
The Front End:
Scanning and Parsing

How they work together…

 scanner parser

 string table

Source
file

IR
Get next token

errors

token

Since the scanner is the only phase to

touch the input source file, what else
does it need to do?

What is a token? A lexeme?

•  English?
•  Programming Languages?

•  Lexeme
•  Token
•  Examples?

 lexemes tokens

Designing a Scanner

Step 1: define a finite set of tokens
 How?
Step 2: describe the strings (lexemes)

for each token
 How?

So, a simple scanner design?

Then, why did they invent lex?

It is not so straightforward…
Even, simple examples: i vs if ; = vs ==

Specifying lexemes with
Regular Expressions

Let ∑ be an alphabet.
Rules for Defining regular expressions over ∑ :

Help me out here, those from theory class!

Specifying lexemes with
Regular Expressions

Let ∑ be an alphabet.
Rules for Defining regular expressions over ∑ :

- ε Denotes the set containing the empty string.
- For each a in ∑ , a is the reg expr denoting {a}

- If r and s are reg expr’s, then

 r s = set of strings consisting of strings
 from r followed by strings from s

 r | s = set of strings for either r or s

 r * = 0 or more strings from r (closure)
 (r) used to indicate precedence

Reading Regular Expressions

•   Identifiers:

–   Letter -> (a|b|c|d|..|z|A|B|C…|Z)
–   Digit -> (0|1|2|…|9)
–   Identifies -> Letter (Letter | Digit)*

•   Numbers:

Integer -> (+|-|ℇ) (0|1|2|3|..|9) (Digit*)
Decimal -> Integer.Digit*
Real -> (Integer | Decimal) E (+|-|ℇ) Digit* Complex -> (Real
op Real i)

What strings/lexemes are represented by these regular
expressions?

Practice with writing regular
expressions

1.  Binary numbers of at least one digit
2.  Capitalized words
3. Legal identifiers that must start with a letter, can
 contain either upper or lower case letters, digits, or _.
4. white space including tabs, newlines, spaces

Shorthand for regular expressions?

What strings are accepted here?

•  Numerical literals in Pascal may be
generated by the following:

The Scanner Generator

Form of a Lex/Flex Spec File

Definitions/declarations used for re clarity
%%
Reg exp0 {action0} // translation rules to be

Reg exp1 {action1} // converted to scanner
… …
%%

Auxiliary functions to be copied directly

Lex Spec Example
delim [\t\n]
ws {delim}+
letter [A-Aa-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%%
{ws} {/*no action and no return*?}
if {return(IF);}
then {return(THEN);}
{id} {yylval=(int) installID(); return(ID);}
{number} {yylval=(int) installNum(); return(NUMBER);}
%%

Int installID() {/* code to put id lexeme into string table*/}

Int installNum() {/* code to put number constants into constant table*/}

Some Notes on Lex

•  yylval – global integer variable to pass
additional information about the
lexeme

•  yyleng – length of lexeme matched
•  yytext – points to start of lexeme

Lex/flex scanner generator Turtle.l
Lex spec lex.yy.c

c/c++ compiler scanner

Test.tlt

Token stream

Ambiguities

What if

•  •   x
1

…x
i
∈ L(R) and also

•  •   x
1

…x
K
∈ L(R)

Some examples?

Which token is used? How designated?

More Ambiguities

•  What if
•  • x1…xi ∈ L(Rj) and also
•  • x1…xi ∈ L(Rk) ?

•  Which token is used?

Lexical Error Detection and
Handling

No rule matches a prefix of input ?

Problem: Compiler can’t just get stuck …

A Makefile for the scanner

eins.out: eins.tlt scanner
 scanner < eins.tlt > eins.out

lex.yy.o: lex.yy.c token.h symtab.h
 gcc -c lex.yy.c

lex.yy.c: turtle.l
 flex turtle.l

scanner: lex.yy.o symtab.c
 gcc lex.yy.o symtab.c -lfl -o scanner

A typical token.h file
#define SEMICOLON 274
#define PLUS 275
#define MINUS 276
#define TIMES 277
#define DIV 278
#define OPEN 279
#define CLOSE 280
#define ASSIGN 281
… /*for all tokens*/

typedef union YYSTYPE
{ int i; node *n; double d;}
 YYSTYPE;
YYSTYPE yylval;

A typical driver for testing the
scanner without a parser

%%

main(){
int token;

while ((token = yylex()) != 0) {

switch (token) {
 case JUMP : printf("JUMP\n"); break;

/*need a case here for every token possible, printing yylval as needed for
those with more than one lexeme per token*/
 default:
 printf("ILLEGAL CHARACTER\n"); break;

}
}
}

Let’s Get Started on D1

•  Objective:
– Learn to read/understand a lex spec

More Practice with reading
lex specs

•  What do example.l and example2.l do?

How does the Scanner work
under the Hood?

From Specification to
Scanning…

What is a Finite Automata?

 Regular expressions = specification

 Finite automata = implementation

 A finite automaton consists of
– An input alphabet Σ

– A set of states S
– A start state n

– A set of accepting states F ⊆ S

– A set of transitions state →input state

From Reg Expr to NFA

How do we build an NFA for:
a?
Concatenation? ab
Alternation? a | b
Closure? a*

Scanning as a Finite Automaton

Understanding FA

DFA vs NFA ?

•  What is allowed?
•  Which can be much bigger in size?

Which is simpler?
•  Which is faster to run?

The Whole Scanner Generator
Process

Comparison by size

Implementing a DFA
A DFA can be implemented by a 2D table T

–  One dimension is “states”

–  Other dimension is “input symbol”
–  For every transition S

i
→a S

k
define T[i,a] = k

DFA “execution”

–  –  If in state S
i
and input a, read T[i,a] = k and skip to state S

k

–  Very efficient

However, 3 Major Ways to Build
Scanners

–  ad-hoc

–  semi-mechanical pure DFA
(usually realized as nested case statements)

–  table-driven DFA

•  Ad-hoc generally yields the fastest, most
compact code by doing lots of special-
purpose things, though good automatically-
generated scanners come very close

A Semi-mechanical DFA Way

In-class Exercise

•  In pseudo-code write a scanner for this
FA representation of strings to be
accepted

Manually written scanner code

Manually written scanner code

In summary, Scanner is the only
phase to see the input file, so…

The scanner is responsible for
what?

In summary, Scanner is the only
phase to see the input file, so…

The scanner is responsible for:
–  tokenizing source
–  removing comments
–  saving text of identifiers, numbers, strings

–  saving source locations (file, line, column)
for error messages

Why separate phases?

Slide From Keith Cooper, Rice

