Register Allocation

- Goal: replace temporary variable accesses by register accesses
- Why?
- Constraints:
- Fixed set of registers
- Two simultaneously live variables cannot be allocated to the same register

A variable is live if it will be used again before being redefined.

1. Identify Live Variable Ranges

Basic rule:

Temporaries t 1 and t 2 can share the same register if at any point in the program at most one of t 1 or t 2 is live !

- Compute live variables for each point:

Register Interference Graph

- We construct an undirected graph
- A node for each temporary
- An edge between t_{1} and t_{2} if they are live simultaneously at some point in the program
- This is the register interfference graph (RIG)
- Two temporaries can be allocated to the same register if there is no edge connecting them

What is the Register Inference Graph for this example?

- Compute live variables for each point:

Register Interference Graph

1. What cannot be assigned same register?
2. What can be assigned the same register?

Your Turn - Write down the live variables after each statement. Hint: Start at the bottom.

Instructions
Live vars
$\mathrm{b}=\mathrm{a}+2$
$c=b^{*} b$
$b=c+1$
return b * a

Live Variables

Instructions Live vars

$$
b=a+2
$$

$$
c=b * b
$$

$$
b=c+1
$$

$$
\mathrm{b}, \mathrm{a}
$$

return b * a

Live Variables

Instructions Live vars

$\mathrm{b}=\mathrm{a}+2$

$c=b^{*} b$

 a,c
 $b=c+1$

 b,a
 return b * a

Live Variables

Instructions	Live vars
$b=a+2$	
$c=b^{*} b$	b, a
$b=c+1$	a, c
return $b^{*} a$	b, a

Live Variables

Instructions	Live vars a
$\mathrm{b}=\mathrm{a}+2$	
	b, a
	a,c
$b=c+1$	
return $\mathrm{b}^{*} \mathrm{a}$	b, a

Interference graph and Register Allocation

- Nodes of the graph = variables
- Edges connect variables that interfere with one another
- Nodes will be assigned a color corresponding to the register assigned to the variable
- Two colors can' t be next to one another in the graph

Register Allocation = Graph Coloring

- A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors
- A graph is k -colorable if it has a coloring with k colors

Coloring the RIG

Instructions	Live vars a
$b=a+2$	a, b
$c=b^{*} b$	a, c
$b=c+1$	a, b
return $b * a$	

\square	R1
\square	$R 2$

Coloring the RIG

Instructions	Live vars a
$c=a+2$	a, b
$b=b^{*} b$	a, c
return $b * a$	a, b

$\left[\begin{array}{cl}\text { color } & \text { register } \\ \square & R 1 \\ \square & R 2\end{array}\right.$

How to do the Graph coloring

Questions:

- Can we efficiently find a coloring of the graph whenever possible?
- Can we efficiently find the optimum coloring of the graph?
- How do we choose registers to avoid move instructions?
- What do we do when there aren't enough colors (registers) to color the graph?

Coloring a graph

- Kempe's algorithm [1879] for finding a Kcoloring of a graph
- Assume K=3
- Step 1 (simplify): find a node with at most K-1 edges and remove from the graph (with its edges).
(Remember this node on a stack for later stages.)

Coloring a graph

- Once a coloring is found for the simpler graph, we can always color the node we saved on the stack
- Step 2 (color): when the simplified subgraph has been colored, add back the node on the top of the stack and assign it a color not taken by one of the adjacent nodes

Coloring with $\mathrm{K}=2$

color register

\square
R 1
\square
R 2

stack:

Coloring

color register
$\square \mathrm{R} 1$

stack:

C

Coloring

color register
\square R1

stack:
e
C

Coloring

color register

\square R1

stack:
a
e
C

Coloring

color register
\square R1 $\quad \square$ R2

Coloring

color register
$\square \mathrm{R} 1$

Coloring

color register
$\square \mathrm{R} 1$

Coloring

color register

\square
R 1
\square

Coloring

color register

\square
R 1
R 2

Coloring

color register

\square
R1
\square

Coloring

color register

\square
R 1
\square

Failure

- If the graph cannot be colored, it will eventually be simplified to graph in which every node has at least K neighbors
- Sometimes, the graph is still K-colorable!
- Finding a K-coloring in all situations is an NP-complete problem
- We will have to approximate to make register allocators fast enough

Coloring with $\mathrm{K}=2$

color register

\square
R1
\square

stack:

Coloring

color register

$\square \quad$| R1 |
| :--- |
| R2 |

\square

Coloring

color register

\square R1

stack:
b
d

Coloring

color register

\square R1

Coloring

color register

\square
R 1
\square

Coloring

color register

\square
R 1
\square

Coloring

color register
\square R1 $\quad \square$ R2

Coloring

color register

\square
R 1
\square

Coloring

color register

\square R1
 \square R2

We got lucky!

Try to Color this with 4 colors? 3 colors?

One Possible 4 coloring

The code would look like this...

Coloring with $\mathrm{K}=2$

color register

$\square \mathrm{R} 1$

Some graphs can' t be colored in K colors:

stack:
c
b
e
a
d

Coloring

color register

$\square 1$
\square
\square

Some graphs can' t be colored in K colors:
stack:
b
e
a
d

Coloring

color register

\square
R 1
R 2

Some graphs can' t be colored in K colors:
stack:
e
a
d

Coloring

color register

\square
R 1
R 2

Some graphs can' t be colored in K colors:
stack:
e
a
d
no colors left for e!

Spilling

- Step 3 (spilling): once all nodes have K or more neighbors, pick a node for spilling
- Store on the stack
- There are many heuristics that can be used to pick a node
- E.g., not in an inner loop

Spilling: Inserting Code

- Since optimistic coloring failed we must spill temporary f
- We must allocate a memory location as the home of f
- Typically this is in the current stack frame
- Call this address fa
- Before each operation that uses f, insert $\mathrm{f}:=$ load fa
- After each operation that defines f, insert store f, fa

Example

Recomputing Variable Liveness

Recompute the RIG after spilling

This is 3-colorable!

Overall Algorithm

Summary

- Register allocation has three major parts
- Liveness analysis
- Graph coloring
- Program transformation (spilling)
- For more information, chapter 11.1-11.3 in Appel

