PAS5: Last Hints on Symbol Table:

Other Info to Keer

For each VarSTE:
IS it a local variable or a member variable?

For each class: what will the object size be?

For each method:
- a VarSTE for "this" parameter

- how many parameters including the implicit "this"
parameter?

- how many local variables
- mangled method name, e.g. classname_method




PAS5: Last Type Checking Hints

Possible Type Errors in PAS5:

- AssignStatement LHS and RHS
- Checking the return value — already done

- Checking type of receiver in a method call —
see Tuesday'’s slides




Generating Code for Classes




Generating Code

for member variables

outldExp:
1) Lookup id in symbol table to get VarSTE

2) If the VarSTE is a member variable:

2a) Look up VarSTE for "this" and generate code
that loads the value of "this" into registers r31:r30.

3) load variable into a register(s) using the base+offset store in the VarSTE.

4) Push the variable value on the stack.




Generating Code

for an Assisnment Statement

outAssignStatement:
1) Lookup id in symbol table to get VarSTE
2) If the VarSTE is a member variable

2a) Look up VarSTE for "this" and generate code that loads the value of
"this" into registers r31:r30.

3) store value of expression on top of run-time stack into base+offset for
VarSTE




Review: Object Memory
Layout with Inheritance

Consider the following OOP code:

class Base {
int x;
int y;
}
class Derived extends Base {
int z;
}
What will Derived look like in memory?



Review: Object Memory
Layout with Inheritance

Assuming 4 bytes per int in this architecture class Base {

int x;
int y;
ﬁ
4 Bytes 4 Bytes
4 Bytes 4 Bytes 4 Bytes

<§£;:s Derived extends Base {
int z;

};



Member Lookup With

Inheritance

class Base {
int x;

{////f-int Y/
b7 class Derived extends

4 Bytes

4 Bytes

Base ms
msS.X =
ms.y =

Base ms
msS.X =
ms.y =

};

4 Bytes 4 Bytes

new Base;
137; store 137 0 bytes after

store 42 4 bytes after

new Derived;
137; store 137 0 bytes after

store 42 4 bytes after

Base {

ms
ms

ms
ms



share your Object Layout
Examples




Single Inheritance Object
Memory Layout Summary

 Derived class layout after Base class layout,
etc.

Rationale: A pointer of type B pointing at a D
object still sees the B object at the beginning.

Operations done on a D object through the B
reference guaranteed to be safe; no need
to check what B points at dynamically.



What About Methods and
Method calls (with
inheritance)?

Methods are mostly like regular
functions, but with two complications:

 How do we know what receiver object to use?

« How do we know which function to call at
runtime (dynamic dispatch)?



Implementing this

Receiver.memberfunction(actual parameters)

-Inside a member function, the name this
refers to the current receiver object.

- This information (pun intended) needs to be
communicated into the function.

-Idea: Treat this as an implicit first
parameter.

Every n-argument member function 1s really
an (n+1)-argument member function whose
first parameter 1s the this pointer.



this i1s Clever

class MyClass {
int x;
void myFunction (int arg) {
this.x = arg;
}
}

MyClass m = new MyClass;
m.myFunction (137);



this is Clever

class MyClass {
int x;

}

void MyClass myFunction (MyClass this, 1int arg) {
this.x = arg;

J

MyClass m = new MyClass;
m.myFunction (137) ;



this is Clever

class MyClass {
int x;
’ The mangled function name

}
void MyClass myFunction (MyClass this, 1int arg) {

this.x = arg;

J

MyClass m = new MyClass;
MyClass myFunction(m, 137);



this Rules

- When generating code to calla member
function: pass an object as the this parameter
representing the receiver object.

- Inside member function: treat this as just
another parameter to the member function.

- When implicitly referring to a field of this: use
this extra parameter as the object in which the
field should be looked up.



Generating Code for Method Calls

Need to pass in the receiver reference as the first parameter.
Receiver.memberfunction(actual parameters)

outCallExp
1) Look up the ClassSTE from the receiver type.
Then lookup the MethodSTE from the ClassSTE scope.
2) Generate code that pops parameters off the stack and
into the appropriate registers from right to left.
Don't forget the "this" parameter.
3) Generate code that calls the mangled method name.
4) Generate code that pushes the return value back on the stack

outThisExp
1) Push the value of the "this" parameter onto the run-time stack
The "this" parameter is stored in r31:r30.




Implementing Dynamic Dispatch

Dynamic dispatch means calling a function at
runtime based on the dynamic type of an object,
rather than i1ts static type.

Question:

How do we set up our runtime environment
so that we can efficiently support this?



An Initial Idea

- At compile-time, get a list of every defined class.

* To compile a dynamic dispatch, emit IR code for

the following logic:

if (the object has type
call A's version of
else if (the object has

call B's version of

else if (the object has

call N's version of

A)
the function

type B)
the function

type N)
the function.



Analyzing our Approach

What are the problems with this strategy?

Slow!

