Decaf PP2: Syntax Analysis

Date Assigned: 09/23/2014 Date Due: 10/03/2014 11:59pm

This assignment is a group or individual project. You may work in teams of 2 people
or on your own. Be sure that you let the TA know who is submitting the final project files
for grading, or both of you submit. You may discuss your ideas with other groups, but your
work should be your own group’s work.

Deliverables: All Students (in either CISC 672 or 471): Complete the entire assignment as
described.

1 Goal

In this programming project, you will extend the Decaf compiler to handle the syntax
analysis phase, the second task of the front-end, by using bison to create a parser (PP1 is
the lexical analysis). The parser will read Decaf source programs and construct an Abstract
Syntax Tree (AST). If no syntax errors are found, your compiler will print the completed
AST at the end of parsing. At this stage, you are not responsible for verifying semantic
rules, just the syntactic structure. The purpose of this project is to familiarize you with
the tools and give you experience in solving typical difficulties that arise when using them
to generate a parser.

There are two challenges to this assignment: the first is all about yacc/bison: taking
your SLR knowledge, coming up to speed on how the tools work, and generating a Decaf
parser. The second challenge will come in familiarizing yourself with our provided code for
building an AST tree. The code is just a starting skeleton to get you going. Your job will
be to fully flesh it out over the course of the semester. Our sense is that in the long run
you will be glad to have had our help, but you will have to first invest the time to come up
to speed on someone else’s code, so be prepared for that in this project.

2 Syntactical Structure of Decaf

The reference grammar given in the Decaf language handout defines the official gram-
mar specification you must parse. The language supports global variables and functions,
classes and interfaces, variables of various types including arrays and objects, arithmetic and
boolean expressions, constructs such as if, while, etc. First, read the grammar specification
carefully. Although the grammar is fairly large, most of is not tricky to parse.

In addition to the language constructs already specified, you will also extend the gram-
mar to support C-style post-increment and decrement expressions along with switch state-
ments.

page 1



3 Starter files

Starting files for this project are available on
the mlb.acad.ece.udel.edu machines at /usa/pollock/cisc672-471/decaf/pp2 as pp2.tar.gz.

As always, be sure to read through the files we give you to understand what we have
provided. The starting PP2 project contains the following files (the boldface entries are the
ones you will definitely modify, you may modify others as needed):

Makefile builds project

main.cc main() and some helper functions

lex.yy.c our scanner created from our lex spec for Decaf
parser.h declares parser functions and types

parser.y skeleton of a yacc parser for Decaf

ast.h/.cc interface/implementation of base AST node class

ast_type.h/.cc interface/implementation of AST type classes
ast_decl.h/.cc  interface/implementation of AST declaration classes
ast_expr.h/.cc interface/implementation of AST expression classes
ast_stmt.h/.cc interface/implementation of AST statement classes

errors.h/.cc error-reporting class to use in your compiler

list.h simple list template class

location.h utilities for handling locations, yylloc/yyltype
utility.h/.cc interface/implementation of various utility functions
samples/ directory of test input files

bin/ solution executable of pp2 as dcc

Retrieve the zip file to your local directory with wget command and unzip it with unzip.
Use make to build the project. The makefile provided will produce a parser called dcc. It
reads input from stdin, writes output to stdout, and writes errors to stderr. You can use
standard UNIX file redirection to read from a file and/or save the output to a file:

% dcc < samples/program.decaf >& program.outanderr

You will need a scanner. You can either use the one you created or the one we provide.
The scanner.l file is our lex specification for a Decaf scanner (with integrated comment
handling and no preprocessor to keep things clean). Feel free to look through the code
to learn how we did things, it’s always interesting to see how different people solve the
same problem. Same as last time, we put a solution executable of pp2 under the solution
directory to help you understand the expected behavior of the parser.

4 Using bison

e The given parser.y input file contains a very incomplete skeleton which you must com-
plete to accept the correct grammar. Your first task is to add the rules for each of the
Decaf grammar features. You do not need the actions to build the AST yet, as it may
help to first concentrate on getting the rules written and conflicts resolved before you
add actions.

page 2



Running yacc/bison on an incorrect or ambiguous grammar will report shift/reduce er-
rors, useless rules, and reduce/reduce errors. To understand the conflicts being reported,
scan the generated y.output file that identifies where the difficulties lie. Take care to
investigate the underlying conflict and what is needed to resolve it rather than adding
precedence rules like mad until the conflict goes away.

Your parser should accept the grammar as given in the Decaf specification document,
but you can rearrange the productions as needed to resolve conflicts. Some conflicts
(if-then-else, overlap in function versus prototype) can be resolved in a multitude of
ways (re-writing the productions, setting precedence, etc.) and you are free to take
whatever approach appeals to you. All that you need to ensure is that you end up with
an equivalent grammar.

All conflicts and errors should be eliminated, i.e. you should not make use of bison’s
automatic resolution of conflicts or use %expect to mask them. Note: you might see
messages in y.output like: “Conflict in state X between rule Y and token Z resolved as
reduce.” This is fine — it just means that your precedence directives were used to resolve
a conflict.

