catch and report all semantic errors in the program. When in doubt, use coolc as a guide in determining
what informative error messages should say. Your error messages need not be identical to those of coolc.

We have supplied you with a simple error reporting method ClassTable::semant error() (C++)
and ClassTable.semantError() (Java). This routine takes a �lename and the AST node where the
error occurred, and it returns the error stream after it has printed an error header. The �lename should
be the �le in which the error occurs. The parser ensures that Class nodes store the �le in which the
class was de�ned (recall that class de�nitions cannot be split across �les). In an error message, the line
number of the error message is obtained from the AST node where the error is detected and the �le name
is obtained from the enclosing class.

For correct programs, the output is a type-annotated abstract syntax tree. You will be graded on
whether your semantic phase correctly annotates ASTs with types and on whether your semantic phase
works correctly with the coolc code generator.

You are also expected to program in good, structured style. You should spend some time thinking
about the class de�nitions you will use.

page 5 of 6

CISC 672 Advanced Compiler Construction Spring 2005

Remarks:
The semantic analysis phase is by far the largest component of the compiler so far. Our solution is

approximately 1300 lines of well-documented C++. You will �nd the assignment easier if you take some
time to design the semantic checker prior to coding. Ask yourself:

� What requirements do I need to check?

� When do I need to check a requirement?

� When is the information needed to check a requirement generated?

� Where is the information I need to check a requirement?

If you can answer these questions for each aspect of Cool, implementing a solution should be straight-
forward. At a high level, your semantic checker will have to perform the following major tasks:

1. Look at all classes and build an inheritance graph.

2. Check that the graph is well-formed.

3. For each class

(a) Traverse the AST, gathering all visible declarations in a symbol table.

(b) Check each expression for type correctness.

This list of tasks is not exhaustive; it is up to you to faithfully implement the speci�cation in the
manual.

Turn in: Please follow the submissions instructions on the course faq sheet, as given for PA2.

page 6 of 6

