Class 9

Table-driven Top Down Parsing

Predictive Parser (Top Down)

Nonterminal Input Token						
	id	+	*	1)	\$
E	E->TE'			E \rightarrow TE'		
E'		E' ->+TE			$E^{\prime} \rightarrow$ -	E' -> ع
T	T->FT'			T->FT'		
T'		T' -> ε	T' ->*FT		T' -> ε	$\mathrm{T}^{\prime}->\varepsilon$
F	F->id			F->(E)		

Let input token stream be: (id +id) *id \$
Initial Stack:
\uparrow

E
$\$$

Any Questions?

- how the top-down parsing works?
- what you need to do to the grammar to use a top-down parser that is predictive (non-backtracking)

On to how to build that parse table...

Predictive LL(1) Parse Table Build

Key Insight:
Given input " a " and nonterminal B to be expanded, which one of the alternatives

$$
B \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \alpha_{n}
$$

is the unique choice to derive a string starting with " a "?

Computing FIRST and FOLLOW

FIRST $(\alpha)=$ set of terminals that can begin strings derived by α
$\operatorname{FIRST}(\alpha)=\{a \mid \alpha=>a \beta$ for some $\beta\}$

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+\mathrm{E}^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{FT}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \mathrm{FF}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{id}
\end{aligned}
$$

FOLLOW (N) = set of terminals that can immediately follow N in righ \dagger sentential form
FOLLOW(N):
For A $\rightarrow \alpha$ N β, Add FIRST(β), except ε, to FOLLOW(N)
For $A \rightarrow \alpha N \beta$ and FIRST(β) has ε, or $A \rightarrow \alpha N$, Add FOLLOW(A) to FOLLOW(N)
Add \$ to FOLLOW(START SYMBOL)

Let's look at some grammars...

Example 1:

$$
\begin{aligned}
& S \rightarrow A B C \\
& A \rightarrow a|C b| \varepsilon \\
& B \rightarrow C|d A| \varepsilon \\
& C \rightarrow e \mid f
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& S \rightarrow u B D z \\
& B \rightarrow B v \mid w \\
& D \rightarrow E F \\
& E \rightarrow y \mid \varepsilon \\
& F \rightarrow x \mid \varepsilon
\end{aligned}
$$

