Class 9

Table-driven Top Down Parsing

(id*id)*id$... . Token stream
Top—| s I lookahead
$ Parser Driver
Parsing
Stack input symbols
(id) * %
nonterminals T Parsing Table[A x] =
T production to apply
. for A on input x
TOP = lookahead = $ -> ACCEPT!
TOP = lookahead <> $ -> POP stack; ADVANCE lookahead;
TOP is terminal<> lookahead -> error
TOP is nonterminal -> Lookup(Table[TOP lookahead])

For production X ->Y1Y2 .. ¥Yn
POP X: PUSH Yn ¥n-1.. Y2 Y1

Predictive Parser (Top Down)

Nonterminal Input Token
id + * ()
E E->TE’ E->TE
E E" ->+TE E"->¢ E'->¢
T T->FT T->FT
T T->e | T ->*FT] T ->¢ T ->¢
F F->id F->(E)

Let input token stream be: (id+id)*id $

Initial Stack:
E
$

1

Any Questions?

- how the top-down parsing works?
- what you need to do to the grammar

to use a top-down parser that is
predictive (non-backtracking)

On to how to build that parse table...

Predictive LL(1) Parse Table Build

Key Insight:

Given input “a” and nonterminal B to be expanded, which one of the
alternatives

B->oy|a, |.. o
is the unique choice to derive a string starting with “a”?

start symbol start symbol

B
parsed
parsed

Computing FIRST and FOLLOW

FIRST(a) = set of terminals that can begin strings derived by o

x

FIRST(a)={a | a=> ap for some f }

E->TFE

EE >+TFE |¢
T->FT

T >*FT | e
F->(E)|id

FOLLOW(N) = set of terminals that can immediately follow N in right
sentential form
FOLLOW(N):
For A -> o N B, Add FIRST(B), except ¢, to FOLLOW(N)
For A -> a N B and FIRST(B) has ¢, or A -> aN,
Add FOLLOW(A) to FOLLOW(N)
Add $ to FOLLOW(START SYMBOL)

Let’s look at some grammars...

Example 1:

Example 2:

