
Class 4 



The Front End: 
Scanning and Parsing 

 



How they work together… 
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Since the scanner is the only phase to 

touch the input source file, what else 
does it need to do? 

 



What is a token? A lexeme? 

•  English?  
•  Programming Languages? 

   
•  Lexeme  
•  Token 
•  Examples? 

   lexemes    tokens 
    



Designing a Scanner 

Step 1: define a finite set of tokens 
    How?  
Step 2: describe the strings (lexemes) 

for each token 
   How?  

 
So, a simple scanner design? 



Then, why did they invent lex? 

It is not so straightforward… 
Even, simple examples:  i vs if  ;   =  vs == 



Specifying lexemes with 
Regular Expressions   

Let ∑ be an alphabet. 
Rules for Defining regular expressions over ∑ : 
 
Help me out here, those from theory class! 



Specifying lexemes with 
Regular Expressions   

Let ∑ be an alphabet. 
Rules for Defining regular expressions over ∑ : 
 
- ε Denotes the set containing the empty string. 
- For each a in ∑ , a is the reg expr denoting {a} 
 
- If r and s are reg expr’s, then 

 r s   = set of strings consisting of strings  
   from r followed by strings from s 

 
 r | s   = set of strings for either r or s 
  
 r *   = 0 or more strings from r (closure)  
 (r)   used to indicate precedence 

 



Reading Regular Expressions 

•    Identifiers: 
 
–    Letter -> (a|b|c|d|..|z|A|B|C…|Z) 
–    Digit  -> (0|1|2|…|9) 
–    Identifier -> Letter (Letter | Digit)* 
 
•    Numbers: 

Integer -> (+|-|ℇ) (0|1|2|3|..|9) (Digit*) 
Decimal -> Integer.Digit* 
Real -> (Integer | Decimal) E (+|-|ℇ) Digit*  
 

 
What strings/lexemes are represented by these regular 
expressions? 



Practice with writing regular 
expressions 

1.  Binary numbers of at least one digit 
2.  Capitalized words 
3.  Legal identifiers that must start with a letter, can  
 contain either upper or lower case letters, digits, or _. 
4. white space including tabs, newlines, spaces 

Shorthand for regular expressions? 



What strings are accepted here? 

•  Numerical literals in Pascal may be 
generated by the following: 



The Scanner Generator  



Form of a Lex/Flex  
Spec File 

Definitions/declarations used for re clarity 
%% 
Reg exp0  {action0}  // translation rules to be  

Reg exp1  {action1}   // converted to scanner 
…    … 
%% 

Auxiliary functions to be copied directly 



Lex Spec Example 
delim   [ \t\n] 
ws   {delim}+ 
letter   [A-Za-z] 
digit   [0-9] 
id    {letter}({letter}|{digit})* 
number   {digit}+(\.{digit}+)?(E[+-]?{digit}+)? 
%% 
{ws}   {/*no action and no return*?} 
if    {return(IF);} 
then   {return(THEN);} 
{id}   {yylval=(int) installID(); return(ID);} 
{number}  {yylval=(int) installNum(); return(NUMBER);} 
%% 
 
Int installID() {/* code to put id lexeme into string table*/} 
 
Int installNum() {/* code to put number constants into constant table*/} 


