
Compilers	 	 Study	 Guide	 for	 Second	 Exam	
Fall	 2013	

	
1 References

• Class-time notes and slides from October 24, 2013 to 12/03/2013
• Assignments (Decaf project with AST builder, semantic analysis, TAC generation)
• Handouts from class - see the course calendar
• Quizzes
• For further reading, look at the textbook pages cited in the course calendar/syllabus if you

need more details

2 Topic Coverage

• Semantic analysis – kinds of checking at semantic analysis time and how implemented
• Implementing static scoping (symbol tables) – including block-structured (procedural) and OO

languages
• Formal type systems – how to write
• Type checking and type inference
• Overloading, coercion, polymorphism and handling during type checking
• Types of Intermediate representations
• Generation of three address code – function calls/returns, control structures, etc
• Code generation for OO languages – vtables, object layouts, new object storage, object accesses,

polymorphic call site handling
• Activation record/frame layout and manipulation
• Run-time storage management – static, stack, heap, including garbage collection techniques

(reference counting, mark-and-sweep, stop-and-copy, generational
• Optimization – control flow graph, call graph, levels and goals of optimization, local

optimizations

3 Format of Exam
The exam is closed book, closed neighbor and you will have the full final exam time period to work. In
general, the exam will be a combination of testing your basic knowledge and understanding of the
concepts covered in class and application of the concepts. Some example types of questions:
Partial credit will be given when possible on any question in the exam.

• True and false with justification
• Show scopes of variables and symbol tables
• Draw diagrams to show concepts of code generation and run-time storage management.
• Read and explain type rules in terms of what checks and inferences should be implemented.
• Draw pictures of memory at different points during run-time.
• Make and justify compiler design decisions.
• Draw the representation of a particular data structure in the activation record.
• Describe and justify which items can be stored on the stack, heap, static store.
• Short-answer questions
• Show type checking in Decaf program
• Convert program to three address code and TAC code; read and explain what TAC code is achieving
• Display an AR frame , stack and heap elements

4 How to Study
Review your lecture notes, handouts, labs, and textbook chapters. Concentrate on your lecture notes and
handouts.

