
Class 4

The Front End:
Scanning and Parsing

How they work together…

 scanner parser

 string table

Source
file

IR
Get next token

errors

token

Since the scanner is the only phase to

touch the input source file, what else
does it need to do?

What is a token? A lexeme?

•  English?
•  Programming Languages?

•  Lexeme
•  Token
•  Examples?

 lexemes tokens

Designing a Scanner

Step 1: define a finite set of tokens
 How?
Step 2: describe the strings (lexemes)

for each token
 How?

So, a simple scanner design?

Then, why did they invent lex?

It is not so straightforward…
Even, simple examples: i vs if ; = vs ==

Specifying lexemes with
Regular Expressions

Let ∑ be an alphabet.
Rules for Defining regular expressions over ∑ :

Help me out here, those from theory class!

Specifying lexemes with
Regular Expressions

Let ∑ be an alphabet.
Rules for Defining regular expressions over ∑ :

- ε Denotes the set containing the empty string.
- For each a in ∑ , a is the reg expr denoting {a}

- If r and s are reg expr’s, then

 r s = set of strings consisting of strings
 from r followed by strings from s

 r | s = set of strings for either r or s

 r * = 0 or more strings from r (closure)
 (r) used to indicate precedence

Reading Regular Expressions

•   Identifiers:

–   Letter -> (a|b|c|d|..|z|A|B|C…|Z)
–   Digit -> (0|1|2|…|9)
–   Identifier -> Letter (Letter | Digit)*

•   Numbers:

Integer -> (+|-|ℇ) (0|1|2|3|..|9) (Digit*)
Decimal -> Integer.Digit*
Real -> (Integer | Decimal) E (+|-|ℇ) Digit*

What strings/lexemes are represented by these regular
expressions?

Practice with writing regular
expressions

1.  Binary numbers of at least one digit
2.  Capitalized words
3. Legal identifiers that must start with a letter, can
 contain either upper or lower case letters, digits, or _.
4. white space including tabs, newlines, spaces

Shorthand for regular expressions?

What strings are accepted here?

•  Numerical literals in Pascal may be
generated by the following:

The Scanner Generator

Form of a Lex/Flex
Spec File

Definitions/declarations used for re clarity
%%
Reg exp0 {action0} // translation rules to be

Reg exp1 {action1} // converted to scanner
… …
%%

Auxiliary functions to be copied directly

Lex Spec Example
delim [\t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%%
{ws} {/*no action and no return*?}
if {return(IF);}
then {return(THEN);}
{id} {yylval=(int) installID(); return(ID);}
{number} {yylval=(int) installNum(); return(NUMBER);}
%%

Int installID() {/* code to put id lexeme into string table*/}

Int installNum() {/* code to put number constants into constant table*/}

