Symbol Tables




Exercise: Identifying the Scoping
Rules of a PL

Using the MeggyJava materials,
1. List how new names are introduced
2. List rules for visibility of names




Exercise: Identifying the Scoping

Rules of a PL

Using the full MeggydJava grammar,

1. List how new names are introduced:
Class names

Method names

Formal parameter names

Class member variable names

Method local variable names

2. Where are existing names used/accessed:
Expressions:

New object creations

Method calls

Actual parameters

Other expressions

3. List rules for visibility of names (Scoping) rules: static scoping.

L

2 A
My

\VE
SNV ERy
: >
- -
5 @ S
- )
s v




What features does PA4 add?®

» Meggy.toneStart

* < operator

» User-defined methods
Parameters (formals and actuals)
Method calls

Notice: still no local or class variables,
assignments, or arrays, or objects (though
syntax is included for object creation)




What do you need to do to handle
these new features?
1. Copy your working PA3 compiler to a separate
folder.

2. Write test cases for new features of PA4, one
feature per test case.

3. Add new PA4 grammar rules to the JavaCup
file, and test the grammar additions
incrementally.

4. Add the actions to build the corresponding
AST parts for those rules and test tree building




Now, you have correct PA ASTs, Now

what? Svmbol Table Building!!

« Extend SymTable package from PA3 soPA4
compiler keeps track of:

— For each method, INSERT: type signature, formal
parameters and their types

(MethodDecl nodes)

-> At each call site, LOOK UP type information for
methods, parameters, and expressions and storage
location for parameters

(CallExp and CallStmt nodes)

-> At each access to actual parameter, LOOK UP
type information and storage location (ldLiteral)




2-Team Exercise:

1. Using MeggyJava materials (PA4
assignment), identify what semantic checks

need to be done by the compiler?

2. Using PA4raindrop.java and AST, identify
where Insert and Lookup operations need
to be done.

3. What are the type signatures for each of
the methods in PA4raindrop.java?




A Symbol Table Entry

* For each kind of named object, what
information is needed to

— Perform semantic checks

— Generate code efficiently (not have to traverse
AST for the information in faraway places




PA4 Symbol Table

Entries and Scopes

Symbol Table Entry Classes

STE Scope Class for a single scope, one for each
mName Scope will be created and linked together to
T make a symbol table.
Scope
MethodSTE VarSTE mHashMap
mSignature mType mEnclosing
|[mScope | mBase STE lookup(String)
jmotset_____ insert(STE)
VarSTE, variable symbol table entry

- type

- base, string for base register "Y", later will need another one

- offset, number or string for offset from base register
MethodSTE

The method symbol table entry contains a reference to signature
information.and.to.the method's scope.




Paired Team BExercise

1. Draw the Scopes and STE entries for
PA4raindrop.java




0 linear list

12 symbol | symbol | symbol
2 ~P3 table i table table
P1 P2 P3

—P4— to  >
3 P p3
P2
S— =

v

Active ST Stack

During AST Visitor, we have an Active Symbol Table Stack and current ST
pointer




symTable Operations

SymTable Class: A stack of scopes with
current most deeply nested scope at top of
stack

And a reference to the outermost (or global)
scope.

STE lookup(String) - lookup in most nested

void insert(STE) - Insert STE into most deepl
Scope.

void pushScope(String)
- Look up a named scope like a method
and then push its scope on stack.

void popScope()
- Pop top scope off stack.

SymTable

mGlobalScope
mScopeStack

STE lookup(String)
insern(STE)
pushScope(String)
popScope()
getExpType(node)

setExesze(node. Tzee)

Scope Stack and Tree

Scope Scope

mEnclosing

mEnclo‘sV

‘ Scope |



Paired Team BExercise

1. Where would you perform the pushScope

and popScope operations for
PA4raindrop.java?

2. Draw the Complete SymTable for

PA4raindrop.java by simulating an AST
visitor to build the SymTable




What are the steps at inMethodDecl
during BuildSymTable visitor?

1.
2.
3.
4.




What are the steps at inMethodDecl
during BuildSymTable visitor?

iInMethodDec:

(1) Look up method name in current symbol table to
see if there are any duplicates. Generate an error if
needed.

(2) create a function signature object of some kind
(3) create a MethodSTE

(4) insert the MethodSTE into the symbol table
with SymTable.insert




How about parameters?

Insert of formal parameter into SymTable:

inMethodDecl

(1)after creating MethodSTE and inserting it
(see above), then call
pushScope(methodname) on the symbol
table being built

(2) set current offset in visitor to 1




How about parameters?

outFormal:

(1) check if var name has already been inserted in SymTable using
st.lookup(name). Error if there is a duplicate.

(2) create VarSTE with current method offset and type of formal

(3) increment visitor maintained offset based on the type of the
formal variable

(4) call st.insert

outMethodDecl:

(1) Store the number of bytes needed for parameters as size of the
method.

We will see more about code generation and stack frame allocation
next time.




An Alternative: Single hash table for all symbol table entries

e Link together different entries for the same identifier
and associate nesting level with each occurrence of same name.

e The first one is the latest occurrence of the name, i.e., highest nesting level

nesting
id level

i 0 nesting level O
i 1 i) nesting level 1

. k 2
h(k) \f




During exit from a procedure - delete all entries of the nesting level we are exiting

- must be able to do this - Remove links to most recent scope

Three ways to do this
1. Search for the correct items to remove — rehash -- expensive

2. Use extra pointer in each element to link all items of the same scope (scope chain)

3. Use an active ST stack that has entries for each scope

Top -> Level 3

Level 2

Level 1

Pop entry and delete from hash table - keep stack entries around




