11/11/13

PP5 and TAC An Important Detail

+ Goal: Generate TAC IR for Decaf programs. . .
pros * When generating IR at this level, you do

+ We provide a code generator to produce MIPS assembly. . .
not need to worry about optimizing it.

* You can run your programs using spim, the MIPS simulator.
+ You must also take care of some low-level details: * It's okay to generate IR that has lots of
+ Assign all parameters, local variables, and temporaries positions unnecessary assignments, redundant
inastack frame. computations, etc.

+ Assign all global variables positions in the global memory
segment.

+ Assign all fields in a class an offset from the base of the object.

11/11/13

Three-Address Code Sample TAC Code
* Or “TAC” ,
int x;
* The IR that you will be using for the final int y;
programming project. int x2 = x * x; X2 = x * x:
* High-level assembly where each int yz - x2*+y;2; y2 = §2*+y§2;

operation has at most three operands.

* Uses explicit runtime stack for function
calls.

* Uses vtables for dynamic dispatch.

int
int
int
int

Sample TAC Code

a;
b; _t0 =b + c;
c7 a=_t0 + d;
d; _tl =a * a;
= * .
=Db + c + d; Btg _t? + b1’:2;
=a *a+ b * b;

Sample TAC Code

TAC allows for

instructions with two

operands.
int a; {’///
int b; _t0 = 5;
tl 2 * b;
a =5+ 2 *b; a= t0+ ti;

11/11/13

11/11/13

Simple TAC Instructions One More with bools
* Variable assignment allows assignments of the t0 = x + x:
form int x; _tl = y;
. var = constant; int y; bl = _t0 < _t1;
. var, = var,; bool bl;
bool b2; _t2 = x + x;
. var, = var, op var,; bool b3; t3 = vy;
. var, = constant op var,; 52 = _t2 == _t3;
.« var, = var, op constant; bl = x + x <y
b2 = x + x ==y _td4 = x + x;
. var = constant, op constant,; b3 = x + x > y t5 = y;
- Permitted operators are +, -, *, /, %. b3 = _t5 < _t4;
- How would you compiley = -x; ?
y =0 - x; y = -1 * x;

TAC with bools

* Boolean variables are represented as
integers that have zero or nonzero
values.

* In addition to the arithmetic operator,
TAC supports <, ==, | |, and &&.

- How might you compile b = (x <= y) ?
_t0=x< 7
y ¥
bty =tQ 14 _tl;

Control Flow Statements

int x;
int y; _t0=x<y;
int z; y) IfZ _t0 Goto _LO;
zZ = X;
if (x < Goto L1;
z = X7 LO: -
else - zZ =Yy
z = y; Ll:
zZ =2z * z;
z =z * z;

11/11/13

11/11/13

Labels Control Flow Statements

« TAC allows for named labels indicating

particular points in the code that can be int x;

jumped to. int y; _L0:

. .) t0 = x < y;

* There are two control flow instructions: while (x <y) I£fZ 0 Goto Ll:

« Goto label; - 2'{ x = X =x * 2;

’ Goto LO;

- IfZ value Goto label; } Ll: -

« Note that IfZ is always paired with Goto. y = x; y =%

A Complete Decaf Program

void main ()
int x, vy
int m2 =

{

’

X *x +ty *y;

while (m2 > 5)

{ m2
Pl

m2 — X;

main:
BeginFunc 24;
_t0 = x * x;
_tl=y*y

m2 = t0 + ;tl;
_LO:

_t2 =5< m2;

IfZ _t2 Goto _Ll1;

m2 = m2 - XxX;

Goto _LO;
_Ll:

EndFunc;

Compiling Functions

* Decaf functions consist of four pieces:

* Alabel identifying the start of the function.
- (Why?)
+ A BeginFunc N; instruction reserving N
bytes of space for locals and temporaries.
« The body of the function.

+ An EndFunc; instruction marking the end of
the function.

- When reached, cleans up stack frame and
returns.

11/11/13

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

11/11/13

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

11/11/13

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Stack
frame for
function

g(a, ..., m)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

11/11/13

10

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

11/11/13

11

A Logical Decaf Stack Frame

Stack
frame for
function

f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

Compiling Function Calls

void SimpleFn (int z) {
int x, y;
X =x * vy * z;

}

void main ()
{ SimpleFunction (137
)

_SimpleFn:
BeginFunc 16;
_t0 =x * y;
_tl = _t0 * z;
x = _tl;
EndFunc;

11/11/13

12

Compiling Function Calls

_SimpleFn:
BeginFunc 16;
void SimpleFn (int z) { t0 = x * y;
int %, y; tl = _t0 * z;
x=x Yy ¥z X = ti;
} EndFunc;
void main () main:
{ SimpleFunction (137 BeginFunc 4;
)i _t0 = 137;
} PushParam _tO0;
LCall _SimpleFn;
PopParams 4;
EndFunc;

Stack Management in TAC

The BeginFunc N; instruction only needs to
reserve room for local variables and
temporaries.

