Function Activations & Activation Trees

```
Sort(list)
Read {}
Qsort (low,high) {
  int x
                                   Sort
    Partition (low,high) {}
                               Read
                                      Qsort(1,9)
  x = Partition(low,high)
                                 Partition(1,9)
                                              Qsort(1,3) Qsort(5,9)
  call Qsort(low, x-1)
  call Qsort(x+1,high)
```

Exercise

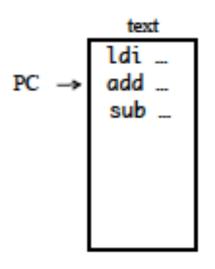
```
Class Main {
    g(): Int { 1 };
    f(x:Int): Int { if x = 0 then g() else f(x - 1) fi};
    main(): Int {{f(3); }};
}
```

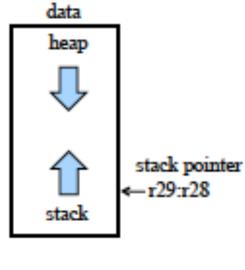
What is the activation tree for this example?

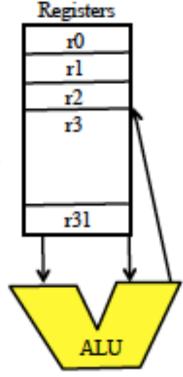
Runtime Stack in MeggyJava (with recursion)

```
class PA4raindrop {
public static void main(String[] whatever){
 while (true) {
   new Cloud().rain((byte)3,(byte)7); ...} }}
class Cloud {
 public void rain(byte x, byte y) {
 // light up x,y if is in bounds and continue recursion
 if (this.inBounds(x, y)) {
   Meggy.setPixel(x, y, Meggy.Color.BLUE)
   if (this.inBounds(x,(byte)(y+(byte)1))) {
     Meggy.setPixel(x, (byte)(y+(byte)1), Meggy.Color.DARK);
     } else {}
   Meggy.delay(100);
   this.rain(x, (byte)(y-(byte)1));
  } else {} }
public boolean inBounds(byte x, byte y) {
 return ((byte)(0-1) < y) && (y < (byte)8); }
```

Notes


 The activation tree depends on runtime behavior


 The activation tree may be different for every program input


- Need to keep track of procedure activations during execution
- · Details depend on machine architecture

AVR Instruction Set Architecture

Execution Model

RISC:

Load/store to access memory 8-bit (byte) architecture 2 8-bit words = 1 16-bit int Paired regs = 1 16-bit int

Runtime Stack: Push Pop Stack pointer

Calling Convention

Calling convention is interface between caller and callee

- callers have to pass parameters to callee
- callees have to pass return values to caller
- callers and callees save registers
 caller saves registers r18-r27, r30-r31
 callee saves registers r2-r17, r28-r29
- Arguments allocated left to right, r25 to r8

```
r24, r25 parameter 1, only use r24 if just a byte parameter
```

r22, r23 parameter 2

... r8, r9 parameter 9

Return values

```
8-bit in r24, 16-bit in r25:r24,
up to 32 bits in r22-r25, up to 64 bits in r18-r25.
```

Stack Pointer and Frame Pointer

Some register pairs are used for indirect addressing.

There are special names for these Indirect Address Registers

There are pre-decrement and post-increment indirect addressing modes for data structure (Stack) manipulation

The run time stack is implicitly manipulated with (push) and (pop) instructions, SP is the name of the stack pointer

Team Exercise

Examine an assembly code example.

Answer the following:

- 1. What actions need to happen at a method call site at runtime?
- 2. What code is generated to perform those actions at runtime?
- 3. What actions need to happen at the prologue of a method?
- 4. What code is generated to perform those actions at runtime?
- 5. What actions need to happen at the epilogue of a method
- 6. What code is generated to perform those actions at runtime?

So, how does this affect Symbol Table?

Parameters: base, offset

What should be the base?

What is the offset? (how computed?)

Method: size for parameters on stack

Exercise with PA4raindrop.java.noObjs.s

At each call site, draw the runtime stack and register contents.

At the end of each epilogue, draw the runtime stack and register contents.

Promoting Bytes to Ints

Bytes need to be promoted to integers when ...

- -Adding or subtracting a byte to or from an integer
- -Result of an addition or a subtraction should be promoted
- -Equality comparison between a byte and an int
- -Less than comparison between a byte and an int
- -Passing a byte as an argument when the formal is an int