Class 5

Lex Spec Example

delim [\t\n]

WS {delim}+

letter [A-Aa-Z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%%

{ws} {/*no action and no return*?}

if {return(IF);}

then {return(THEN);}

{id} {yylval=(int) installlD(); return(ID);}
{number} {yylval=(int) installNum(); return(NUMBER);}
%%

Int installlD() {/* code to put id lexeme into string table*/}

Int installNum() {/* code to put number constants into constant table*/}

Some Notes on Lex

e yylval — global integer variable to pass
additional information about the

lexeme

* yyline — line number in input file
o yytext — returns the lexeme matched

- Lex/flex scanner generator

» Scanner

=

_

Form of a JLex
Spec File

user code

%%

JLex directives

%%

regular expression rules in the form of:
reg expr {action)}
reg expr {action}

JLex Spec Example

class Token {

String text;

Token(String t){text = t;}

}

%%

Digit=[0-9]

AnylLet=[A-Za-z]

Others=[0-9’&.]

WhiteSp=[\040\n]

Il Tell JLex to have yylex() return a Token
%type Token

Il Tell JLex what to return when eof of file is hit
%eofval{

return new Token(null);

%eofval}

%%
[Ppl{AnyLet}{AnyLet}{AnyLet}[Tt}{WhiteSp}+ {return new Token(yytext());}
({AnyLet}|{Others})+{WhiteSp}+ {/*skip*/}

Some Notes on JLex

e yychar - character count matched

e yyline — line number in input file where
matched

e yytext — returns the lexeme matched

- Jlex scanner generator J

compiler

A Java driver program that
uses the scanner is:

import java.io.*;
class Main {
public static void main(String argsf])
throws java.io.lOException {
Yylex lex = new Yylex(System.in);
Token token = lex.yylex();
while (token.text !=null) {
System.out.print("\t"+token.text);
token = lex.yylex(); //get next token

}
1

Handling Ambiguities

What if

e * X ...X € L(R)and also

i
e X ...X € L(R
o 17 (R)

Some examples?

Which token is used? How designated?

More Ambiguities

e What if
e e x1...Xi € L(Rj) and also
e ex1...Xi € L(Rk) ?

e Which token is used?

Lexical Error Detection and
Handling

No rule matches a prefix of input ?

Problem: Compiler can’t just get stuck ...

You should...
Do Some More Practice with
reading and writing lex specs

How does the Scanner work
under the Hood?

From Specification to
Scanning...

Consider the problem of recognizing ILOC register names
Register — r (Q[1|2] .. [2) (O[1]2] .. | &)

* Allows registers of arbitrary number
* Requires at least one digit

RE corresponds To a recognizer (or DFA)

™\ (QI:UZI -~ 9)

oiag—~ol
‘ accepting state

Recognizer for Register

Transitions on other inputs go to an error state, s,

What is a Finite Automata?

Regular expressions = specification
Finite automata = implementation

A finite automaton consists of

— An input alphabet 2
— A set of states S
— A start state n

— A set of accepting states F © S
— A set of transitions state —input state

From Reg Expr to NFA

How do we build an NFA for:
a?

Concatenation? ab
Alternation? a|b

Closure? a*

RE —IFA using Thompson's Construction

Key idea
* MNFA pattern for each symbol & each operator

« Join them with & moves in precedence order

a £ b 5
s 2(5) OO O O

WFA faor a MFA fnrﬂ

of B @ aoﬂ

b -
E [+] SJE

MFA for a”
MFAfora | b

Een Thompson, CACM, 1968

Scanning as a Finite Automaton

space, tab. newline, return

)
Start

107-) Or *

non-*

O dot © dotdot
O« - O«

letter. digit, _

digit identifier or key word

realconst
e E eacos

realconst
v digat
digit ol

dig

digit

Understanding FA

DFA vs NFA ?

e Whatis allowed?

e Which can be much bigger in size?
Which is simpler?
e Which is faster to run?

