
PP5: Code Generation

Date Due: Friday, 12/5/14 11:59pm
Checkpoint: Friday, November 21, 2014, demo/meet with TA

1 Goal

In this project, you are to implement a back end for your compiler which will generate code
to be executed on the SPIM simulator. Finally, you get to the true product of all your
labor-running Decaf programs!

CISC 672 versus 471 Registered Students: All students must generate code for
all constructs as indicated in this assignment with the exception of the following constructs.
Students registered for CISC 471 need to generate code for single-dimensioned arrays (not
array of arrays) and do not have to handle strings. Students registered for CISC672 need
to handle multidimensional arrays and strings.

This pass of your compiler will traverse the abstract syntax tree, stringing together
the appropriate TAC instructions for each subtree - to assign a variable, call a function, or
whatever else is needed. Those TAC instructions are then translated into MIPS assembly
via a translator we provide that deals with the more grungy details of the machine code.
Your finished compiler will do code generation for all of the Decaf language (with a few
minor omissions) as well as reporting link and run–time errors.

Students generally find pp5 to be on par with pp3–4 in terms of time and difficulty. We
tried to give you a hand by giving you some of the pieces pre–written and littered our code
with debug printing and helpful assertions. The debugging can be intense at times since
you may need to drop down and examine the MIPS assembly to sort out the errors. By the
time you’re done, you’ll have a pretty thorough understanding of the runtime environment
for Decaf programs and will even gain a little reading familiarity with MIPS assembly.

2 Starter files

The starting files are available at

/usa/pollock/cisc672_471/decaf/pp5 on mlb.acad.ece.udel.edu

The starting project contains the following files (the boldface entries are the ones you are
most likely to modify, depending on your strategy you may modify others as well):

page 1

Makefile builds project
main.cc main() and some helper functions
scanner.h/l our scanner interface/implementation
parser.y yacc parser for Decaf (replace with your pp2 parser)
ast.h/.cc interface/implementation of base AST node class
ast type.h/.cc interface/implementation of AST type classes
ast decl.h/.cc interface/implementation of AST declaration classes
ast expr.h/.cc interface/implementation of AST expression classes
ast stmt.h/.cc interface/implementation of AST statement classes
codegen.h/.cc interface/implementation of CodeGenerator class
tac.h/.cc interface/implementation of Tac class and subclasses
mips.h/.cc interface/implementation of our TAC→MIPS translator
errors.h/.cc error-reporting class for you to use
hashtable.h/.cc simple hashtable template class
list.h simple list template class
location.h utilities for handling locations, yylloc/yyltype
utility.h/.cc interface/implementation of our provided utility functions
samples/ directory of test input files
run script to compile and execute result on SPIM simulator
defs.asm MIPS assembly code for printf and other supporting functions

A working dcc is located in the solutions subfolder. It reads input from stdin and you
can use standard UNIX file redirection to read from a file and/or save the output to a file:

% ./dcc < samples/program.decaf > program.asm

The output is MIPS assembly that can be executed on the SPIM simulator. The -file
argument allows you to specify the file of MIPS assembly to execute.

NOTE: To run SPIM, you need to have the spim executable in your $PATH environment
variable. It is located at /usr/local/bin/spim on mlb.

% cat defs.asm >>program.asm

% spim -file program.asm

Or, more simply, you can use the “run” script to combine decaf program compilation
and execution.

% ./run samples/program.decaf

As always, the first thing to do is to carefully read all the files we give you and make
sure you understand the lay of the land. This is particularly important here since there is
a chunk of new code in the project. A few notes on the starter files:

• You are given the same parse tree node classes as before. It will be your job to add
”Emit” behavior to the nodes, most likely implemented in a polymorphic form similar
to ”Print” in pp2 and ”Check” in pp3. You can decide how much of your pp3 semantic
analysis you want to incorporate into your pp4 project. We will not test Decaf programs
with semantic errors, so you are free to disable or remove your semantic analysis to allow
you to concentrate on your new task without the clutter.

page 2

• You are to replace parser.y with your pp2/pp3 parser (or the solution from the solutions/
directory). You should not need to make changes to the parser or rearrange the grammar,
but you can if you like.

