Class 10
Type Checking



What?

X =a+Db * doTask(c,d);

Verify that types of construct match that expected by its context
- Operands are compatible with each other
- Operands are compatible with the operator



Why*

The alternative...

- allow operation to act on representation of value,
even if it does not have a semantically well-defined result

Advantages of alternative:

Disadvantages of alternative:



Prog Language
Type System

Specific
Program
(AST)

How<

Type Checker

Type-checked
Specific
Program
(AST)

Type
Errors



otatic versus Dynamic
Type Checking

otatic:
Dynamic:

Tradeoffs?



Static Checking

 What does a data type determine?

« What is a type error? Example?

A PL usually provides:
* Base Types
* Type constructors

How do you determine the type of an identifier?



Type Systems

* The rules governing permissible
operations on types form a type system .

« Strong type systems never allow for a type
error to happen at run-time unchecked. (all checked either at

ocomple time or runtime)
« Java, Python, JavaScript, LISP, Haskell, etc.

* Weak type systems can allow type errors at
runtime.

 C (casting any pointer type to any other pointer
type), C++, perl



What about
types of intermediate values?

x=a+b * doTask(c,d);

— Need to keep track of AND infer expression type from
operations. Then check if matches expected type.

-2 Type expressions AND type rules
== PL’s Type System

- Type Checker implements the Type System



Defining a Type System

To formally define a type system...
— We define axioms and inference rules.

n - number Axiom Nisof type number

e, number e_: number Inference rule

{+ e e }: number

Meamng of the inference rule:
If expression ¢ has type number and expression ¢_has type number

then expression {+ e e } can be assigned type number



Example Language SIMPLE

BAE = true
false
n n 1s an mteger literal :
{+ BAE BAE} cl’
{< BAE BAE) 6’5
{or BAE BAE) F ’(gf
>
Derive typmg rules and axioms for this language!
Reminder: n - number Axiom
e :number ¢ :number Inference rule

{+e¢ e }: number



How the Rules Work

Case 1: syntactically correct? Type correct?
{<{+34}{+12}}
Case 2: syntactically correct? Type correct?

{+{<12}3}



Thus, a Simple Type Checker
Type checking E1 op EQ:

1. TypeCheck(E1l) return inferred type(El)
2. TypeCheck(ER) return inferred type(ER)

3. Type rule: Are these what are expected?
1. CheckCompatibility(E1l, E2)
&. CheckCompatibility(E1,E2,0p)
3. Emit type errors appropriately

4. InferType(E1l op E2)



Type Equivalence

Suppose checking E1 op E2

And
El is type int and ER2 is type subrange

Consider Pascal:

Type T = array[1..100] of int;
Var X,Y: array[1..100] of int;
Z: array[1l..100] of int;

W: T,

A: T,

Are they all equivalent? Some of them? None of them®?



Name vs Structural Equivalence

« Name: 2 names are of the same type iff
they are declared together or declared
using the same type name.

 Structural: 2 names are of the same
type iff the components of their type
are identical in all respects (when all
names substituted out)



Comparing Name & Structural

Equivalence

 Type checking effort?
* Strictness in type checking?

Consider:
struct {
int: id;
string: employee_name;
} employee_record;

struct {
int: zipcode;
string: address;
} address_record;



Type Rules for
Function Calls

fis an identifier.

fis a non-member function in scope S.
fhastype(T,...,T)— U

177777 n

Ske:T for1<is<n

S Ffle ,..e) U

Where is the type signature?
What the the checks to be done here?
Inference to be done?