Building the AST

There are several files of support code (the generic list class, and the five AST files
with various AST node classes). Before you get started on building the parse tree, read
through these carefully. The code should be fairly self-explanatory. Each node has the
ability to print itself and, where appropriate, manage its parent and lexical location
(these will be of use in the later projects). Consider the starting code yours to modify
and adapt in any way you like.

We included limited comments to give an overview of the functionality in our provided
classes but if you find that you need to know more details, don’t be shy about opening
up the .cc file and reading through the implementation to figure it out. You can learn a
lot by just tracing through the code, but if you cannot seem to make sense of it on your
own, you can contact us through Piazza or come to office hours.

You can add actions to the rule as you go or wait until all rules are debugged and then
go back and add actions. The action for each rule will be to construct the section of the
AST corresponding to the rule reduced for use in later reductions. For example, when
reducing a variable declaration, you will combine the Type and Identifier nodes into a
VarDecl node, to be gathered in a list of declarations within a class or statement block
at a later reduction.

Be sure you understand how to use symbol locations and attributes in yacc/bison:
accessing locations using @n, getting/setting attributes using $ notation, setting
up the attributes union, how attribute types are set, the attribute stack, yylval
and yylloc, so on. There is information on how to do these things (and
much more) in the on-line references ( http://dinosaur.compilertools.net/#flex and
http://dinosaur.compilertools.net /#bison).

page 3



e Keep on your toes when assigning and using results passed from other productions in
yacc. If the action of a production forgets to assign $$ or inappropriately relies on
the default result ($$ = $1), you usually don’t get warnings or errors, instead you are
rewarded with entertaining runtime nastiness from using an unassigned variable.

e We expect you to match our output on the reference grammar, so be sure to look at
our output and make good use of diff -w. At the end of parsing, if no syntax errors
have been reported, the entire parse tree is printed using an in-order walk. Our AST
classes are all configured to properly print themselves in the expected format, so there is
nothing new you need to do here. If you have wired up the tree in the correct way, the
printed version should match ours, line for line.

6 Beyond the reference grammar

Once you have the full grammar from the Decaf spec operational, you have two creative
tasks to finish off your syntax analysis:

1) Postfiz expressions. Add your own version of the post-increment and decrement
expressions:

it+;

I

if (i == arr[jl--)

Both of these are unary operators at the same precedence level as unary minus and
logical not. You only need to support the postfix form, not the prefix. An increment or
decrement can be applied to any assignable location (i.e. could appear on the left side of
an assignment statement). You will need to modify the scanner and parser, and add new
parse tree nodes for this new construct.

2) Switch statements. Add your own production(s) for parsing a C-style switch state-
ment.

switch(num) {
case 1: i = 1;
case 2: i = 10; break;
default: Print("hello");
}

The expression in the switch is allowed to be any expression (as part of later semantic
analysis, we could verify that it is of integer type). The case labels must be compile-time
integer constants. It is required that there is at least one non-default case statement in
any switch statement and if there is a default case it must be listed last. A case contains
a sequence of statements, possibly empty. If empty, control just flows through to the next
case. You will need to modify the scanner and parser, and add new AST nodes for this new
construct.

page 4



7 Testing

In the starting project, there is a samples directory containing various input files and
matching .out files which represent the expected output that you should match. diff is
your friend here!

Note that, the provided test files do not test every possible case! Examine the test files
and think about what cases aren’t covered. Make up lots of test cases of your own. Run
your parser on various incorrect files to make sure it finds the errors. What formations
look like valid programs but are not? What sequences might confuse your processing of
expressions or class definitions? How well does your error recovery strategy stand up to
abuse?

Remember that syntax analysis is only responsible for verifying that the sequence
of tokens form a valid sentence given the definition of the Decaf grammar. Given that
our grammar is somewhat “loose”, some apparently nonsensical constructions will parse
correctly and, of course, we are not yet doing any of the work for verify semantic validity
(type-checking, declare before use, etc.). The following program is valid according to the
grammar, but is obviously not semantically valid. It should parse correctly.

string binky()
{

neverdefined b;

if (1.5 * "Stanford")
b / 4;
}

8 Grading

This project is worth 60 points and points will be allocated for correctness. We will run
your program through the given test files from the samples directory as well as other tests
of our own, using diff -w to compare your output to that of our solution.

9 Deliverables

Electronically submit your entire project by committing and pushing to your bitbucket
repository that you set up earlier and shared with us. You should submit a tar.gz of the
project directory, called pp2-yourlastname.tar.gz. Be sure to include a brief README file,
which is your chance to let us know about optional features you added for bonus points. The
date of submission will be the last push date that you made to this project. Remember
that the deadline is Friday, 10/3/2014, 11:59pm Contact us through Piazza or come
to office hours. Make sure your files can compile. Don’t forget to remove object files and
executables.

page 5