• We have removed doubles from the types of Decaf for this project. In the generated code,
we treat bools just like ordinary 4-byte integers, which evaluate to 0 or not 0. The only
strings are string constants, which will be referred to with pointers. Arrays and objects
(variables of class type) are also implemented as pointers. Thus all variables/parameters
are 4 bytes in size, which simplifies calculating offsets and sizes.

• Interfaces are removed for code generation to simplify management of the vtable and
dynamic dispatch. You are not required to generate code for method calls on objects
upcasted to interface types.

• The CodeGenerator class has a variety of methods that can be called to create TAC
instructions and append them to the list so far. Each instruction is an object of one
of the instruction subclasses declared in tac.h. The CodeGenerator has support for the
basic instructions, but you will need to augment it to generate instruction sequences for
the fancier operations (array indexing, dynamic dispatch, etc.)

• The Mips class, which we provide, is responsible for converting the list of TAC instruction
objects as part of final code generation. This class encapsulates the details of the machine
registers and instruction set and can translate each instruction into its MIPS equivalent.
You will not likely need to make changes to this class.

3 Code Generator Implementation

To help you understand and implement the project, you can conceptually break it up into
a checkpoint and a final submission. Unlike last time however, we will NOT grade the
checkpoint. For the checkpoint, implement code generation for a single main function
without arrays or objects. Here is a quick sketch of a reasonable approach:

• Before you begin, go back over the TAC instructions and examples in the TAC slides to
ensure you have a good grasp on TAC. Also read the comments in the starter files to
familiarize yourself with the CodeGenerator, Tac, and Mips classes we provide.

• Plot out your strategy for assigning locations to variables. A Location object is used to
identify a variable’s runtime memory location, i.e. which segment (stack vs. global) and
the offset relative to the segment base. Every variable, be it global or local, a parameter
or a temporary, will need to have an assigned location. For the checkpoint, you will only
have to deal with local variables, global variables, and temporaries (eventually you will
also support parameters and instance variables). Figure out how/when you will make
the assignment. As a first step, you may want to print out each location before doing any
code generation and verify all is well. If you aren’t sure you have the correct locations
before you move on to generating code, you’re setting yourself up for trouble. Once you
have assigned locations for all variables located within the stack frame, you can calculate
the frame size for the entire function, and backpatch that size into BeginFunc instruction.

page 3

• The label for the main function has be exactly the string ”main” in order for Spim to
start execution properly.

• Start by generating code to load constants and add support for the built-in Print so you
can verify you’ve got this part working. Simple variables and assignment make a good
next step.

• Generate instructions for arithmetic, relational, and logical operators. Note that TAC
only has a limited number of operators, so you must simulate the others from the avail-
able primitives. In the past, students seem tempted toward complex implementations
involving strange branches and ifz/goto, but there are simple, straightforward solutions
if you think carefully about it.

• Generating code for the control structures (if/while/for) will teach you about labels and
branches. Correct use of the break statement should work for exiting while and for loops.

• Take note of what Decaf built-ins are available and how each is used. A few trouble
spots in the past for students have been making sure booleans print as true/false (not
0/1) and that == on strings compares the characters for equality, not just the pointers.

At the checkpoint, you should be able to handle any sequence of code in a single main
function (not including arrays and objects). Proceeding with the rest of code generation
includes:

• Generating code for other function definitions isn’t much different than it was for main,
other than that you need to assign locations to the function parameters and figure out
your strategy for assigning function labels. Our solution uses the function name prefixed
with an underbar as the function label and for classes we further prefix with the class
name. You’re welcome to use any scheme you like as long as it works (i.e. assigns unique
labels with no confusion).