Comparison by size

For a given language NFA can be simpler than

DFA 1
0
NFA 00
0
DFA

DFA can be exponentially larger than NFA|

Automating Scanner Construction

To convert a specification into code:

1 Write down the RE for the input language
2 Build a big NFA

3 Build the DFA that simulates the NFA

4 Systematically shrink the DFA

5 Turn it into code

Scanner generators

* Lex and Flex work along these lines

* Algorithms are well-known and well-understood

* Key issue is interface to parser (define all parts of speech)
* You could build one in a weekend!

Implementing a DFA

A DFA can be implemented by a 2D table T

— One dimension is “states”
— Other dimension is “input symbol”
— For every transition S —, Sk define T[i,a] = k

DFA “execution”
_ — Ifin state S and input a, read T[i,a] = k and skip to state S

— Very efficient |

Table Implementation of a DFA

__{
—4| || o
clc|c|~

However, 3 Major Ways to Build
Scanners

— ad-hoc

— semi-mechanical pure DFA
(usually realized as nested case statements)

— table-driven DFA

 Ad-hoc generally yields the fastest, most
compact code by doing lots of special-

purpose things, though good automatically-
generated scanners come very close

Manually written scanner code

current = START_STATE;
token = "";
(i assurme next character has been preloaded into a buffer
wihile (current 1= EX)
{
int charClass = inputsiream-=thisClassi);
switch (current-=action{charClass))

{
case SKIP:
npuistream-=advance{};braak;
case ADD:
char® t = token; int n = strien{tl;
token = new char[m + 2], sstrepy{token, t);
token[n] = inputstream->thisChar); token[n+1] = [;
delete [t; inputstream-=advance(); break;
case MAME:
Eniry * & = symTable-=lockup{icken);
tokenType = (e->lype==NULL_TYPFPE ? NAME_TYFE : e->type);
areak;
}

current = current-=nextsiate(charClass);

In summary, Scanner is the only
phase to see the input file, so...

The scanner is responsible for
what?

In summary, Scanner is the only
phase to see the input file, so...

The scanner is responsible for:
— tokenizing source
— removing comments
— saving text of identifiers, numbers, strings

— saving source locations (file, line, column)
for error messages

Why separate phases?

stream of

characters * Scanner

M |'|5|"-55_:.-"."‘1I'{'-':1

stream of

tokens

-

Parser
syntax

IR+

annotations

* Crrors

Why separate the scanner and the parser?
* Scanner classifies words
* Parser constructs grammatical derivations -~

* Parsing is harder and slower
* Separation simplifies implementation
— smaller grammar for parser

— Taster front end

Scanner is only pass
that touches every
character of the input.

token is a pair
<part of speech, lexeme>

More Details on Lex/Flex
(for your own reading
pleasure)

A Makefile for the scanner

eins.out: eins.tlt scanner
scanner < eins.tlt > eins.out

lex.yy.o: lex.yy.c token.h symtab.h
gcc -c lex.yy.c

lex.yy.c: turtle.l
flex turtle.l

scanner: lex.yy.o symtab.c
gcc lex.yy.o symtab.c -Ifl -o scanner

A typical token.h file

#define SEMICOLON 274
#define PLUS 275
#define MINUS 276
#define TIMES 277
#define DIV 278

#define OPEN 279
#define CLOSE 280
#define ASSIGN 281

... I*for all tokens™*/

typedef union YYSTYPE

{inti; node *n; double d;}
YYSTYPE;

YYSTYPE yylval;

A typical driver for testing the
scanner without a parser

%%

main(){
int token;

while ((token = yylex()) '=0) {

switch (token) {
case JUMP : printf("JUMP\n"); break;

I*need a case here for every token possible, printing yylval as needed for
those with more than one lexeme per token*/

default:
printf("ILLEGAL CHARACTER\n"); break;

—) et

