Class 4

The Front End.:
Scanning and Parsing

Source Front IR Back Machine

code o End g End code

= Errors

How they work together...

Source

Get next token

file

IR

scanner

parser

—»

N

string table

errors

Since the scanner is the only phase to
touch the input source file, what else
does it need to do?

What is a token? A lexeme?

English?

Programming Languages?

Lexeme

Token

Examples?
lexemes

tokens

Designing a Scanner

Step 1: define a finite set of tokens
How?

Step 2: describe the strings (lexemes)
for each token

How?

So, a simple scanner design?

Then, why did they invent lex?

Poor language design can complicate scanning
* Reserved words are important

IT Then then then = else; else else = then (FL/I)
* TInsignificant blanks (Fortran & Algol68)
do101=1258
do 101 =1.25
* String constants with special characters (C, C++, Java, .)

newline, tab, quote, comment delimiters, .

* Finite closures (Fortran 66 & Basic)

— Limited identifier length

— Adds states to count length
Even, simple examples: ivsif; = vs==

It is not so straightforward...

Specifying lexemes with
Regular Expressions

Let > be an alphabet.
Rules for Defining reqular expressions over Y :

Help me out here, those from theory class!

Specifying lexemes with
Regular Expressions

Let > be an alphabet.
Rules for Defining regular expressions over Y :

- ¢ Denotes the set containing the empty string.
- For each ain } , ais the reg expr denoting {a}

- If r and s are reg expr’s, then
rs = set of strings consisting of strings
from r followed by strings from s

r|s = set of strings for either rors

r* = O or more strings from r (closure)

(r) used to indicate precedence

Reading Regular Expressions

Identifiers:

Letter -> (a|b|c|d|..|]z|]A|B|C...|Z)
Digit -> (0]1]2]...]9)
Identifier -> Letter (Letter | Digit)*

Numbers:

Integer -> (+|-|€) (0]|1]2]3]..]9) (Digit*)
Decimal -> Integer.Digit*

Real -> (Integer | Decimal) E (+|-|€) Digit*

What strings/lexemes are represented by these regular
expressions?

Practice with writing regular
expressions

1. Binary numbers of at least one digit

2. Capitalized words

3. Legal identifiers that must start with a letter, can
contain either upper or lower case letters, digits, or _.
4. white space including tabs, newlines, spaces

Shorthand for regular expressions?

What strings are accepted here?

* Numerical literals in Pascal may be
generated by the following:

digit,. — O | 1] 2]|3]|4|5|6]|7]8]29
unsigned_integer — digit digit*

unsigned_number — unsigned_integer ((. unsigned_integer) | €)
(((e | E) (+ | - | €) unsigned_integer) | €)

The Scanner Generator

parts of speech & words

compile source code
cime * Scanner
design specifications Scanner
_ >
time Generator

tables
or code

Specifications written as
"regular expressions”

=

Represent
words as
indices into a
global table

Form of a Lex/Flex
Spec File
Definitions/declarations used for re clarity
%%
Reg exp0 {action0} // translation rules to be
Reg exp1 {action1} // converted to scanner

%%
Auxiliary functions to be copied directly

Lex Spec Example

delim [\t\n]

WS {delim}+

letter [A-Za-Z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%%

{ws} {/*no action and no return*?}

if {return(IF);}

then {return(THEN);}

{id} {yylval=(int) installlD(); return(ID);}
{number} {yylval=(int) installNum(); return(NUMBER);}
%%

Int installlD() {/* code to put id lexeme into string table*/}

Int installNum() {/* code to put number constants into constant table*/}