The EndFunc; instruction reclaims the room
allocated with BeginFunc N;

A single parameter is pushed onto the stack by
the caller using the PushParam var instruction.

Space for parameters is reclaimed by the caller
using the PopParams N; instruction.

« Nis measured in bytes, not number of arguments.

11/11/13

13

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

PushParam var;

11/11/13

14

A Logical Decaf Stack Frame

Stack
frame for

function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

PushParam var;
PushParam var;

A Logical Decaf Stack Frame

Stack
frame for

function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

PushParam var;
PushParam var;
PushParam var;

11/11/13

15

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

PushParam var;
PushParam var;
PushParam var;
BeginFunc N;

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Stack
frame for
function

g(a, ..., m)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

PushParam var;
PushParam var;
PushParam var;
BeginFunc N;

11/11/13

16

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame

Param N
Param N — 1
Stack
frame for Param 1
function Storage for
f(a, ..., n) Locals and
Temporaries

EndFunc;

11/11/13

17

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

PopParams N;

11/11/13

18

A Logical Decaf Stack Frame

Stack
frame for
function
f(a, ..., n)

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

Storage Allocation

* As described so far, TAC does not specify

where variables and temporaries are
stored.

* For the final programming project, you

will need to tell the code generator where
each variable should be stored.

* This normally would be handled during

code generation, but Just For Fun we
thought you should have some experience
handling this. ©

11/11/13

19

The Frame Pointer

Param N
Param N — 1

Locals and
Temporaries

The Frame Pointer

Frame
Pointer —

Param N
Param N — 1

Locals and
Temporaries

11/11/13

20

11/11/13

The Frame Pointer The Frame Pointer
Param N Param N
Param N — 1 Param N — 1
Locals and Locals and
Temporaries Temporaries

Frame Frame
Pointer — Pointer —

21

The Frame Pointer

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer

The Frame Pointer

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer

11/11/13

22

The Frame Pointer

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer

The Frame Pointer

Param N
Param N — 1

Param 1
—»
Storage for

Locals and
Temporaries

Frame
Pointer —

11/11/13

23

Logical vs Physical Stack Frames

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

Logical vs Physical Stack Frames

Param N Param N
Param N — 1 Param N — 1
Param 1 Param 1

Storage for fp of caller

Locals and Storage for
Temporaries Locals and

Temporaries

11/11/13

24

Logical vs Physical Stack Frames

Param N
Param N — 1

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer —

Param N
Param N — 1

Param 1

N fp of caller

Storage for
Locals and
Temporaries

(Mostly) Physical Stack Frames

Frame
Pointer —

Param N

Param 1

£p of caller

Storage for
Locals and
Temporaries

11/11/13

25

(Mostly) Physical Stack Frames

Frame
Pointer —

Param N

Param 1

fp of caller

Storage for
Locals and
Temporaries

Param N

Param 1

(Mostly) Physical Stack Frames

Param N

Param 1

fp of caller

Storage for
Locals and
Temporaries

Param N

Param 1

£p of caller

Frame
Pointer —

11/11/13

26

(Mostly) Physical Stack Frames

Param N

Param 1

£p of caller

Storage for
Locals and
Temporaries

Param N

Param 1

Frame

Pointer -

£p of caller

(Mostly) Physical Stack Frames

Param N

Param 1

fp of caller

Storage for
Locals and
Temporaries

Param N

Param 1

Frame

Pointer -

£p of caller

11/11/13

27

(Mostly) Physical Stack Frames

Param N

Param 1

£p of caller

Storage for
Locals and
Temporaries

Param N

Param 1

Frame

Pointer -

£p of caller

(Mostly) Physical Stack Frames

Param N

Param 1

fp of caller

Storage for
Locals and
Temporaries

Param N

Param 1

£p of caller

Frame
Pointer —

11/11/13

28

(Mostly) Physical Stack Frames

Frame
Pointer —

Param N

Param 1

fp of caller

Storage for
Locals and
Temporaries

Param N

Param 1

(Mostly) Physical Stack Frames

Frame
Pointer —

Param N

Param 1

£p of caller

Storage for
Locals and
Temporaries

11/11/13

29

The Stored Return Address

Internally, the processor has a special register
called the program counter (PC) that stores the
address of the next instruction to execute.

Whenever a function returns, it needs to restore
the PC so that the calling function resumes
execution where it left off.

The address of where to return is stored in MIPS
in a special register called ra (“return address.”)

To allow MIPS functions to call one another, each
function needs to store the previous value of ra
somewhere.