• Plan your array layout. Remember that your generated code is responsible for tracking
the array length. Where will you store that? When is the length set? How do you
access it? Once you have a strategy, implement the built-in NewArray and the length()
accessor. Add a runtime check that rejects an attempt to create an array without a
positive number of elements, printing the message

Decaf runtime error: Array size is <= 0

and halting execution. (The error messages are provided in errors.h)

• Code generation for array elements requires computing offsets and dereferencing. Be
careful to consider both the case when the array element is being read and the case when
it is being written. Include a runtime check for array subscripting that verifies that
the index is in bounds for the array. If an attempt is made to access an out-of-bounds
element, at runtime you should print the message

Decaf runtime error: Array subscript out of bounds

page 4

and halt execution.

• Now consider how you will configure objects in memory- in particular, think through
how you will access instance variables and implement dynamic dispatch. Sketch some
pictures and be sure to consider how inheritance will be supported. With your plan in
hand, figure out how you will assign locations to instance variables and methods. Add
code to generate the class vtable.

• Add implementation for the New built-in, taking care to generate the necessary code to
set up the new objects’ vtable pointer.

• Code generation for instance variable access is somewhat similar to array element access
in that it involves loads and stores with offsets. It might help to suspend semantic
processing while testing (i.e. act as though all object fields are public) so that you can
directly read and write the fields of an object from the main function.

• Method calls are handled similarly to function calls, but dynamic dispatch and the hidden
receiver argument adds some complication. Refer back to your earlier object pictures
to ensure you understand what code must be generated to jump to the correct method
implementation. Remember that there is an additional argument ”this” that needs to
be passed as a behind-the-scenes parameter when generating code for a method call. In
the context of a method body, you will need to synthesize a location for the identifier
”this” at the offset for where the parameter can be found.

• You are to add one piece of ”linker”-like functionality to verify that there is a definition
for the global function main The error reported when the program contains no main is:

***Linker: function ’main’ not defined

If there is a link error, no code should be emitted.

4 Random Hints and Suggestions

Just a few details that didn’t fit anywhere else:

• The debug key ”tac” can be used to skip final MIPS code generation and just print the
TAC instructions. The debug flag can be set with −d tac when invoking the program or
programmatically via SetDebugForKey. This is quite useful when you are developing
code. Note that it is not expected that your instruction sequence exactly match ours.
Depending on your strategy, you can get many functionally equivalent results from dif-
ferent sequences. We will not be using diff on the TAC or MIPS sequences, but only use
the spim output.

• We included comments in the header files to give an overview of the functionality in our
provided classes but if you find that you need to know more details, don’t be shy about
opening up the .cc file and reading through the implementation to figure it out.

page 5

5 Testing your compiler

There are various test files that are provided for your testing pleasure in the samples direc-
tory. For each Decaf input test file, we also have provided the output from executing that
program’s object code under spim. There are many different correct ways of sequencing
the instructions, so it’s not helpful to compare TAC/MIPS outputs. However, the runtime
output from spim should match exactly. Be sure to test your program thoroughly, which
will almost certainly involve making up additional tests.

We will test your compiler only on syntactically and semantically valid input. We
will expect your final submission to report errors only for the runtime and linking errors
specified above.

6 Grading

The final submission is worth 100 points. We will thoroughly test your submission against
many samples. We will run the object code produced by your compiler on the spim simulator
and diff against the correct runtime output.

7 Deliverables

For this project, you have the option of working in a group of two. If you plan
to work with a partner, grant read/write permissions to your partner and inform the
TA/Professor. As mentioned earlier, starting files for this project are available at
/usa/pollock/cisc672 471/decaf/pp5. Create a directory decaf pp5 under the working copy
of your bitbucket repository and place all the files related to the project there. You should
commit the decaf pp5 project directory to turn in your assignment (don’t forget to remove
object files and executables). Last commit before the project deadline will be considered as
the final submission to be graded for the project unless otherwise notified. We will grade
only one submission per group. Each partner will receive the same grade on the project
unless there is indication of a huge difference in the workload taken on by the partners, in
which case, the “freeloader” will be assigned a percentage of the project grade accordingly.

If you still have questions about the directory structure, please contact us through
Piazza or come to office hours. Make sure your files can compile. Don’t forget to remove
object files and executables.

page 6

