
 
Your Host: 
    Alex Trebek… 
 
 



A Few Simple Rules 
1. Three Rounds: Jeopardy!, Double Jeopardy, Final Jeopardy 
2. I choose the question – category and point value. 
3. Your team has 1 minute to write an answer. 
4. Give answer to your judge, who decides and records score. 
5. Highest score wins. 
6. Wager any number of points in Final Jeopardy round. 



Got Team? 
Got Paper? 

Here we go… 
Click to Begin 



Scanning Parsing Symbol 
Tables 

100 Point 100 Point 100 Point 

200 Points 200 Points 200 Points 200 Points 

300 Points 300 Points 300 Points 300 Points 

Grammars General 
Compilers++ 

100 Point 100 Point 

200 Points 

300 Points 

Click to Double 
Jeopardy 



C100: List 3 
advantages of a 

compiler over an 
interpreter 



 
Execution of code faster 

Exploit archiecture 
Compilation only once – execute compiled code 

Ability to optimize the code 

C100 Answer: 



C200: Draw the 
major compiler 
phases and their 
inputs & outputs 



C200 Answer: 

Lexical 
Analysis 
(scanner) 

Syntax 
analysis 
(parser) 

Semantic 
Analysis 

Code 
optimization 

Code 
generation 

Sequence of 
tokens 

Intermediate 
code - IR1 

(AST) 

Intermediate 
code  IR2 

(AST) + symbol tablee 

Optimized 
code Target code 

Front End 
machine independent 
language dependent 

Middle Back End 
machine dependent 

language independent 



C300: Give 1 example of 
an error typically caught 
by the scanner, 1 caught 

during parser, and 1 
error caught during 

semantic analysis. 



Misformed token – ab#q 
Statement misformed – x :== y 

Variable not declared  

C300 Answer: 



S100: Show an example 
that clearly 

demonstrates the 
difference between 
lexeme and token. 



S100 Answer: 

   
Token – ID 

Lexeme - max 



S200: Which of the following 
strings is accepted by the regular 

expression bba*b*(ab*a*b)* 

 

1.  bbab 

2.   bbaabab 

3.  bbaabbabba 



1.  bbab 

2.   bbaabab 

S200 



S300: Write a regular 
expression representing the 

strings accepted by this DFA. 



S300 Answer: 

(0|1)* 00 



G100: Show that this 
grammar is ambiguous. 

E -> E * E | E / E | id 

 

 



G100 Answer: 

E * E 

E *  E id 

id 

id id 

E /  E 

E 

id 

E 

E *  E 

E * E 

E /  E 

id id 

id 



G200: Eliminate left 
recursion from this 
grammar using the 

general rule: 

D -> D , id | id 



D -> id A’ 
A’ -> , id A’ |  

G200 Answer:  

ε 



G300: Given the following grammar, 
what are the precedence and 

associativity rules for the operators? 

 

E -> E & T | T % E | T 

T -> T # F | T @ F | F 

F -> g  



Precedence:  
#/ @ 
& % 

 
Associativity 

 

G300 Answer:  

& is left 
% is right 

# is left 
@ is left 



P100: What additional 
information is needed to 

determine if this state is adequate 
in an SLR(1) grammar? 

 

E -> T. 

T -> T.+f 

 



Follow set of  E 

P100 Answer: 



P200: Show the 
grammar hierarchy 
including LR family, 

LL(1), ambiguous and 
context-free grammars 



P200 



P300: Given the LR(1) state 

S8: [E ->a., {;,+}] 

 [E-> E.*T, {;}] 

Give the table entries for state 8 in 
the LR(1) parse table. 



S 

P300 Answer: 
+ ; * 
R1 {E -> A} R {E -> A} S {E -> E *T} 



ST100: List the 
major operations 
performed on a 

symbol table. 



enter_scope()     start a new nested scope 
lookup (x)     finds current x (or null) via scoping rules 
insert_symbol(x)    add a symbol x to the table 
local-lookup(x)   determines if x in local scope 
exit_scope()        exit current scope 

ST100 Answer: 



ST200: List 2 semantic checks that 
can be done at compile time and 2 

that need to wait until runtime. 



 
Compile time: 

Variable declared before use 
Number of parameters matches number of arguments 

 
Run time:   

Subscripts in range 
Size of array must be positive 

ST200 Answer: 



ST300: Describe 
how each ST 

operation uses the 
active ST stack 



Enter scope:  Produces new symbol table for declarations 
Loopup (x) Searches stack from top for first use of variable 
Insert_symbol – inserts variable in current symbol table – top of stack 
Local-lookup – determines if x is in current block at top of stack 
Exit_scope – removes current symbol table from stack 

ST300 Answer: 



General  
Parsing 

 
Surprise 

200 Point 200 Point 

400 Points 400 Points 400 Points 

600 Points 600 Points 600 Points 

Bottomup Topdown 

200 Point 200 Point 

400 Points 

600 Points 

Click to  
Final Jeopardy 



GP200: Name at least 2 
differences between top 

down and bottom up 
parsing. 



Top down goal directed – from top matches string 
Bottom up – reduces string  

 
Top down cannot handle left recrusive grammars 
Bottom up can  handle left recursive grammars 

GP200 Answer: 



GP400: Left factoring: 

Which kind of parsing is it done for? 

What problem does it solve? 

Show an example. 



Predictive top down parsing 
It avoids the parser having to backtrack after wrong decisions 

Due to common prefixes. 
 

Example: common prefix is ‘a’ 
 
 

X -> a B | a C 
C -> B d e | d 

B -> x 

GP400 Answer: 



GP600: Conflicts in 
Bison: 

What happens if you don’t resolve 
them? 

How can you resolve them? 



Get shift reduce errors or reduce reduce errors 
Can resolve them using special symbols to indicate  
Associativity and Precedence of operators 
 
Or can change grammar 

GP600 Answer: 



T200: Compute the FIRST for 
each right hand side of the 

grammar: 

E -> E + T | T 

T -> T & S | S | a 

S -> S / F | ( F ) | b 

F -> c  



First E = {a, b, ( , c} 
etc 

T200 Answer: 
 



T400: Compute the Follow for each 
nonterminal in: 

 
E -> TB 
B -> + TB | ε 
T -> FC 
C -> *FC | ε 
F -> ( E ) | a 

 



T400 Answer: 

 



T600: Write the 
conditions for a 

grammar G to be 
LL(1) 



T600 Answer: 
 

A grammar G is LL(1) iff 
whenever there exists A -> α | β in G, 

all of the following conditions hold true: 
* FIRST(α) ∩FIRST(β) = 0 

* At most 1 of α and β derive the empty 
string 

* If β derives the empty string, then 
FIRST(α) ∩ FOLLOW 



B200: Show the LR(1) 
table entries for the 

state: 



B200 Answer: 
 



B400: For the grammar below, show 
the LR(1) and the LR(0) closures for 
the initial state S’-> .G 

S’ -> G 
G -> E = E | f 
E -> T | E + T 
T -> f | T * f 

 



B400 Answer: 

 



B600: What are the 
two ways to create an 

LALR(1) parser 
without using a 

parser generator? 



B600 Answer:  
 

Construct LR(1) sets of items 
And merge core states 

 
Or 

Construct LR(0) sets of items and lookahead 
Sets as you create the LR(0) items 



SU200: What is the 
full name of the chair 

of our CS 
department? 

 



SU200 Answer: 

 
 



SU400: When there is 
no local declaration of 
a name, where do we 
go next to look for it 
in STATIC scoping? 
DYNAMIC scoping? 



Static scoping: 
Search Symbol tables for static scoping based on 
scoping from text of program – most closely nested rule ; 
Next outer block from current block (not always global) 
 
Dynamic Scoping:  
Search symbol tables based on run time calls; the caller’s  
Stack frame  
 

SU400 Answer: 
 



SU600: List 5 entities 
that are named in the 

Decaf language 



SU600 Answer: 
 

Program 
Variable 
Formals 
Interface 

Class 



Make your wager 



Click here for 
Final Jeopardy 



What has been the 
value of compilers 

in computing 
technology? 



Ability to write code in  high level languages 


