Register Allocation

» Goal: replace temporary variable accesses
by register accesses

« Why?

* Constraints:

— Fixed set of registers

— Two simultaneously live variables cannot be
allocated to the same register

A variable is live if it will be used again before being
redefined.

1. Identify Live Variable Ranges

Basic rule:

Temporaries t1 and t2 can share the same register if at
any point in the program at most one of t1 or t2 is live !

*+ Compute live variables for each point:

/
{acf} —
{cdf}—

i
b:z=d+e

a=b+c

d:=

-a

e =d+f

f=2*¢

b:=f+c

e b)—>

/{b,C,f}

+—{b ce f}

e z-e-1

«—{b}

Register Interference Graph

* We construct an undirected graph
- A node for each temporary

- An edge between t; and 1, if they are live
simultaneously at some point in the program

+ This is the register interfference graph (RIG)

- Two temporaries can be allocated to the same
register if there is no edge connecting them

What is the Register Inference
Graph for this example?

*+ Compute live variables for each point:

(acfy— |90 e bel)
{C'd'f} — e =d+f

o) > et
b:z=d+e

f=2%*e - «—{b ce f}
{C,f}W

b:=f+c (b}

b} 4

Register Interference Graph

1. What cannot be assigned same register?
2. What can be assigned the same register-

Your Turn - Write down the live

variables aliter each statement.
Hint: Start at the bottom.

Instructions Live vars
b=a+?2
c=b*b

b=c+1

return b * a

Live Variables

Instructions Live vars
b=a+2
c=b*b
b=c+1
b,a

return b * a

Live Variables

Instructions Live vars
b=a+?2
c=b*b

a,c
b=c+1

b,a

return b * a

Live Variables

Instructions Live vars
b=a+2

b,a
c=b*b

a,c
b=c+ 1

b,a

return b * a

Live Variables

Instructions Live vars

a
b=a+2

b,a
c=b*b

a,c
b=c+ 1

b,a

return b * a

Interference graph and Register
Allocation

* Nodes of the graph = variables

* Edges connect variables that interfere with
one another

* Nodes will be assigned a color
corresponding to the register assigned to

the variable

« Two colors can’t be next to one another in
the graph

.
Register Allocation = Graph Coloring

+ A coloring of a graph is an assignment of
colors to nodes, such that nodes connected by
an edge have different colors

* A graph is k-colorable if it has a coloring with
k colors

Coloring the RIG

. color register:

Instructions Live vars i
: -
b=a+2
a,b
c=b*b
a,c
b=c+ 1
a,b

return b * a

Coloring the RIG

. color register:

Instructions Live vars i
: -
b=a+2
a,b
c=b*b
a,c
b=c+ 1
a,b

return b * a

How to do the Graph coloring

 Questions:

— Can we efficiently find a coloring of the graph
whenever possible?

— Can we efficiently find the optimum coloring of the
graph?

— How do we choose registers to avoid move
iInstructions?

— What do we do when there aren’ t enough colors
(registers) to color the graph?

Coloring a graph

« Kempe’ s algorithm [1879] for finding a K-
coloring of a graph
* Assume K=3

» Step 1 (simplify): find a node with at most
K-1 edges and remove from the graph
(with its edges).

(Remember this node on a stack for later

stages.)

Coloring a graph

* Once a coloring is found for the simpler
graph, we can always color the node we
saved on the stack

» Step 2 (color): when the simplified
subgraph has been colored, add back the
node on the top of the stack and assign it
a color not taken by one of the adjacent
nodes

Coloring with K=2

Coloring

stack:

Coloring

.............. stack:
oS

Coloring

stack:

Coloring

stack:

Coloring

stack:

Coloring

stack:

O Dd® QO T

Coloring

stack:

Coloring

stack:

Coloring

stack:

Coloring

stack:

Failure

* |f the graph cannot be colored, it will
eventually be simplified to graph in which
every node has at least K neighbors

« Sometimes, the graph is still K-colorable!

* Finding a K-coloring in all situations is an
NP-complete problem

— We will have to approximate to make register
allocators fast enough

Coloring with K=2

Coloring

stack:

all nodes have
2 neighbours!

Coloring

stack:

O T

Coloring

stack:

O T o0 0D

Coloring

stack:

O T o0 0D

Coloring

stack:

Coloring

stack:

Coloring

stack:

Coloring

stack:

We got lucky!

Try to Color this with 4 colors?
3 colors?

a

One Possible 4 coloring

The code would look like this...

r'3+r'4

I~3*"'1 \

Coloring with K=2

. color register

- R1 Some graphs can’ t be colored
| | in K colors:

stack:

O O d® T O

Coloring

. color register

- R Some graphs can’t be colored
| | in K colors:

stack:

O QO ® T

Coloring

. color register

- R Some graphs can’t be colored
| | in K colors:

stack:

Coloring

. color register

- R Some graphs can’t be colored
| | in K colors:

stack:

®

o

no colors left for e!

Spilling

« Step 3 (spilling): once all nodes have K or
more neighbors, pick a node for spilling

— Store on the stack

* There are many heuristics that can be
used to pick a node

— E.g., not in an inner loop

opilling: Inserting Code

+ Since optimistic coloring failed we must spill
temporary f

* We must allocate a memory location as the
home of f
- Typically this is in the current stack frame
- Call this address fa

* Before each operation that uses f, insert
f := load fa

+ After each operation that defines f, insert
store f, fa

N"‘hQ_Q

o
+
O

Q.o
+ D
_hQ..
—h
o

=2%e
store f, fa

f := load fa 1

b:=f+c

/\

Recomputing Variable Liveness

o
+
O

& /{blcj}

{cdB— |52,
{c.d,f) M{c,d,e 7}

(cfy 72 T e t{beed

eze-1

—

o]

O

0O Qo O
o
o
Q.
-*‘
o)

Mmoo n
o

Q.
+
—h

store f, fa {C/ﬂ)
{CX}M
f := load fa

{c f} __—Tlbi=f+c «—{b}

Recompute the RIG after spilling

This is 3-colorable!

summary

* Register allocation has three major parts

— Liveness analysis
— Graph coloring
— Program transformation (spilling)

* For more information, chapter 11.1-11.3 in Appel

