
1

Overview Roadmap

•  Language Translators: Interpreters & Compilers
•  Context of a compiler
•  Phases of a compiler
•  Compiler Construction tools
•  Terminology
•  How related to other CS
•  Goals of a good compiler

2

Compilers and Interpreters
•  What is a compiler?

–  A program that translates an executable program in one
language into an executable program in another language

•  What is an interpreter?
–  A program that reads an executable program and produces

the results of executing that program

•  Implementation of Languages
–  C family is typically compiled
–  Scheme is typically interpreted
–  Java is translated to bytecodes - interpreted by virtual

machine or compiled into native code –
–  JIT compilers – on demand

3

interpreter
program
output

source
program or
representation

data

Locus of control - in interpreter, not program

Compiler has distinct translation and execution phase

source
program compiler

Some program
representation

data
program
output

Overview of interpreters and compilers

4

Interpreters
 Advantages

•  Easier to debug code - better diagnostics
•  More flexible - can modify code & type of variables
•  Machine independent - portable

 Disadvantages
•  Execution overhead speed - text or some representation
of program is continually reexamined - 10:1 ratio;
•  Space overhead - program representation plus code of
interpreter

Compilers
 Advantages

• Execution faster
• Exploit architecture

 Disadvantages
• Processing time for preprocessing
• Complexity

5

Relation to Other CS

Artificial intelligence
Greedy algorithms, Genetic algorithms
Heuristic search techniques

Algorithms
Graph algorithms, union-find
Dynamic programming

Theory
DFAs & PDAs, pattern matching
Fixed-point algorithms

Systems
Allocation & naming,
Synchronization, locality

Architecture
Memory hierarchy management
Functional units & pipelines
Instruction set use

6

From Your Experience

•  You have used several compilers.
•  What qualities do you want in a compiler that you

buy ?
1. Correct Code
2. Output runs fast
3. Compiler runs fast
4. Compile time proportional to program size
5. Support for separate compilation
6. Good diagnostics for syntax errors
7. Works well with debugger
8. Good diagnostics for flow anomalies
9. Good diagnostics for storage leaks
10. Consistent, predictable optimization
11. Runs on different machines

7

Must recognize legal (and illegal) programs
Must generate correct code
Must manage storage of all variables (and code)
Must agree with OS & linker on format for object code

Big step up from assembly language—use higher level notations

High-level View of a Compiler

Source
code

Object
code Compiler

Errors

8

Conceptual phases of compiler

Lexical
Analysis
(scanner)

Syntax
analysis
(parser)

Semantic
Analysis

Code
optimization

Code
generation

Sequence of
tokens

Intermediate
code - IR1

Intermediate
code IR2

Optimized
code Target code

Front End
machine independent
language dependent

Middle Back End
machine dependent
language independent

9

Traditional Two-pass Compiler

Allow 2 passes:

•  Use an intermediate representation (IR)
•  Front end maps legal source code into IR
•  Back end maps IR into target machine code
•  Admits multiple front ends & multiple passes (better code)

Source
code

Front
End

Errors

Object
code

Back
End

IR

10

Responsibilities

•  Recognize legal (& illegal) programs
•  Report errors in a useful way
•  Produce IR & preliminary storage map
•  Shape the code for the back end
•  Much of front end construction can be automated

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

11

Lexical Analysis/Scanner
Purpose: recognize words - smallest unit

Analyze string of characters from source - left to right to recognize
units

 Character string - lexeme

 Type of lexical entity - token

 Smallest unit above letters

Example:

 Max:= initial * late + 60

 Lexemes: “max”, “:=“, “initial”, “*”, “late”, “+”, “60”

 Tokens: Id Id Id := * + Int

Must recognize blanks, other characters such as % , $, etc

Lecture 1: CS 2210
Fall 2002

12

Syntax Analyzer - Parser
Parsing similar to diagramming a natural language sentence

 This line is a long sentence

 article noun verb article adj. noun

 subject object

 sentence

 Parsing

 If x = = y then z = l; else z = 2

 if id eq id then id ass con else id ass con

 assign assign
 pred then part else part

 statement

13

Semantic Analysis
Once structure is understood, determine the meaning using the
structure.

