
Register Allocation

•  Goal: replace temporary variable accesses
by register accesses

•  Why?
•  Constraints:

– Fixed set of registers
– Two simultaneously live variables cannot be

allocated to the same register

A variable is live if it will be used again before being
redefined.

1. Identify Live Variable Ranges
Basic rule:
Temporaries t1 and t2 can share the same register if at
any point in the program at most one of t1 or t2 is live !

Register Interference Graph

What is the Register Inference
Graph for this example?

Register Interference Graph

1. What cannot be assigned same register?
2. What can be assigned the same register?

Your Turn – Write down the live
variables after each statement.�

Hint: Start at the bottom.
Instructions Live vars

b = a + 2

c = b * b

b = c + 1

return b * a

Live Variables

Instructions Live vars

b = a + 2

c = b * b

b = c + 1
 b,a

return b * a

Live Variables

Instructions Live vars

b = a + 2

c = b * b
 a,c

b = c + 1
 b,a

return b * a

Live Variables

Instructions Live vars

b = a + 2
 b,a

c = b * b
 a,c

b = c + 1
 b,a

return b * a

Live Variables

Instructions Live vars
 a

b = a + 2
 b,a

c = b * b
 a,c

b = c + 1
 b,a

return b * a

Interference graph and Register
Allocation

•  Nodes of the graph = variables
•  Edges connect variables that interfere with

one another
•  Nodes will be assigned a color

corresponding to the register assigned to
the variable

•  Two colors can’t be next to one another in
the graph

Register Allocation = Graph Coloring

Coloring the RIG

Instructions Live vars
 a

b = a + 2
 a,b

c = b * b
 a,c

b = c + 1
 a,b

return b * a

a

c b

R1

R2

color register

Coloring the RIG

Instructions Live vars
 a

b = a + 2
 a,b

c = b * b
 a,c

b = c + 1
 a,b

return b * a

a

c b

R1

R2

color register

How to do the Graph coloring

•  Questions:
– Can we efficiently find a coloring of the graph

whenever possible?
– Can we efficiently find the optimum coloring of the

graph?
– How do we choose registers to avoid move

instructions?
– What do we do when there aren’t enough colors

(registers) to color the graph?

Coloring a graph

•  Kempe’s algorithm [1879] for finding a K-
coloring of a graph

•  Assume K=3
•  Step 1 (simplify): find a node with at most

K-1 edges and remove from the graph
(with its edges).

(Remember this node on a stack for later
stages.)

Coloring a graph

•  Once a coloring is found for the simpler
graph, we can always color the node we
saved on the stack

•  Step 2 (color): when the simplified
subgraph has been colored, add back the
node on the top of the stack and assign it
a color not taken by one of the adjacent
nodes

Coloring with K=2

b

e d

R1

R2

color register

a

c

stack:

Coloring

b

e d

R1

R2

color register

a

stack:

c

c

Coloring

b

e d

R1

R2

color register

a

stack:

e
c

c

Coloring

b

e d

R1

R2

color register

a

stack:

a
e
c

c

Coloring

b

e d

R1

R2

color register

a

stack:
b
a
e
c

c

Coloring

b

e d

R1

R2

color register

a

stack:
d
b
a
e
c

c

Coloring

b

e d

R1

R2

color register

a

stack:

b
a
e
c

c

Coloring

b

e d

R1

R2

color register

a

stack:

a
e
c

c

Coloring

b

e d

R1

R2

color register

a

stack:

e
c

c

Coloring

b

e d

R1

R2

color register

a

stack:

c

c

Coloring

b

e d

R1

R2

color register

a

stack:

c

Failure

•  If the graph cannot be colored, it will
eventually be simplified to graph in which
every node has at least K neighbors

•  Sometimes, the graph is still K-colorable!
•  Finding a K-coloring in all situations is an

NP-complete problem
– We will have to approximate to make register

allocators fast enough

Coloring with K=2

b

e d

R1

R2

color register

a

c

stack:

Coloring

b

e d

R1

R2

color register

a

c

stack:
d

all nodes have
2 neighbours!

Coloring

b

e d

R1

R2

color register

a

c

stack:

b
d

Coloring

b

e d

R1

R2

color register

a

c

stack:
c
e
a
b
d

Coloring

b

e d

R1

R2

color register

a

c

stack:

e
a
b
d

Coloring

b

e d

R1

R2

color register

a

c

stack:

a
b
d

Coloring

b

e d

R1

R2

color register

a

c

stack:

b
d

Coloring

b

e d

R1

R2

color register

a

c

stack:

d

Coloring

b

e d

R1

R2

color register

a

c

stack:

We got lucky!

Try to Color this with 4 colors? �
3 colors?

One Possible 4 coloring

The code would look like this…

Coloring with K=2

b

e d

R1

R2

color register

a

c

stack:

c
b
e
a
d

Some graphs can’t be colored
in K colors:

Coloring

b

e d

R1

R2

color register

a

c

stack:

b
e
a
d

Some graphs can’t be colored
in K colors:

Coloring

b

e d

R1

R2

color register

a

c

stack:

e
a
d

Some graphs can’t be colored
in K colors:

Coloring

b

e d

R1

R2

color register

a

c

stack:

e
a
d

Some graphs can’t be colored
in K colors:

no colors left for e!

Spilling

•  Step 3 (spilling): once all nodes have K or
more neighbors, pick a node for spilling
– Store on the stack

•  There are many heuristics that can be
used to pick a node
– E.g., not in an inner loop

Spilling: Inserting Code

Example

Recomputing Variable Liveness

Recompute the RIG after spilling

This is 3-colorable!

Overall Algorithm

Simplify

Mark possible
spills

Color
& detect actual

spills

Rewrite code
to implement
actual spills

Liveness

Summary

•  Register allocation has three major parts

–  Liveness analysis
–  Graph coloring
–  Program transformation (spilling)

•  For more information, chapter 11.1-11.3 in Appel