Number of checks 1s O(C), where C i1s the number
of classes the dispatch might refer to.

Gets slower the more classes there are.

It's infeasible in most languages.

What if we link across multiple source files?

What if we support dynamic class loading?



Introducing
Dispatch Tables

A dispatch table (or vtable) —

array of pointers to each member function’s
code for a particular class.

To invoke a member function:

1. Determine (statically) its index in the dispatch
table.

2. Follow pointer at that index 1n the object's
dispatch to the code for the function.

3. Invoke that function.



An Observation

* When laying out fields in an object, we
gave every field an offset.

 Derived classes have the base class
fields in the same order at the beginning.

Layout of Base Base.x Base.y

Layout of Derived Base.x Base.y Derived.z

Can we do something similar with functions?



Dispatch Tables

class Base { class Derived extends Base {
int x; int y;
volid sayH1 () { volid sayH1 () {
Print ("RBase") ; Print ("Derived") ;

}

Base.x

Base.x Derived.y

Code for
Base.sayHi

Code for
Derived. sayHi

-«




Dispatch Tables

class Base { class Derived extends Base {
int x; int y;
volid sayH1 () { volid sayH1 () {
Print ("RBase") ; Print ("Derived") ;

} }
b .

Base.x

Base.x Derived.y

Rase b = new Base;
Code for b.sayHi ()

Base.sayHi

Generating code for b.sayHi():
Code for Let fn = the pointer 0 bytes after b

Derived.sayHi |[RENEEReTIREEZ¥0%)




Dispatch Tables

class Base { class Derived extends Base {
int x; int y;
volid sayH1 () { volid sayH1 () {
Print ("RBase") ; Print ("Derived") ;
} }
} b }

\

Base.x

Base.x |Derived.y

Base b = new Derived;

Base.sayHi

Generating code for b.sayHi():
Code for Let fn = the pointer 0 bytes after b

Derived.sayHi - Call £n(b)




More on Dispatch Tables

class Base { class Derived extends Base
int x; { 1nt v,
vold sayHi () |
Print ("Hi Mom!") ;
}
Base clone () { Derived clone () {

return new BRase; return new Derived;

} }



More on Dispatch Tables

class Base { class Derived extends Base
int x; { 1nt v,
vold sayHi () |
Print ("Hi Mom!") ;
}
Base clone () { Derived clone () {
return new Base; return new Derived;

}

Code for
Base.sayHi

Code for
Base.clone Base.x

Code for
Derived.clone

}
}
-
o )



More on Dispatch Tables

class Base { class Derived extends Base
int x; { 1nt v,
vold sayHi () |
Print ("Hi Mom!") ;
}
Base clone () { Derived clone () {
return new Base; return new Derived;

}

Code for
Base.sayHi

Code for
Base.clone

Code for Base.x
Derived.clone

}
}
-
erived Cione)

Derived.y




Analyzing our Approach

Advantages

Time to determine function to call 1s O(1).
(and a good O(1) too!)

Disadvantages

Object sizes are ?

Each object needs to have space for ?.

Object creation is slower. Why?



A Common Optimization:
From this...

class Base { class Derived extends Base
int x; { 1nt v,
vold sayHi () {

Print ("Rase") ;

}

Base clone () { Derived clone () {
return new Base; return new Derived;

}

Code for
Base.sayHi

}
}
-
erived Cione)

Code for
Base.clone

Code for Base.x
Derived.clone

Derived.y




A Common Optimization:
To This...

class Base { class Derived extends Base
int x; { 1nt v,
vold sayHi () {

Print ("Rase") ;

}

Base clone () { Derived clone () {
return new Base; return new Derived;

}

Code for
Base.sayHi

Base.Xx

Code for
Base.clone

Base.x

Code for B Derived.y
Derived.clone Per class

Object instances



Thus, objects in Memory

Object instances
One dispatch table

per class

Base.Xx

Code for
Base.sayHi

Code for
Base.clone

Base.x

Derived.y

Code for
Derived.clone

Base.x

Derived.y



Generalized Object Layout
 Veablex

Field O

Field N

Field O

Field N




summary: Dynamic
Dispatch in O(1)

- Create a single instance dispatch table for each class.
- Each object stores a pointer to the dispatch table.
- Can follow the pointer to the table 1n O(1).

- Can index 1nto the table 1n O(1).

- Can set the dispatch table pointer of new object in
O(l).

- Increases the size of each object by O(1).

This is the solution used in most C++ and Java
implementations.



Your Turn to Draw Pictures

* Draw the objects, dispatch tables

Class A { Class C extends B {

a: Int <- 0; c: Int <- 3;

d: Int <- 1; h(): Int{a <-a * c};

f(): Int b

{a <- a+d};

= Suppose the following ops occur:
Class B extends A { A X =new A();

b: Int <- 2; By =new B();

f(): Int{a}; Az = new A();

g(): Int{ a<- a — b}; C w =new C();

) C t=new C();