Checks performed to ensure components fit together meaningfully

•  information is added to structures

•  limited analysis to catch inconsistencies - e.g., type checking

 Put semantic meaning in structure -

•  produce intermediate form - IR - many forms of IR

•  easier to generate machine code from IR

•  can be different levels of IR - descending levels of abstraction

• Highest is source

• Lowest is target code

14

The Back End/Code Generation

Responsibilities
•  Translate IR into target machine code
•  Choose instructions to implement each IR operation
•  Decide which value to keep in registers
•  Ensure conformance with system interfaces

Automation has been much less successful in the back end

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
Allocation

IR IR

15

The Back End

Instruction Selection
•  Produce fast, compact code
•  Take advantage of target features such as addressing modes
•  Usually viewed as a pattern matching problem

–  ad hoc methods, pattern matching, dynamic programming
–  Depends on architecture - CISC, RISC

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
Allocation

IR IR

16

The Back End

Instruction Scheduling
•  Avoid hardware stalls and interlocks
•  Use all functional units productively
•  Can increase lifetime of variables (changing the allocation)
•  Optimal scheduling is NP-Complete in nearly all cases

Good heuristic techniques are well understood

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
Allocation

IR IR

17

The Back End

Register allocation
•  Have each value in a register when it is used
•  Manage a limited set of resources
•  Can change instruction choices & insert LOADs & STOREs
•  Optimal allocation is NP-Complete
•  Compilers approximate solutions to NP-Complete problems

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
Allocation

IR IR

18

Code Generation – what kind of code

Produce target code - various forms of target code

1.  Assembly Code - symbolic instruction and addresses

•  Easier but not done in modern compilers - assembler
slow

2.  Relocatable format –

•  Binary form except external references, instruction
addresses and data addresses not bound to address

•  Need linker and loader

Both assembly & relocatable allow program modules to be
separately compiled

3. Another language

19

Traditional Three-pass Compiler

Code Improvement (or Optimization)
•  Analyzes IR and rewrites (or transforms) IR
•  Primary goal is to reduce running time of the compiled code

–  May also improve space, power consumption, …
•  Must preserve “meaning” of the code

–  Measured by values of named variables

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

20

The Optimizer (or Middle End)

Typical Transformations
•  Discover & propagate some constant value
•  Move a computation to a less frequently executed place
•  Specialize some computation based on context
•  Discover a redundant computation & remove it
•  Remove useless or unreachable code
•  Encode an idiom in some particularly efficient form

Errors

Opt
1

Opt
3

Opt
2

Opt
n

... IR IR IR IR IR

Modern optimizers are structured as a series of passes

21

Code Optimization
Modify program representation so that the program

•  runs faster

•  uses less memory

•  uses less power

•  in general, reduce the resources consumed

e.g., constant propagation and folding

 Y:= 3

 X:= Y + 4

 optimizes to X:= 7

22

Symbol Table Manager
Collect and maintain information about id’s

•  attributes e.g., storage allocation, type, scope, number
and type of parameters

Usually cuts across all phases - lexical, parsing and
semantic, code optimization, code generation

•  Phase add information - lexical, parsing and semantic

•  Phases use information - code optimization, code
generation

Debuggers uses some form of symbol table

Error Reporting

Phases deal with errors - 1st 3 phases handled bulk of
errors

Lots of success here

23

Distinction between phases and passes

Passes - number of times through a program representation

•  1 - passes, 2 - passes, multiple passes

•  Languages become more complex - more passes

Phases - conceptual and sometimes physical stages

•  Symbol table coordinating information between phases

However, phases are not completely separate - semantic phase must
do things that syntax phase should do if it could

Some interaction possible:

•  optimization and code generation - what optimizer does affects
code generator

24

Compiler tools
Scanner generator

•  Generate lexical analyzer from specification of tokens based on
regular expressions

•  Examples: Lex, Flex, JLex

 Parser generator

•  Generate parser from specification of syntactical structure using
BNF grammars

•  Example: YACC, Bison, CUP

What about compiler generator?

•  How do you specify semantics that is useful for compiler?

•  How do you specify the architecture?

•  How do you specify optimizations?

