
Class 8

On to how the parser actually works
under the hood…

Parsing Methods

Universal: For every CFG, there exists a parser
that will take at most O(n3) time, O(n2) space.

 Cocke-Young-Kasami: check whether each
 consecutive substring is possible:
 dynamic programming
 Early: build all possible trees in parallel

BUT we want linear time in input size:

 - single left to right scan of input program
 - lookahead of 1 token at a time
 - no backtracking

Linear-time Parsers:

Top-down: root “expanded” to leaves
 recursive-descent
 LL(1) predictive parsers

Bottom-up: leaves “reduced” to root
 LR family: SLR, LALR, LR(1) canonical

Top-down Parsing

Goal: Find leftmost derivation starting at root
and building tree in preorder.

Why leftmost derivation?

What do we mean by avoiding the backtracking to be linear?

Consider:
 S -> aAd | aB

 A -> b | c
 B -> ccd | ddc

Input: accd

Exploring Top Down Parsing Challenges

Consider: procedure id (param list) ; param list is optional

where param list => param : type; param : type;…param:type
 param => var id, id, …, id
 var is optional

Context-free Grammar:

 S -> procedure id P ; | ε
 P -> (L) | ε
 L -> R : T | R : T ; L
 R -> V D
 V -> var | ε
 D -> D , id | id
 T -> int | real

String: procedure print (var x,y,z: int; a,b: real);

Recursive-descent Parsing
CFG: T -> T * F | F => T -> F T’

 F -> (E) | id T’ -> * F T’ | ε
 F -> (E) | id

T() F()
{ {

}

T’()
{

} }

Consider input string: a * b * c