Physical Stack Frames

Frame
Pointer —

Param N

Param 1

fp of caller
ra of caller

Locals and
Temporaries

11/11/13

30

11/11/13

Physical Stack Frames Physical Stack Frames

Param N Param N
Param 1 Param 1
fp of caller £p of caller
ra of caller
Locals and Locals and
Temporaries Temporaries
Param N Param N
Param 1 Param 1
Pointer — Pointer —

31

Physical Stack Frames

Param N

Param 1

fp of caller

ra of caller

Locals and
Temporaries
Param N

Param 1

Frame £p of caller
Fointer o ra of caller

Physical Stack Frames

Param N

Param 1

£p of caller

ra of caller
Locals and
Temporaries
Param N

Param 1

Frame £p of caller

Pointer -

ra of caller

11/11/13

32

Physical Stack Frames

Param N

Param 1

£p of caller

ra of caller

Locals and
Temporaries

Param N

Param 1

Frame £p of caller
Pointer
e - ra of caller

So What?

In your code generator, you must assign each
local variable, parameter, and temporary
variable its own location.

These locations occur in a particular stack
frame and are called fp-relative.

Param N fp + 4N

Parameters begin at address

fp + 4 and grow upward. R— fp+ 4
Locals and temporaries begin £p of caller IR
at address fp — 8 and grow fp - 4
downward Local 0 fp -8

Local M fp -4 -4M

11/11/13

33

From Your Perspective

Location* location =
new Location (fpRelative, +4, locName);

From Your Perspective

Location* location =
new Location (fpRelative, +4, locName);

11/11/13

34

11/11/13

From Your Perspective And One More Thing...

int globalVariable;

Location* location = int main () {
new Location (fpRelative, +4, locName) ; globalVariable = 137;

/ |
What variable does

this refer to?

35

And One More Thing...

int globalVariable;

int main() {
globalVariable = 137;
}

And One More Thing...

int globalVariable;

int main() {
globalVariable = 137;
}

Where 1is this

stored?

11/11/13

36

The Global Pointer

* MIPS also has a register called the
global pointer (gp) that points to
globally accessible storage.

* Memory pointed at by the global pointer
is treated as an array of values that
grows upward.

* You must choose an offset into this array
for each global variable. Global Variable N o) 4 4N

Global Variable 1 gp + 4

W, Global Variable 0 gp + 0

From Your Perspective

Location* global =
new Location (gpRelative, +8, locName) ;

11/11/13

37

From Your Perspective

Location* global =
new Location (gpRelative, +8, locName);

Generating TAC

11/11/13

38

TAC Generation

+ At this stage in compilation, we have
« an AST,
- annotated with scope information,
- and annotated with type information.

* To generate TAC for the program, we do
(vet another) recursive tree traversal!

* Generate TAC for any subexpressions or
substatements.

« Using the result, generate TAC for the overall
expression.

TAC Generation for Expressions

* Define a function cgen(expr) that generates

TAC that computes an expression, stores it in a
temporary variable, then hands back the name
of that temporary.

Define cgen directly for atomic expressions
(constants, this, identifiers, etc.).

+ Define cgen recursively for compound

expressions (binary operators, function calls,
etc.)

11/11/13

39

cgen for Basic Expressions

cgen(k) = { // k is a constant
Choose a new temporary ¢
Emit(¢t = k);
Return ¢

b

cgen(id) = { //id is an identifier
Choose a new temporary ¢
Emit(¢t = id)
Return ¢

cgen for Binary Operators

cgen(e, + ¢e,) = {
Choose a new temporary ¢
Lett, = cgen(e,)
Letf, = cgen(e,)
Emit(¢= ¢, + t,)
Return ¢

11/11/13

40

An Example

cgen(5 + x)= {
Choose a new temporary ¢
Lett, = cgen(5)
Lett, = cgen(x)
Emit (t = t, + t,)
Return t

An Example

cgen(5 + x)= {
Choose a new temporary ¢
Lett, = {
Choose a new temporary ¢t

t0

“t1

t2

Emit(¢t=5)
return ¢ _

}

Lett, = { _
Choose a new temporary ¢
Emit(¢= x)
return ¢

!

Emit (¢ =t, + t,)

Return t

_t0 + _t1

11/11/13

41

cgen for Statements

* We can extend the c¢gen function to
operate over statements as well.

« Unlike cgen for expressions, cgen for
statements does not return the name of a
temporary holding a value.

* (Why?)

cgen for Simple Statements

cgen(expr;)= {
cgen(expr)
b

11/11/13

42

cgen for while loops

cgen(while (expr) stmt) =
{ Let L be a new
label.

LetL, ..
Emit(L
Lett= cgen(expr)
Emit(IfZ¢ Goto L, ,,,)
cgen(stmt)
Emit(Goto L
Emit(L

before

be a new label.

before :)

before)

after :)

11/11/13

43

