
Class 5

Lex Spec Example
delim [\t\n]
ws {delim}+
letter [A-Aa-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%%
{ws} {/*no action and no return*?}
if {return(IF);}
then {return(THEN);}
{id} {yylval=(int) installID(); return(ID);}
{number} {yylval=(int) installNum(); return(NUMBER);}
%%

Int installID() {/* code to put id lexeme into string table*/}

Int installNum() {/* code to put number constants into constant table*/}

Some Notes on Lex

•  yylval – global integer variable to pass
additional information about the
lexeme

•  yyline – line number in input file
•  yytext – returns the lexeme matched

Lex/flex scanner generator Turtle.l
Lex spec lex.yy.c

c/c++ compiler scanner

Test.tlt

Token stream

Form of a JLex
Spec File

 user code
%%
JLex directives
%%
regular expression rules in the form of:

 reg expr {action}
 reg expr {action}
 …

JLex Spec Example
class Token {
String text;
Token(String t){text = t;}
}
%%
Digit=[0-9]
AnyLet=[A-Za-z]
Others=[0-9’&.]
WhiteSp=[\040\n]
// Tell JLex to have yylex() return a Token
%type Token
// Tell JLex what to return when eof of file is hit
%eofval{
return new Token(null);
%eofval}
%%
[Pp]{AnyLet}{AnyLet}{AnyLet}[Tt]{WhiteSp}+ {return new Token(yytext());}
({AnyLet}|{Others})+{WhiteSp}+ {/*skip*/}

Some Notes on JLex

•  yychar – character count matched
•  yyline – line number in input file where

matched
•  yytext – returns the lexeme matched

Jlex scanner generator MeggyJava.lex
Lex spec yylex

MeggyJava
compiler

scanner

MeggyJava program

Token stream

A Java driver program that
uses the scanner is:

 import java.io.*;
class Main {
public static void main(String args[])

 throws java.io.IOException {

 Yylex lex = new Yylex(System.in);

 Token token = lex.yylex();

 while (token.text != null) {
 System.out.print("\t"+token.text);

 token = lex.yylex(); //get next token

 }

}}

Handling Ambiguities

What if

•  •   x
1

…x
i
∈ L(R) and also

•  •   x
1

…x
K
∈ L(R)

Some examples?

Which token is used? How designated?

More Ambiguities

•  What if
•  • x1…xi ∈ L(Rj) and also
•  • x1…xi ∈ L(Rk) ?

•  Which token is used?

Lexical Error Detection and
Handling

No rule matches a prefix of input ?

Problem: Compiler can’t just get stuck …

You should…
Do Some More Practice with
reading and writing lex specs

How does the Scanner work
under the Hood?

From Specification to
Scanning…

What is a Finite Automata?

 Regular expressions = specification

 Finite automata = implementation

 A finite automaton consists of
– An input alphabet Σ

– A set of states S
– A start state n

– A set of accepting states F ⊆ S

– A set of transitions state →input state

From Reg Expr to NFA

How do we build an NFA for:
a?
Concatenation? ab
Alternation? a | b
Closure? a*

Scanning as a Finite Automaton

Understanding FA

DFA vs NFA ?

•  What is allowed?
•  Which can be much bigger in size?

Which is simpler?
•  Which is faster to run?

Comparison by size

Implementing a DFA
A DFA can be implemented by a 2D table T

–  One dimension is “states”

–  Other dimension is “input symbol”
–  For every transition S

i
→a S

k
define T[i,a] = k

DFA “execution”

–  –  If in state S
i
and input a, read T[i,a] = k and skip to state S

k

–  Very efficient

However, 3 Major Ways to Build
Scanners

–  ad-hoc

–  semi-mechanical pure DFA
(usually realized as nested case statements)

–  table-driven DFA

•  Ad-hoc generally yields the fastest, most
compact code by doing lots of special-
purpose things, though good automatically-
generated scanners come very close

Manually written scanner code

In summary, Scanner is the only
phase to see the input file, so…

The scanner is responsible for
what?

In summary, Scanner is the only
phase to see the input file, so…

The scanner is responsible for:
–  tokenizing source
–  removing comments
–  saving text of identifiers, numbers, strings

–  saving source locations (file, line, column)
for error messages

Why separate phases?

More Details on Lex/Flex
(for your own reading

pleasure)

A Makefile for the scanner

eins.out: eins.tlt scanner
 scanner < eins.tlt > eins.out

lex.yy.o: lex.yy.c token.h symtab.h
 gcc -c lex.yy.c

lex.yy.c: turtle.l
 flex turtle.l

scanner: lex.yy.o symtab.c
 gcc lex.yy.o symtab.c -lfl -o scanner

A typical token.h file
#define SEMICOLON 274
#define PLUS 275
#define MINUS 276
#define TIMES 277
#define DIV 278
#define OPEN 279
#define CLOSE 280
#define ASSIGN 281
… /*for all tokens*/

typedef union YYSTYPE
{ int i; node *n; double d;}
 YYSTYPE;
YYSTYPE yylval;

A typical driver for testing the
scanner without a parser

%%

main(){
int token;

while ((token = yylex()) != 0) {

switch (token) {
 case JUMP : printf("JUMP\n"); break;

/*need a case here for every token possible, printing yylval as needed for
those with more than one lexeme per token*/
 default:
 printf("ILLEGAL CHARACTER\n"); break;

}
}
}

